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ABSTRACT

Objective To help cancer registrars efficiently and accurately identify reportable cancer cases.

Material and Methods The Cancer Registry Control Panel (CRCP) was developed to detect mentions of reportable cancer cases using a pipeline
built on the Unstructured Information Management Architecture — Asynchronous Scaleout (UIMA-AS) architecture containing the National Library of
Medicine’s UIMA MetaMap annotator as well as a variety of rule-based UIMA annotators that primarily act to filter out concepts referring to nonrep-
ortable cancers. CRCP inspects pathology reports nightly to identify pathology records containing relevant cancer concepts and combines this with
diagnosis codes from the Clinical Electronic Data Warehouse to identify candidate cancer patients using supervised machine learning. Cancer men-
tions are highlighted in all candidate clinical notes and then sorted in CRCP’s web interface for faster validation by cancer registrars.

Results CRCP achieved an accuracy of 0.872 and detected reportable cancer cases with a precision of 0.843 and a recall of 0.848. CRCP increases
throughput by 22.6% over a baseline (manual review) pathology report inspection system while achieving a higher precision and recall. Depending on
registrar time constraints, CRCP can increase recall to 0.939 at the expense of precision by incorporating a data source information feature.
Conclusion CRCP demonstrates accurate results when applying natural language processing features to the problem of detecting patients with
cases of reportable cancer from clinical notes. We show that implementing only a portion of cancer reporting rules in the form of regular expres-
sions is sufficient to increase the precision, recall, and speed of the detection of reportable cancer cases when combined with off-the-shelf infor-
mation extraction software and machine learning.
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BACKGROUND AND SIGNIFICANCE

Most countries have government-mandated reporting requirements for
a number of different diseases. In the United States, the National
Cancer Registrars Association represents more than 5000 cancer reg-
istry professionals and Certified Tumor Registrars (CTRs),’ whose job
is to identify patients with reportable cases of cancer and extract infor-
mation from their medical records for government-mandated report-
ing. As one of 45 states participating in the National Program of
Cancer Registries, Alabama collects cancer registrar reports on report-
able cancer cases from all participating healthcare institutions and
communicates them to the federal government. Teams of CTRs in
each participating hospital discover and abstract the required data for
each reportable cancer case, typically by manually reviewing clinical
documentation. In aggregate, federally reported data on cancer cases
are used to generate nation-wide cancer statistics, to educate the
public, to better understand the epidemiology of cancer and cancer
outcomes, as well as to inform public policy. Because of limited fed-
eral funding and an aging population with an increasing incidence of
cancer, CTRs are increasingly hard-pressed to meet their reporting
goals without clinical informatics tools to facilitate cancer case detec-
tion and reporting.

A recent review of text mining of cancer-related information
revealed that the recognition of cancer entities in clinical data has
focused on symbolic methods, primarily information extraction using
dictionary-based lookup or regular expressions. The “overwhelming

majority”® of these approaches use MetaMap®* and the Unified

Medical Language System (UMLS) to identify cancer entities in clinical
data, and their results were dependent on the type of text and the can-
cer analyzed. However, most of this work did not use clinical text,
and, when clinical text (including pathology reports) was used, it was
for the purposes of information extraction,®=® rather than for determin-
ing cancer cases’ status (reportable or nonreportable). There are a few
exceptions, including studies of determining cancer status for pancre-
atic cancer® and colorectal cancer'® from clinical text, but there are no
examples in the literature of determining patients’ cancer status from
clinical text for cancer as a general class to aid in government-man-
dated reporting. To meet this challenge and to increase the volume
and accuracy of reported cancer cases at the University of Alabama at
Birmingham (UAB), we developed the Cancer Registry Control Panel
(CRCP). Our goals were to:

1. Automate cancer case detection by applying natural language
processing (NLP) techniques and querying cancer-related
International Classification of Diseases — 9 (ICD-9) codes (in a sys-
tem version called “CRCP-DUAL”) and contrast the precision of
this approach with that of manual review of pathology reports by
CTRs.

2. Facilitate CTRs’ review of clinical documentation by highlighting
cancer-related text as defined by multiple standardized
terminologies.
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3. Develop a machine-learning algorithm that can predict patients’
reportable cancer status based on ICD-9 codes and NLP-extracted
information.

MATERIALS AND METHODS

Setting

The reported initiative was the result of the collaboration of the UAB
Center for Clinical and Translational Science and the UAB Hospital CTR
team within the Health Information Management program. The UAB
Institutional Review Board (IRB) reviewed and approved this investiga-
tion (IRB protocol X121114001).

Architecture

CRCP is web application with a JavaScript/HTML front end and a middle
tier based on Ruby on Rails with a MySQL database. The NLP infrastruc-
ture is based on Unstructured Information Management Architecture —
Asynchronous Scaleout'" and uses the UMLS' 2013AB data, North
American Association of Central Cancer Registries (NAACCR) search cri-
teria,"® and Facility Ontology Registry Data Standards terms'* to identify
reportable cancer cases and/or to highlight text of interest to the CTRs.
Herein, we describe three iterations of CRCP:

1. GRCP-ML: The current CRCP system, which utilizes machine
learning through the Patient Cancer Status Update Tool to deter-
mine patients’ cancer status. Its architecture diagram is shown in
Figure 1.

query Cerner Powerlnsight™ for ICD-9 codes.

2. CRCP-DUAL (RANKED): This system predates CRCP-ML and lacks
the Patient Cancer Status Update Tool. Data generated from the use
of this system was used to train CRCP-ML. CRCP-DUAL identified
suspect reportable cancer cases for a user-defined reporting period
using ICD-9 billing codes or positive mentions of NLP cancer-related
UMLS Concept Unique Identifiers (CUIs). Suspect cancer cases de-
tected by both NLP and ICD-9 codes were first shown to the CTRs,
then NLP-only cases, and finally ICD-9 code-only cases. An early
pilot of CRCP-DUAL (UNRANKED) did not include this ranking and
instead presented cases from oldest to newest. CRCP-DUAL
(RANKED) is hereafter referred to as CRCP-DUAL.

3. CRCP-NLP: This was the original prototype of CRCP, which detected
reportable cancer cases based on the presence of non-negated NLP
cancer-related CUIs. It was used for a 2-week period, and its results
were then compared with the pre-CRCP process in which pathology
reports were manually reviewed. In addition, CRCP-NLP lacked the
components to query Cerner Powerlnsight™ for ICD-9 codes.

Workflow

CTRs at UAB identify reportable cancer cases in two phases. In the first
phase, they inspect all pathology reports produced since the previous
workday for evidence of reportable cancer cases. Once a putative can-
cer case is found, the CTRs access UAB’s electronic medical record to
validate the case and abstract reportable details to enter in Metrig™, a
commercial product used for cancer case tracking and reporting. This
product is distinct and downstream from our NLP pipeline, and its use
does not affect the generalizability of the results described herein.

Figure 1: CRCP architecture. CRCP-NLP and CRCP-DUAL lack the Patient Cancer Status Update Tool. CRCP-NLP also lacks the ability -.
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This clinical document-based manual review process was supplanted
by CRCP, which allows CTRs to validate predicted reportable cancer pa-
tients. Predicted reportable cancer patients are identified nightly as those
patients for whom either a cancer-related CUI (all CRCP versions) was
identified in a pathology report or for whom a reportable cancer-associ-
ated ICD-9 code (CRCP-DUAL and CRCP-ML) was identified in any clini-
cal document. Each night, a batch process sends the union of all ICD-9
code- and NLP-associated potential cancer cases (identified by medical
record numbers) to the NLP infrastructure. All clinical documents for
each input medical record number are marked with reportable cancer
case annotations using the same NLP process that is used for pathology
reports, to facilitate the CTR’s subsequent review of said documentation.

Putative cancer cases identified by the system and those validated
by CTRs can be retrieved as needed (see Supplementary Figure 1) and
then reviewed in the case review screen (shown in Figure 2). This
screen is where the CTR can validate a putative cancer case, reject
the case, or notify CRCP that the case has been completed, once it
has been abstracted and entered into Metrig. This workflow is the
same in all versions of CRCP.

NLP Processing Pipeline

The initial identification of cancer concepts is done using NLM'’s
MetaMap Unstructured Information Management Architecture annota-
tor and NAACCR term exact-matching, followed by a variety of custom
annotators applied to exclude (or re-include) concepts from the initial
concept list. Table 1 provides a description and motivation for each fil-
ter, and Supplementary File 1 contains the specific details necessary
for reimplementation.

The current CRCP processing pipeline does not distinguish between
cancer cases that are reportable for UAB or reportable for another insti-
tution (but which have interacted with the UAB health system), and only
identifies that the case is reportable. Finally, the number of rules ap-
plied in the CRCP system has steadily increased based on CTR feed-
back as the system has evolved. Consequently, CRCP-NLP had a much
less extensive rule set than CRCP-DUAL, which underwent a number of
revisions before becoming stable in October 2014. Since that point, the
rules for CRCP-DUAL have remained unchanged and are identical to
the rules for CRCP-ML.

CRCP-ML  Machine  Learning  Algorithm  Features  and
Implementation. The CRCP-ML algorithm was developed using the
Mallet toolkit. In the algorithm, identifying cancer status (as reportable or
nonreportable) was formulated as a multiclass patient classification prob-
lem, with each patient characterized by one or more of five types of
features.

1. CUI name: The names of the concepts identified by our NLP pipe-
line for detecting mentions of reportable cancer cases.

2. ICD-9 codes (cancer): All reportable cancer case ICD-9 codes
found in the patient data. The cancer-associated ICD-9 codes for
this feature are identified by a regular expression based on
NAACCR guidelines.

3. ICD-9 codes (any): Any ICD-9 code, whether cancer-related or
not, in addition to the “ICD-9 codes (cancer)” reportable cancer-
associated ICD-9 billing codes.

Figure 2: Screenshot of the CRCP worklist. Cancer-related concepts for the selected document are highlighted. All ICD-9 codes for the

selected patient are displayed.
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Table 1: CRCP Filtering Rules

Filter Description Rationale

Document segmentation Exclude reportable cancer cases found in docu-
filter ment sections that are expected to generate
false positives.

UMLS semantic-type filter Include only MetaMap concepts with UMLS
semantic-type neoplasms to filter out non-

neoplastic cancers.

Positive patient assertion Restrict concept to non-negated mentions that
filter refer to the patient, not a family history of
cancer.

CUI-specific MetaMap ab-
breviation filter

Exclude known MetaMap false positive cancer
cases based on incorrect abbreviation mapping.

CUI-based reporting rule Exclude nonreportable cancer cases that map to
filter a list of 899 CUIs, which we developed.

Non-CUl reporting rule Remove nonreportable cancer cases that cannot
filter be filtered out using a pure CUI-based approach.
For example, mentions of reportable cases con-
taining “benign” or CUI concept text are filtered

out, but are subsequently re-included if they are
associated with the central nervous system, be-
cause such neoplasms are reportable.

CUI, Concept Unique Identifier; UMLS, Unified Medical Language System.

4. Prefix feature: Same as the “CUI name” feature, but prefixed by
the document type and document subtype abbreviation; for exam-
ple, “PTH: Surgical_Pathology_Specimen”.

5. TonsillarCarcinoma.” This feature was motivated by the idea that
a mention of cancer appearing in one type of document, such as
an outpatient clinic note, may be less indicative than such a men-
tion appearing in another type of document, eg, a pathology report
for a surgical pathology specimen.

6. Source: Specifies how the putative reportable cancer case was
identified: by ICD-9 code, by NLP, or by both. This feature was the
primary way that CRCP presented cases to the CTRs prior to the
inclusion of machine learning; cases detected by both methods
were first shown to the CTRs, then cases detected by NLP, and, fi-
nally, cases detected by ICD-9 codes.

We tested Mallet's maximum entropy, naive Bayes, and decision
tree algorithms for classification, using an 80/20 training/test division,
with parameters as shown in Supplementary File 2. We selected the
maximum entropy model because it consistently gave the best preci-
sion, recall, and F-measure for detecting cancer.

Machine Learning Data

A gold standard that used a consistent (unchanging) set of rules was
derived from CRCP-DUAL data on 2014 cancer cases, from October
2014 to May 2015. The cancer status of all the patients included in
the gold standard was vetted by CTRs and represents the same data
that UAB reports to the State of Alabama. The gold standard consists
of 3087 cancer cases, categorized as follows: 292 detected only from
NLP-identified CUls in pathology reports, 185 detected only from ICD-
9 codes, and 2610 detected from both NLP-identified CUls and ICD-9
codes. This data, including noncancer cases and totals, is plotted on
the primary Y-axis of Figure 3.

Analyses
We performed three sets of analyses.

1080

Analysis 1. We prototyped the CRCP-NLP system to test the hypothe-
sis that the first phase of the process of identifying reportable cancer
cases (identifying potentially reportable cases) could be automated
using off-the-shelf NLP components to identify mentions of cancer in
clinical documents. We compared this system (which utilizes only
NLP-processed pathology reports to detect reportable cancer cases)
against the manual process of inspecting pathology reports that UAB
used at the time. We divided CTRs into two groups: one that manu-
ally processed all cancer cases for a 2-week period, and one that
processed the same cases using CRCP-NLP. Tests were performed
to discover if there were differences in precision and recall between
the manual review process and the CRCP-NLP process. In cases in
which both proportions were based on the same patients,
McNemar’s test for paired data was used. In cases in which the two
proportions were based on some, but not all, of the same patients, a
hybrid paired and unpaired approach was used.'®

Analysis 2. We tested the hypothesis that the throughput of cancer
CTRs (measured as the number of cases completed per month)
could be increased by CRCP-DUAL when both NLP and ICD-9 codes
are used for cancer case identification. CRCP-DUAL (not CRCP-ML)
was selected as the system for the throughput comparison, because
it was the only stable system in place long enough to generate suffi-
cient data for such a comparison.

Analysis 3. Finally, we tested the hypothesis that the accuracy and
F-measure of reportable cancer patient identification could be in-
creased by including machine learning in the process and analyzed
the errors of a system that included machine learning to reveal other
potential avenues for performance increases.

The statistical analyses were performed using SAS software ver-
sion 9.3 (SAS Institute Inc., Cary, NC, USA).

RESULTS

Analysis 1 — Comparison of Manual Review Process with

CRCP-NLP Process

Table 2 shows the comparison of the previously used manual pathol-
ogy report review process and the CRCP-NLP reportable cancer case
detection process.

Table 2 shows that cancer cases presented to CTRs through the
CRCP-NLP system vs the manual process were significantly
(P<.0001) more likely to be regarded as reportable by the CTRs.
CRCP-NLP also found more reportable cases than the manual review
process (0.621 recall vs 0.586 recall) considering only cases that
were visible to that system, a result that was not statistically signifi-
cant (P=.2342). However, CRCP-NLP identified and reviewed 14%
more pathology reports (corresponding to 12% more patients) than
were reviewed in the manual process, because the manual review
process eliminated some classes of pathology reports from the CTR
review (they were never printed out), whereas CRCP-NLP processed
all pathology reports. If this improved coverage provided by CRCP-NLP
is considered, recall is instead 0.619 for CRCP and 0.522 for the man-
ual review process and is statistically significant (P < .001).

CRCP-NLP also accurately eliminated patients whose records did
not require human review. Of the 518 patients identified by CRCP-NLP
as not requiring human review, 444 of these were also reviewed by
the manual process. All of these cases were rejected, with the excep-
tion of two cases, one of which was a January 2012 case that had
been missed by the manual review process earlier and another patient
whose cancer was judged to be nonreportable at the time but who
went on to develop a reportable cancer.
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Figure 3: CRCP-DUAL dataset and precision results. The X-
axis indicates the system type. Cancer case counts are plot-

ted on the primary Y-axis, and the secondary Y-axis indi-
cates the precision of CRCP-DUAL on that class of cases.
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Table 2: Manual Review of Pathology Reports vs CRCP-NLP

Reportable Cancer Case Detection

System Patients | CTR- CTR- CTR- Precision® | Recall®
entering | reviewed | validated | rejected

process | patients | patients | patients

Manual 2125 2125 344 1781 0.162 0.586
review

CRCP-NLP | 2382 1864 445 1419* 0.239 0.621

CRCP-NLP, Cancer Registry Control Panel — natural language processing; CTR,
Certified Tumor Registrar. *The CRCP-NLP process rejected an additional 518
patients (2382-1864) without CTR review, because those patients had no NLP-iden-
tified cancer mentions in any of their documents. 2P < .0001. °P= 2342,

Another result of the CRCP-NLP system is that it eliminates duplicate
work, including duplicate patient review and duplicate document review.
In the manual review process, we observed that 20.2% of the CTR
reviews were of duplicate patients, and 10.5% of CTR-reviewed reports
were duplicate documents. The CRCP-NLP system eliminated duplicate
patient reviews completely by orienting the review process at the patient
level. The document-level focus of the manual review process vs the
patient-level focus of CRCP makes calculating and comparing interanno-
tator agreement problematic, but we did compute both a raw agreement
rate of 0.894 at the patient level and a «-score of 0.7055 between CTRs
using CRCP-NLP and CTRs using the manual review process.

Analysis 2 — Precision and Case Throughput with CRCP-DUAL

Figure 3 plots reportable cancer case precision (the proportion of cases
presented to the CTRs that were determined to be reportable cancers)
for CRCP-DUAL for the dataset described in the Materials and Methods

section on the secondary Y-axis. In CRCP-DUAL, cancer cases are sorted
and presented to registrars such that cases with both ICD-9 code and
NLP evidence (“dual” cases) are presented first, followed by those with
only NLP evidence, and finally those cases with only ICD-9 code evi-
dence. In practice, the cancer registry would use CRCP-DUAL to examine
all “dual-detected” cases (precision: 73.03%), some or all of the NLP-
only detected cases (precision: 23.66%), and, rarely, ICD-9 code-only
cases (precision: 6.96%), depending on the registry team’s workload or
the current case completion rate. This huge drop in precision for cases
that lack both ICD-9 code- and NLP-based evidence indicated that the
vast majority of reportable cancer cases (we estimate over 93%, based
on the results for the “source only” algorithm, presented in Table 3)
were detected from both ICD-9 code- and NLP-based evidence.

Figure 4 shows monthly reportable cancer case completion rates at
UAB since 2010, based on Metriq data. Case completion rates when
using CRCP-DUAL are 23.6% higher than those when using the manual
review process, and even higher if the reduction in CTR staff that
occurred during our study period (loss of 1 CTR) is taken into account.
One source of this throughput increase is that 51.2% of incoming
patients (from pathology reports) are triaged as “unreviewable,” because
the NLP process has failed to identify any cancer concepts in the clinical
documentation, thus significantly reducing the CTRs review burden.

Analysis 3 — Patient Classification Results with CRCP-ML

Table 3 shows the results for the test set data. The precision, recall, and
F-measure are shown only for the cancer label, because the purpose of
CRCP is to detect cancer cases. The “training test skew” was computed
as the difference between the accuracy of the training set (data not
shown) and the accuracy of the test set, and gives some indication of
the relative stability and consistency of the algorithm. Generally, the
results for the training set were superior, resulting in a positive skew, but
some features yielded similar (source) or superior (ICD-9 codes) results
for the test set. Ultimately, we selected the algorithm that used only can-
cer ICD-9 codes and CUI names as features as our new classifier for
CRCP-ML. because of its higher precision and stability. CRCP-DUAL’s
performance can be approximated from the “source only” results,
because this classifier predicts reportable cancer cases when both sour-
ces of data (ICD-9 codes and NLP) are present.

Error Analysis. A total of 40 misclassifications (20 false positives and
20 false negatives) were randomly selected for further analysis. About
half of the false positives were actually reportable cancer cases, but
were not reportable by UAB and, thus, were still considered false posi-
tives. This is because CRCP (all versions) makes no effort to determine
which institution a cancer is reportable for, only that it is reportable. The
other false positives were generally the results of poor or no regular
expression coverage of cancer disease attributes, as shown in Table 4.
The false negative errors generally fall into two categories. About half
of the false negatives lacked either an ICD-9 billing code or an NLP hit.
The remaining false negatives contained very few data points: 20% had
only one distinct CUI and one distinct ICD-9 code, 15% had only three
codes of any type, and the remaining 15% had more than three codes of
any type, but they tend to be highly repetitive. This lack of information
makes it difficult for the classifier to reach a decision for these more
unreliable codes. A common theme for missed cancer cases are coarse
concepts (whether CUIs or ICD-9 codes) that are sometimes, but not
always, associated with a reportable cancer, such as adenocarcinoma,
for which reporting is dependent on body location or with commonly mis-
diagnosed conditions, including a number of blood-related cancers.
Another source of false negatives are patients whose clinical documenta-
tion includes CUIs corresponding to reportable cancer codes that were
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Table 3: Reportable Cancer Case Detection Algorithm Test Results

Algorithm Number of | Accuracy | Cancer Cancer Cancer Training
features (%) precision (%) | recall (%) | F-measure (%) | test skew (%)
Source only (~CRCP-DUAL) 3 79.92 68.96 93.87 79.51 0.86
Prefix feature only 1847 77.38 78.31 62.90 69.77 7.26
CUI name only 1307 82.87 87.60 68.39 76.81 3.02
ICD-9 codes (cancer) only 541 83.80 80.39 80.65 80.52 —10.15
ICD-9 codes (all) only 4921 78.18 72.48 76.45 74.41 7.89
CUI name and prefix feature 3153 83.94 86.82 72.26 78.87 5.67
CUI name and ICD-9 codes (cancer) 1847 87.15 84.30 84.84 84.57 1.30
CUI name and ICD-9 codes (all) 6227 82.73 79.29 79.03 79.16 10.35
Source, CUI name, and ICD-9 codes (cancer) 1849 86.61 84.09 83.55 83.82 2.82
Prefix feature, CUl name, and ICD-9 codes (cancer) | 3693 87.15 84.08 85.16 84.62 4.04
Source, prefix feature, and ICD-9 codes (cancer) 2389 85.41 82.32 82.58 82.45 3.86
Source, prefix feature, CUI name, and 3695 87.02 85.86 82.26 84.02 4.63
ICD-9 codes (cancer)
Source, prefix feature, CUI name, 8075 83.27 82.01 76.45 79.13 11.70
and ICD-9 codes (all)

CUI, Concept Unit Identifier; ICD-9, International Classification of Disease — 9. Bolded text indicates the feature set that was ultimately selected for

implementation.

classified as “negative” by the cancer status algorithm. These codes
were often associated with false positives, including codes for “cancer”
or “carcinoma,” which can appear in many different contexts, or abbrevi-
ations such as “HCC” (for hepatocellular carcinoma).

DISCUSSION

With CRCP-NLP, we show that extracting cancer-related CUls from
pathology reports helps CTRs improve both the precision and recall of
identifying reportable cancer cases. Additionally, we show that a suffi-
ciently useful set of reportable cancer codes can be defined by a com-
bination of UMLS semantic types, specific CUls, and a small set of
filtering rules, as outlined in Table 1.

Our results from using CRCP-DUAL show that we can increase the
precision and throughput of the process of identifying reportable can-
cer cases by including ICD-9 codes for reportable cancers in the proc-
ess, provided that the list of codes is suitably refined. Although we
originally tried to follow the Alabama State Cancer Registry guidelines
for detecting cancer cases, we found that including ICD-9 codes such
as 042 (for HIV) and similar general codes that pull in broadly cancer-
related conditions resulted in too many false positives. Furthermore,
including nonreportable cancer-specific ICD-9 codes in our machine-
learning algorithm did not lead to a performance gain, as shown in
Table 3 in the “ICD-9 codes (all)” columns.

One lesson learned from our deployment of CRCP-DUAL is that the
system must match the CTRs’ workflow. The deployment of our proto-
type version of CRCP-DUAL (UNRANKED) resulted in the registrars
being overwhelmed with old putative cancer cases, which subse-
quently resulted in a spike of cases from 2012 and earlier being sub-
mitted. Additionally, because the UNRANKED version of CRCP-DUAL
was optimized for recall rather than precision, the registrars were
frustrated by having to examine so many false positive cases, which
resulted in a severe drop-off in tool usage that was not fixed until the
deployment of the RANKED version of CRCP-DUAL. Based on this, we
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believe that optimizing the F-measure is more appropriate than opti-
mizing recall. Working closely with CTRs, we were able to refine the
system and achieve improved throughout despite a reduction in our
hospital’s CTR workforce during the study period. Anecdotally, the
CTRs were very pleased with the highlighting of cancer concepts in all
clinical documentation. This was done to focus their review, targeting
their extraction of information for federally mandated reporting of man-
agement and outcomes data for each case within Metrig. As a whole,
the quantifiable impact of CRCP-DUAL on efficiency and the enthusias-
tic adoption of this approach by CTRs highlights its potential to
improve federally mandated cancer case reporting using NLP.

With CRCP-ML, we show that including machine learning in the
process of identifying reportable cancer cases could increase the
accuracy of case detection as well as improve the F-measure and pre-
cision of cancer case identification. However, our simple “source only”
feature gave a recall of 93.87%, indicating that, currently, no machine
learning is needed in the CRCP process if the goal is to maximize can-
cer case recall. With CRCP-ML, we are currently experimenting with
Mallet confidence scores to discover and/or order cancer cases for
registration consumption. Supplementary Figure 2 shows the distribu-
tion of Mallet confidence scores for CRCP-ML; at a confidence of 50,
about half of the cases are expected to be reportable cancer cases.
Currently, these scores determine the order of the presentation of new
cases for a given monthly window in CRCP-ML, with cases with the
highest confidence level presented first.

Limitations

We only directly compared CRCP-NLP to the original manual review
process, due to resource constraints. However, because we know that
CRCP-DUAL and CRCP-ML outperform CRCP-NLP in metrics such as
precision and recall, it is reasonable to expect that both CRCP-DUAL
and CRCP-ML will perform as well as or significantly better than the
manual review process. We rely on proxy data, such as monthly state
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Figure 4: Monthly UAB cancer registry case completion rate. The Y-axis indicates the number of cases completed. and the X-axis shows

the month of the cases’ completion. Each line represents a different yearly reporting period. CRCP-DUAL has been in use since April
2014.
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case submissions, to provide an estimate. Unfortunately, yearly
changes in coding practices as well as multiple changes in registrar
personnel and leadership make comparisons difficult. However,
because overall registry staff levels have generally been reduced in
the time that CRCP-DUAL has been in use vs the comparative period
when the manual review process was used, our actual throughput
increase could be as high as 43%.

Because CRCP was deployed in the United States, we use ICD-9
codes for billing data, potentially making CRCP less useful internation-
ally. However, we have already showed that CRCP-NLP alone can out-
perform a manual pathology report-based review process, and
replacing ICD-9 codes with ICD-10 codes should be feasible, because
registrars submit cases 4-6 months after they become reportable,
leaving sufficient time to generate training data for ICD-10 codes or
other coding systems used internationally as needed.

The calculation of interannotator agreement is also problematic for
our tool, because the manual review process validates cancer cases
at the document level, whereas CRCP validates cancer cases at the
patient level. Thus, the manual review process may flag different
documents from the same patient as indicating reportable or nonrep-
ortable cancers. This does not necessarily reflect errors in annotator
agreement, just that only a portion of a patient’s documents may indi-
cate a reportable cancer. Our reported agreement rate and «k-score
are therefore estimated from the reportable cancer status of the first
document (ie, whether or not that document indicates a reportable
cancer case) reviewed for the patient; actual agreement is expected to

Table 4: Error Analysis

Error class Error type Count
Patient history of cancer False positive 3
Family history of cancer False positive 1
Cancer not reportable by UAB — ICD-9 codes False positive 4
Cancer not reportable by UAB — NLP + ICD-9 codes | False positive 6
Cancer at this body location not reportable False positive 2
Uncertain language means not reportable False positive 2
Negation of cancer mention not detected False positive 1
Secondary tumor is not reportable False positive 1
No NLP CUIs and coarse ICD-9 codes False negative | 5
Coarse NLP CUIs and no ICD-9 codes False negative | 6
Coarse NLP CUIs and coarse ICD-9 codes False negative | 5
NLP or machine learning failures False negative | 4

CUI, Concept Unit Identifier; ICD-9, International Classification of Diseases — 9; NLP,
natural language processing; UAB, University of Alabama at Birmingham.

be higher. Indeed, one of the strengths of our approach is the ability of
the tool to present and summarize reportable cancer cases at the
patient level (rather than the document level).
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Finally, CRCP uses rules for document segmentation generated
solely from UAB training data. Thus, the reliability of our set of regular
expressions is expected to be reduced at other institutions to the
extent that provider and sectioning practices differ.

CONCLUSION

The key contribution of this manuscript is to take technology and
approaches from one discipline and apply them to cancer detection, a
manual, time consuming, and costly process that is a federally man-
dated requirement for all health systems in the United States. Our
focus was not on developing new NLP technologies, but rather bring-
ing the strengths of these technologies to bear on a real-world clinical
problem. We feel that this is a significant contribution towards bringing
NLP tools to common use cases that have been neglected to date.

We show herein that, despite the variety and complexity of cancer,
it is possible to use NLP and machine learning to accurately detect
patients’ reportable cancer status. This can be achieved despite the
fact that not all the rules for reportable cancer cases are currently
implemented in CRCP, indicating that a basic set of rules can cover
the vast majority of cancer cases. Additionally, we show that an NLP
analysis of pathology reports without ICD-9 billing codes is sufficient
to help cancer registrars identify cancer cases, although the tool’s per-
formance is improved with the addition of both ICD-9 codes and
machine learning. It is important to note that although it seems intui-
tive that a reportable cancer detection system should focus on recall,
the reality is that cancer registrars are under pressure to find cases
quickly, and architects designing such systems should aim to strike a
balance between precision and recall if they want to maximize report-
able caner case throughput.
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