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ABSTRACT
....................................................................................................................................................

Objective Recent massive investment in electronic health records (EHRs) was predicated on the assumption of improved patient safety, research
capacity, and cost savings. However, most US health systems and health records are fragmented and do not share patient information. Our study
compared information available in a typical EHR with more complete data from insurance claims, focusing on diagnoses, visits, and hospital care
for depression and bipolar disorder.
Methods We included insurance plan members aged 12 and over, assigned throughout 2009 to a large multispecialty medical practice in
Massachusetts, with diagnoses of depression (N¼ 5140) or bipolar disorder (N¼ 462). We extracted insurance claims and EHR data from the pri-
mary care site and compared diagnoses of interest, outpatient visits, and acute hospital events (overall and behavioral) between the 2 sources.
Results Patients with depression and bipolar disorder, respectively, averaged 8.4 and 14.0 days of outpatient behavioral care per year; 60% and
54% of these, respectively, were missing from the EHR because they occurred offsite. Total outpatient care days were 20.5 for those with depres-
sion and 25.0 for those with bipolar disorder, with 45% and 46% missing, respectively, from the EHR. The EHR missed 89% of acute psychiatric
services. Study diagnoses were missing from the EHR’s structured event data for 27.3% and 27.7% of patients.
Conclusion EHRs inadequately capture mental health diagnoses, visits, specialty care, hospitalizations, and medications. Missing clinical informa-
tion raises concerns about medical errors and research integrity. Given the fragmentation of health care and poor EHR interoperability, information
exchange, and usability, priorities for further investment in health IT will need thoughtful reconsideration.

....................................................................................................................................................

Keywords: electronic health records, mental disorders, validation studies, health information exchange, health care systems

INTRODUCTION
In a push to improve patient safety and reduce medical costs, as of
2015, over 500 000 US physicians and almost 6000 hospitals should
have operating electronic health records (EHRs) and health information
technology systems, or face penalties in Medicare reimbursement.1–3

These rules were in the 2009 The Health Information Technology for
Economic and Clinical Health Act, part of the economic stimulus that
year.2,3 However, the fragmentation of US health care and the lack of
interoperability and information exchange among the hundreds of EHR
systems currently in use4–6 threaten the achievement of the underly-
ing safety goals of this legislation, because the medical information in
most EHRs is incomplete, which can result in medical errors.7

Insured individuals in the US are typically assigned to a primary
care provider site, which may have an EHR, but individuals frequently
receive specialty care at other locations which do not (and usually can-
not) share data with that EHR. Computer decision support systems in
EHRs are intended to protect patients at the time of prescription by
guiding drug selection and dosing, and alerting physicians about dan-
gerous drug-drug or drug-disease interactions. However, increased
physician reliance on computer decision support in the present context
of fragmentation and incomplete data may lead to poor-quality care
and medical injury.8 For example, duplicated drug orders (in different
EHRs within the same hospital) resulted in excess administration of in-
sulin, leading to the death of a patient.9 A study of recent malpractice
filings identified 147 cases where EHRs contributed to patient harm;
46 of those resulted in patient death.9,10

We hypothesized that fragmentation might be especially common
in mental health care, because patients may protect their privacy by
seeking behavioral care at a separate location from their somatic
care.11,12 Primary care physicians then not only run the risk of medi-
cation errors, but also miss opportunities to encourage adherence to
mental health visits and medications. Treatment adherence is particu-
larly poor among mentally ill outpatients and can lead to adverse
outcomes, including hospitalization.13–15

While fragmentation and incomplete clinical data in EHRs are rec-
ognized problems, almost no published data estimate their extent.
Since health insurers maintain claims data on almost all drugs and
health services received by a covered population, insurance claims
can validate the completeness of mental health care data in provider
EHRs. In this report, we compared the information recorded in a typical
EHR at a large premier interdisciplinary practice with data from insur-
ance claims during the same period. We focused on diagnoses, outpa-
tient and emergency department visits, and hospitalizations for
depression and bipolar disorder, common conditions that may be
treated with a combination of psychotropic drugs and ongoing outpa-
tient treatment. These mood disorders affect roughly 10% of the adult
population and impose major social costs due to functional impair-
ment, suicidality, health care use, and lost work productivity16–19; for
the year 2000, the economic burden of depression alone in the US
was estimated to be $83 billion.20 We also included overall health ser-
vices in our analyses of missingness, as these results have important
implications for both patients with mental illness and other patients.
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METHODS
Study Population and Variables
Our study population included members of Harvard Pilgrim Health Care
(HPHC) aged 12 and over who were assigned for primary care throughout
2009 to Harvard Vanguard Medical Associates (HVMA), a multispecialty
medical practice serving over 300 000 in Massachusetts. HPHC is the
second largest health insurer in New England with over 1 million mem-
bers, roughly 15% of whom are assigned to HVMA. Both organizations
are national health care quality leaders21,22 while typifying the frag-
mented US health system, in that HPHC contracts with multiple provider
organizations and HVMA cares for patients with a mix of insurance ar-
rangements. HMVA was an early pioneer in the use of EHRs and since
2000 has relied on EpicTM, the most popular EHR system in the US.23–25

Our 2 study cohorts included members with at least 1 claims diagno-
sis26,27 of depression (but no diagnosis of bipolar disorder, N¼ 5140), or
diagnosis of bipolar disorder (N¼ 462) in 2009. Together these com-
prised 13% of continuously enrolled HPHC/HVMA adolescents and adults.

Study outcomes included depression or bipolar diagnosis in the
EHR from a 2009 clinical encounter; claims-based counts of outpatient
care days (total and behavioral), hospitalizations, and emergency de-
partment visits; and comparable counts of face-to-face clinical care
days from the EHR. Outpatient and inpatient care days in the EHR were
combined because outpatient hospital visits could not be classified au-
tomatically to outpatient or inpatient status. We excluded laboratory-
only and imaging-only events from counts in both data sources.
Descriptive study measures were obtained from insurer enrolment files
(age, sex), US census data linked to member address (neighborhood-
level educational attainment), and pharmacy claims (psychotropic
medication use).

Analyses
Study data were thoroughly checked for internal and external consis-
tency.28–30 We calculated the proportion of each cohort whose diagno-
sis of interest appeared in 2009 structured EHR data. We compared
service utilization results using several approaches. First, within the
insurance claims alone, we calculated the average number of distinct
days of outpatient care (total and behavioral, separately) at the EHR
site versus days with care only received elsewhere.

Next, we identified outpatient care days, hospitalizations, and
emergency department visits in claims (total and behavioral, sepa-
rately) and calculated the proportion of these that could not be found
in the EHR data (by matching on patient ID, service date, and type).
Finally, we tallied all days of care (inpatient or outpatient combined, to-
tal and behavioral separately) in the EHR, and calculated the proportion
of these that could not be found in the claims data.

RESULTS
Table 1 shows the characteristics of the study cohorts. Both patient
cohorts were more likely to be female when compared to
members overall. A majority of the study population received antide-
pressant medication during the observation year, and roughly 3 out of
4 patients with bipolar illness received a mood stabilizer (anticonvul-
sant or lithium). Nineteen percent of patients with bipolar illness expe-
rienced an acute psychiatric event at a hospital during the year. Only
72.7% of patients with depression and 72.3% of those with bipolar
disorder had their diagnosis recorded in a 2009 EHR clinical
encounter.

In general, service events appearing in the EHR also appeared in
claims data. However, a substantial majority of behavioral service
events observed in claims for patients with depression and bipolar dis-
order were missing from the EHR.

Sites of Outpatient Care Identified in Insurance Claims
Based on claims data only, patients with depression had an average of
3.3 behavioral visits (ie, outpatient care days) with a provider at the
EHR site (HVMA) in 2009, and another 5.1 visits (or 60% of total
behavioral) outside of the EHR site (Figure 1). Patients with bipolar dis-
order had an average of 6.4 behavioral visits at the EHR site versus
7.6 (54%) at external provider sites.

Use of external services was not limited to mental health care. Our
claims analyses indicated that patients with depression averaged 11.2
outpatient visits at the EHR site and 9.3 additional visits outside of the
EHR site; that is, 45% of outpatient visits of all types were received at
external sites (generally not captured by the EHR). Patients with bipolar
disorder had 13.6 outpatient visits at the EHR site plus 12.2 visits ex-
ternally (ie, 46% of total outpatient visits were external; Figure 1).

Cross-Linkage of Specific Care Events between the 2 Data Sources
When we linked data from both sources to match specific events across
systems, the results were very similar: roughly half of the outpatient
care days in claims could not be matched to clinical contacts recorded
in the EHR (Table 2, Claims events). Consistent with our data in Table 1,
the extent of missingness observed in these matched analyses was
greater for behavioral services as compared to overall outpatient care.

Hospital-based events were also substantially underrepresented in
the EHR. Among all acute psychiatric services in claims (594 hospital
admissions or ED visits), 89% were missing from the EHR. Overall,
43% of all hospital-based events (hospital or ED, psychiatric and non-
psychiatric) were missing from the EHR. By contrast, clinical events
appearing in the EHR could be matched to events in claims in
93–98% of cases (Table 2, EHR events).

DISCUSSION
Very little published data exists on the completeness of medical infor-
mation in primary care EHRs.31–33 We assessed EHR completeness for
patients with depression or bipolar disorder by quantitatively compar-
ing diagnoses and service use in a major primary care site EHR to
those in claims data during the same period. While a broad range of
specialty services is available at the primary site studied and some
specialist care was documented in their EHR, roughly a quarter of
current depression and bipolar diagnoses and more than half of be-
havioral visits were missing. Data missingness was similarly high for
non-behavioral care, both inpatient and outpatient. Nearly 90% of
acute psychiatric services at hospital facilities, representing more se-
vere exacerbations of mental illness, were not captured in the EHR.

The US Centers for Medicare and Medicaid Services (CMS) defines
EHR “meaningful use” with detailed criteria, including requirements
that an EHR contain some diagnostic information on each patient and
checks for medication interactions, and is capable of exchanging clini-
cal data with other providers.34 Higher stages of meaningful use are
generally defined by the presence of additional functions. However,
the CMS criteria do not specify the quality of the data or the practical
usability of any functions. Missing data undermines many central EHR
functions. Published reports touting the anticipated benefits of the re-
cent rapid adoption of EHRs35–38 (eg, improved safety and quality of
care) should be tempered by frank examinations of EHRs as they cur-
rently exist. Above all, individual providers and health system leaders
need to be fully cognizant of the information gaps and disconnects
that lie behind the screen. Features that are intended to improve care
and protect patients from harm may be inadequate in typical frag-
mented health systems, offering false comfort.

Missing clinical information is likely to result in medication errors
and other patient harms.39 Concurrent psychiatric treatment has
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multiple implications for the delivery of safe, high-quality somatic
care. For example, use of antipsychotic agents should be accompa-
nied by enhanced monitoring for cardiometabolic complications,40 and
many commonly used pain relievers carry extra risks in the presence
of SSRI or lithium use.41 Primary care practitioners with knowledge of
their patients’ previous depression treatment will be more likely to
care for important conditions such as postpartum depression42 or
emergent bipolar disorder.43 EHRs are often credited with improve-
ments in safety when compared with earlier paper and manual sys-
tems.44,45 However, to the extent that medical decision-making grows
increasingly automated and reliant on new information technolo-
gies,46–48 care will suffer if there is overreliance on data that are in

fact incomplete.39 We found no studies assessing data completeness
in paper charts or whether completeness improved or deteriorated af-
ter a shift to electronic records.

Given extensive information missingness, epidemiological and eval-
uative studies that rely on data from typical provider EHRs49–51 will un-
dercount diagnosed patient populations and their use of services and
medications. With appropriate privacy safeguards, EHRs can assist in
clinical research: rich narrative data and test results, for example, may
be useful in case identification and measurement of severity for small,
nonrepresentative studies. However, for population-level studies, insur-
ance claims are more complete and systematic, providing a foundation
for reliable research.52–58

Table 1: Selected characteristics of the study cohorts and the prevalence of service use in the study year, according to insurance claims
and the primary site EHR

Characteristics and Service Use All insured members assigned to
EHR practice site for primary care

Cohort having depression
diagnosis in claims

Cohort having bipolar disorder
diagnosis in claims

N¼ 43 582 N¼ 5140 N¼ 462

Characteristic (%)

Aged 12–19 years 14.0 9.0 16.5

Aged 20–39 years 27.0 25.7 30.1

Aged 40–64 years 54.2 60.5 50.6

Aged 65þ years 4.7 4.8 2.8

Female sex 54.4 67.1 61.5

Low-education neighborhood 23.5 21.1 20.3

Prevalence of any service use, according to claims (%)

Overall

ED visit (w/o hospital admission) – 23.5 35.7

Hospital admission – 11.8 23.2

Either an ED or a hospital admission – 27.2 39.8

Behavioral

Mental health specialist visit 85.8 97.2

Psychiatric ED visit (w/o hospital admission) – 2.8 13.4

Psychiatric hospital admission – 2.4 16.7

Either psychiatric ED or psychiatric hospital admission – 3.7 18.8

Medication dispensing, according to claims

Any antidepressant use (%) – 64.7 59.7

Avg months supplied among antidepressant users – 10.0 10.6

Any antipsychotic use (%) – 4.9 47.4

Avg months supplied among antipsychotic users – 6.3 8.1

Any mood stabilizer use (%) – 29.6 76.0

Avg months supplied among mood stabilizer users – 5.6 11.6

Prevalence, according to EHR (%)

Any depression diagnosis – 72.7 –

Any bipolar disorder diagnosis – – 72.3

Any mental health specialist visit – 58.0 74.0

All individuals in the table had HPHC insurance and HVMA primary care assignment throughout 2009. A “low-education” neighborhood had >50%
of adults aged 25þ who had attained no more than high school–level education. Individuals in the depression cohort had 1 or more ICD-9 code for
depression (296.2x, 296.3x, 300.4x, 301.12, 309.0x, 309.1x, 309.28, or 311.x) in an inpatient or outpatient claim in 2009, and no diagnosis of
bipolar disorder; individuals in the bipolar disorder cohort had 1 or more bipolar codes (296.0x, 296.4x, 296.5x, 296.6x, 296.7x, or 296.8x) in an
inpatient or outpatient claim in 2009. We defined acute services as psychiatric using either the institutional code or primary/admitting diagnosis.
We included EHR diagnoses from structured fields in outpatient or inpatient encounters, not other encounter types (eg, telephone contacts, letters)
or free-text fields. Hyphens indicate outcomes that were not measured.
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Our findings should be understood in the context of several limita-
tions. We focused on patients with mental illness and their behavioral
care services, and behavioral care may represent a unique case. It is
often segregated by location, though the multispecialty EHR site in our
study (HVMA) has behavioral clinics in almost all locations. Insurers
and employer sponsors frequently offer and manage behavioral care
benefits separately from other care. All study subjects had behavioral
coverage through the insurer HPHC, which then carves out coverage
to a managing vendor; this arrangement did not affect our access to
behavioral claims data. At HVMA, a privacy firewall in the EHR pre-
vents other clinicians from viewing psychiatric diagnoses entered by
mental health specialists. Thus, our study greatly underestimates the
missingness of behavioral data experienced by primary care providers
who use the EHR. However, all diagnoses were available in the de-
identified data abstracted for this study.

While behavioral health care is unique, it is important to emphasize
that our findings demonstrate that the problem of incomplete clinical
data in the EHR is not limited to behavioral care. Rates of missingness
were high among both behavioral events and overall events, both in

and outside the hospital. Specialist care of all types is particularly
likely to be underrepresented in a primary care EHR.59 HVMA is a mul-
tispecialty provider group; we expect that in many other simpler pri-
mary care settings, the extent of missing specialist care in the EHR
would be far higher than at HVMA.

Our study did not include medication data from the EHR; this would
include initial prescription orders written by internal providers, dis-
pensing at in-house pharmacies, and patient-reported medications.
Given the extent of outside service use we observed and the well-
documented problem of primary nonadherence (ie, not filling prescrip-
tions),60 an attempt at measuring drug utilization based on data in the
EHR would underestimate use, as compared to essentially complete
insurer-paid pharmacy claims.58,61,62

Our analyses focused on current service encounters and the diagno-
ses made at these encounters, both of which were underrepresented in
the EHR. EHR data often contain other potentially useful information
about mental and non-mental health concerns that are not available in
claims, such as diagnoses from current letters, telephone calls, and
electronic correspondence; diagnoses entered in earlier years on the pa-
tient’s “active problem” list; and free-text clinician comments. These
supplementary internal data may be available for clinicians using the
EHR during encounters even if current diagnoses and services from off-
site utilization are missing. However, these supplementary items repre-
sent “softer” data, which typically do not feed into patient safety and
management functions like Clinical Decision Support. Similarly, it is pos-
sible for providers at HVMA to access patient information at some exter-
nal partnering institutions, but such inquiries must be conducted
individually; this information does not flow into the EHR. Finally, HPHC
provides claims data extracts to HVMA for a minority of members in
managed care-style financial risk–sharing arrangements; these claims
are used in some HVMA case management activities but, again, do not
feed into the EHR or its safety functions. The general attributes of the
HVMA EHR have not changed since the time of our study and the EHR
meets CMS meaningful use benchmarks.

We present findings from one large multisite, multispecialty setting
that may not be generalizable to other settings. For example, in a rural
setting, patients may have fewer choices for specialist care and may re-
ceive a higher proportion of their care at their primary site. Nevertheless,
the continuing fragmentation of US health care59 ensures that incomplete
clinical data in primary site EHRs is a widespread problem.

Better interoperability could be facilitated with national technical
standards. Federal policies to date have tilted too far in accommodat-
ing EHRs vendors’ desire for flexible, voluntary standards. The incom-
patible products that result undermine public health goals and can
lock providers in to proprietary systems that cannot easily share data.
Other barriers to information exchange between entities include pro-
vider concerns about costs and liability and patient concerns about
confidentiality. Future progress may be possible through more ac-
countable insurer-provider arrangements which include the sharing of
data from claims with EHRs and clinicians, patient-driven data-sharing
mechanisms, and regulations requiring more complete, timely, and
usable data flows where access already exists.4,5,63,64 EHRs have long
been touted as a technology that will advance patient safety in the
United States, and enormous public and private investment has been
funneled into EHR development in recent years.65,66 Adoption of EHRs
among US office-based physicians increased from 48% in 2009 to
83% in 2014,67 though the extent of their actual use and effectiveness
is unknown. In this research, we found that the lack of integration, in-
teroperability, and exchange in US health care resulted in a major EHR
missing roughly half of the clinical information. Policymakers should
put more focus on the quality and utility of health information and

Figure 1: Average number of days with outpatient care
per patient in 2009, total and behavioral, and percentage
of care days occurring at external provider sites, accord-
ing to insurance claims.
In the analyses below, we defined “behavioral” as having any
mental health specialist provider. We conservatively classified
days that included care at both the EHR site and external pro-
viders (�3% of total) as occurring at the EHR site. Although
all subjects were assigned to HVMA for their primary care, we
conservatively classified care occurring beyond HVMA in the
broader Atrius provider network as occurring at the EHR pro-
vider site, because Atrius providers share a single EHR. For all
categories of care shown below, average days at the EHR site
as derived from claims were identical to average days at the
EHR site as derived from EHR data (average EHR counts not
shown).
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ways these can be improved, instead of simply tallying up EHR pur-
chases and supposed capabilities.
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