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ABSTRACT
....................................................................................................................................................

Objective Traditionally, patient groups with a phenotype are selected through rule-based definitions whose creation and validation are time-con-
suming. Machine learning approaches to electronic phenotyping are limited by the paucity of labeled training datasets. We demonstrate the feasi-
bility of utilizing semi-automatically labeled training sets to create phenotype models via machine learning, using a comprehensive representation
of the patient medical record.
Methods We use a list of keywords specific to the phenotype of interest to generate noisy labeled training data. We train L1 penalized logistic re-
gression models for a chronic and an acute disease and evaluate the performance of the models against a gold standard.
Results Our models for Type 2 diabetes mellitus and myocardial infarction achieve precision and accuracy of 0.90, 0.89, and 0.86, 0.89, respec-
tively. Local implementations of the previously validated rule-based definitions for Type 2 diabetes mellitus and myocardial infarction achieve preci-
sion and accuracy of 0.96, 0.92 and 0.84, 0.87, respectively.
We have demonstrated feasibility of learning phenotype models using imperfectly labeled data for a chronic and acute phenotype. Further research
in feature engineering and in specification of the keyword list can improve the performance of the models and the scalability of the approach.
Conclusions Our method provides an alternative to manual labeling for creating training sets for statistical models of phenotypes. Such an ap-
proach can accelerate research with large observational healthcare datasets and may also be used to create local phenotype models.

....................................................................................................................................................
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INTRODUCTION
Electronic health records (EHRs) have the potential to catalyze clinical re-
search.1–4 One of the first steps in using EHR data for research is to reli-
ably identify a cohort of patients that have a condition of interest or a
phenotype. Algorithms to search an EHR database for phenotypes can
accelerate research,5–7 and lead to new clinical discoveries.8–11

Typically, methods for identifying patients with a given phenotype have
relied on rule-based definitions,12,13 which is time consuming,14,15

Given the heterogeneity of the data models in use, missing data val-
ues,16 and differences in standardization,17 in commercial EHR systems
such rule-based definitions are difficult to port across different EHR sys-
tems and institutions. Clinical phenotype descriptions that work across
clinical data warehouses represent one of the key bottlenecks in clinical
research.18,19

Recently, statistical learning approaches have been employed for
electronic phenotyping. Carrell et al.20 have demonstrated the effec-
tiveness of natural language processing based approaches in automat-
ically reviewing the charts of breast cancer patients with a high
degree of accuracy.20 Carroll et al.21 have demonstrated that rheuma-
toid arthritis regression models trained on labeled data can describe
the phenotype and achieve high classifier performance with an area
under the curve of 92–97%.21 Liao et al.19 have demonstrated a re-
gression model for rheumatoid arthritis with a positive predictive value
(PPV) of 94%.19 Several studies,19,20,22,23 advance the view that phe-
notype models using a diverse feature set, perform better than ones
based on a single type of feature (such as diagnosis codes or medica-
tions).24,25 Chen et al.26 have shown that active learning techniques
for rheumatoid arthritis, colorectal cancer, and venous thromboembo-
lism outperform passive learning methods and achieve good

generalizability.26 As shown by Sinnott et al.,27 probabilistic modeling
of phenotypes improves the statistical power of the genotype-pheno-
type association in genetic studies that utilize the EHR. There is gen-
eral agreement that the rate-limiting step in the compilation of cohorts
for clinical research is the generation of clinical phenotype descrip-
tions,3 and that manual creation of training sets for machine learning
approaches is time intensive.26,28

We demonstrate that by using semi-automatically assigned and
possibly noisy labels in training data, we can build phenotype models
that perform comparably to the rule-based phenotype definitions, and
can be developed faster. In this context, noisy labels refer class labels
that are wrong with a small probability, characterized by a labeling er-
ror rate, due to an imperfect labeling process. The assumption behind
our work is that the large volume of training data which can be col-
lected using an automated labeling process, can compensate for the
inaccuracy in the labels. The basis of our assumption lies in the theory
of noise-tolerant learning.29,30 wherein by imposing a bound on the la-
beling error, and by using a sufficient number of training samples,
models trained from very large data sets with noisy labels can be as
good as those trained from data sets with clean labels. If successful,
the use of such noise-tolerant learning may allow statistical phenotyp-
ing approaches to scale to hundreds of phenotypes.

Using a machine learning technique capable of handling large fea-
ture sets, and semi-automatically assigned phenotype labels, we dem-
onstrate the feasibility of rapidly learning phenotype definitions. We
evaluate the statistically learned phenotype models of two diseases
using a “gold standard” of manually reviewed patient charts. We dis-
cuss the relative importance of two key steps – label assignment and
feature engineering – of our method. We also discuss the importance
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of the performance-effort tradeoff in alternative approaches for EHR-
based phenotyping and the limitations of our work. Figure 1 illustrates
our approach and overall workflow.

METHODS
Data
Phenotypes studied
We selected phenotypes for which rule-based definitions have been
published by the Electronic Medical Records and Genomics
(eMERGE),14 and the Observational Medical Outcomes Partnership
(OMOP) initiatives.31 In eMERGE, a rule-based definition is developed
by one of the partner institutions and is provided in the form of
pseudo-code for site-specific implementation. After initial validation by
the developers of the rule-based definition, other partner institutions
implement and validate it at their respective sites via a manual chart
review. The final definition is produced through iterative revisions and
validations. The OMOP initiative defines phenotypes or health out-
comes of interest (HOI), by systematically reviewing published litera-
ture on diagnostic criteria, coding guidelines, operational definitions
and validation studies for phenotypes. Then they implement queries
for applying the HOI definitions to an observational database, validate
their results, and publish best practices for the HOI definition. From the
30 definitions published by eMERGE and the 34 definitions published by
OMOP (supplementary information S2), we chose Type 2 Diabetes
Mellitus (T2DM) from eMERGE and Myocardial Infarction (MI) from the
OMOP set, as examples of chronic and acute conditions, respectively.

Patient data
The patient dataset was extracted from the Stanford clinical data
warehouseSCDW, which integrates data from Stanford Children’s Health
and Stanford Health Care. The extract comprises 1.2 million patients, with
20.7 million encounters, 35 million coded diagnoses and procedures, 130
million laboratory tests, 14 million medication orders as well as pathology,
radiology, and transcription reports totaling over 20 million clinical notes.

Our extract of patient data from January 1994 through June 2013
from Stanford Children’s Health and Stanford Health Care is stored in
a structured and indexed form within a MySQL relational database.
The pre-processing steps as well as details of the schema for the clin-
ical data elements in the extracted data are shown in supplementary
information S3.

Methods
Implementing rule-based definitions
To compare the performance of the published rule-based definitions
with that of the corresponding machine learned models, as illustrated
in Figure 1A, we implemented the rule-based definitions for T2DM and
MI on our extract of the patient data. Implementing the rule-based def-
initions requires (a) mapping the definition variables to the respective
clinical data elements and (b) writing the corresponding SQL queries.

Creation of a noisy labeled training set (silver standard) for statistical
phenotype models
We labeled patients with and without the phenotype using semi-auto-
matic labeling based on the presence or absence of highly specific
phrases for the respective phenotypes. The choice of these phrases is
the same as picking the “anchor” terms as described by Halpern
et al.32 The assumption is that if a patient exhibits the phenotype of in-
terest then a doctor is likely to mention it in their notes, and that if a
highly specific phrase is found the patient is likely to have the pheno-
type. For example, a phrase such as T2DM, in patient notes without a

flag for negation or family history is taken to be a noisy label for the
T2DM phenotype. An absence of T2DM specific keywords anywhere in
the record is taken to indicate a “control.”

The goal of selecting keywords (shown in Figure 2) to assign phe-
notype labels, is to use a highly specific phrase for a given phenotype
and identify its synonymous strings using 22 clinically relevant ontolo-
gies from the Unified Medical Language System (UMLS) and
BioPortal.34 To reduce the labeling error rate, the list of keywords is re-
viewed to identify high-frequency terms that are ambiguous. We sort
the list of keywords by the number of patients in whose records they
appear. Terms that collectively comprise 90% of the total number of
patient counts are reviewed to remove ambiguous terms. For example,
synonyms of “T2DM” include terms such as “MODY.” However, current
medical practice makes a distinction between mature onset diabetes of
the young (MODY) and T2DM. Therefore, removing “MODY” from the
keyword list is necessary for achieving search specificity.

All patient notes in our data extract are pre-indexed with terms
from the relevant ontologies in UMLS and BioPortal used in our previ-
ously published text-processing workflow (see Supplementary infor-
mation S3 for details).33 This keyword-search, which can be done in
milliseconds, is cognizant of negation and family history contexts to
avoid misattributions due to a term being mentioned in the family his-
tory or a rule-out diagnoses.

Labeling of the training dataset is semi-automatic because the
keyword-list preparation requires manual intervention and some clini-
cal expertise. Once the keyword list is prepared, the labeling of pa-
tients (Figure 1B) is done automatically. With this approach, we
identified 32 581 possible cases for T2DM and 36 858 possible cases
for MI; from which, we randomly sampled 750 patient records for
each phenotype. We refer to these records as a “silver standard” set,
having a “noisy” label for the phenotype of interest. For each pheno-
type, we constructed a random sample of 750 controls taken from all
other patients in our extract disjoint with possible cases. We used this
set of 1500 patient records to train a statistical model – referred to as
a XPRESS model, for eXtraction of Phenotypes from Records using
Silver Standards.34

Creation of a clinician-reviewed evaluation set (gold standard)
We conducted an IRB-approved review of patient charts with the help
of five clinicians to create an evaluation set for each phenotype con-
sisting of clinician-labeled cases (patients with the phenotype) and
controls (patients without the phenotype); see Figure 1C. Each record
was reviewed by two clinicians and ties were resolved on the basis of
a majority vote after review by a third clinician. The clinicians review-
ing the charts could label a record as “undecided” if, based on the
chart contents, they were unsure about assigning a case or control la-
bel (see supplementary information S4 for protocol details). Patient re-
cords in the training data for the XPRESS models are disjoint from this
evaluation set, which contains an equal number of cases and controls.

Building XPRESS models
Feature engineering. As shown in Figure 3, we represented the struc-
tured and unstructured data from a patient record as features from four
categories – terms (or concepts), prescriptions, laboratory test results,
and diagnosis codes. Prescriptions, laboratory test results, and diagnosis
codes were taken from the structured record whereas terms were ex-
tracted from free text (the section “Steps in processing clinical text” in
supplementary information S3, provides a description of the extraction
method). We normalize terms into concepts in the same manner as in
our earlier studies involving text mining on clinical notes – essentially
using UMLS term-to-concept maps with suppression rules to weed out
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ambiguous mappings as described in Jung et al.33 (see supplementary
information S3). Such mapping reduces the total number of features as
well as reduces the number of correlated features since synonyms get
mapped to the same concept. For a concept, we used the number of
distinct notes in which the concept occurs at least once (note frequency)
as the feature representation. For prescriptions and diagnostic codes,
we used the normalized counts of the active ingredient for each

medication (RxNorm concept unique identifier) and the normalized
counts of each International Classification of Diseases, revision 9 code
as the respective features. For laboratory test results, we utilized the
categorical result status for each ordered test (high/ normal/low or nor-
mal/abnormal as recorded in the EHR) and calculated a feature based
on normalized counts for each test-result instance in the record. The
number of features obtained was 23 717 (MI), and 25 045 (T2DM).

Figure 1: Evaluating the performance of statistical models learned from semi-automatically labeled data with noisy labels (A) Existing
rule-based phenotype definitions for the phenotypes are implemented using SQL. (B) Using a list of phenotype specific keywords, patient
records are labeled has having or not having the phenotype; thus creating a noisy labeled training dataset. Features are constructed
based on terms in notes, diagnostic codes, prescription, and lab orders. Keywords used in the noisy labeling are excluded. The data ma-
trix is split into training and test sets for training a statistical model and for carrying out 5-fold cross-validation. (C) A manually reviewed
gold standard set of patient records is created (excluding those used for training the model) and is used to evaluate both the rule-based
definition and the statistical model for each phenotype.
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Learning statistical models from noisy labeled data. We defined the
timestamp of the first note in the record that contains one of the key-
words for a given phenotype as “time zero” and only extracted fea-
tures from the record after that time. Our reason for using only the
part of the record that follows time zero is that features occurring after
the first mention of the phenotype related keywords are likely to char-
acterize that phenotype. In contrast, if we wanted to create a model
for predicting the onset of the phenotype, the portion of the record pre-
ceding time zero would be used.

Given the large number of features, we use a shrinkage method
for learning from a sparse data set. By enforcing a penalty for the fea-
ture coefficients to be non-zero (i.e., “shrinking” them towards zero),
such methods provide built in feature-selection. The feature coeffi-
cients indicate the relative importance of the features. We trained a L1
penalized logistic regression model for each phenotype using 5-fold
cross-validation (CV). Under a constraint on the L1 norm of the coeffi-
cient vector, minimizing the negative log likelihood function of the
model coefficients results in shrinking many of the coefficients to
zero.35 Standard implementations of L1 penalized logistic regres-
sion,36,37 provide functions for selecting the optimal penalty.
Computations were done on a system with 16 cores, 170 GB RAM.
Training a XPRESS model for each of phenotype took 2–3 h.

Evaluation against a clinician-reviewed evaluation set
We applied the XPRESS model to each patient record in our evaluation
data set to assign a case or control label and computed the precision
and accuracy by comparing with the clinician assigned label. We also
estimated the error rate of the noisy labeling process itself (i.e., the
query used to define the “silver standard”) as illustrated in Figure 1C.
Finally, for reference, we assessed the performance of the rule-based
phenotype definitions implemented on our data extract. The research
was done under protocol numbers 24 883 (Expedited review, category

5) and 30 891 (Chart review), which were approved by Stanford
University’s Institutional Review Board.

RESULTS
Model performance
We first evaluated the models using 5-fold CV and examined the rela-
tive importance of the predictor variables ascertained by their respec-
tive coefficients. The mean precision and accuracy in 5-fold CV for
T2DM were 0.86 and 0.84 and for MI—0.88 and 0.87, respectively.
The top 10 features for the phenotype models are shown in Table 1.

Performance assessment using a clinician-reviewed evaluation set
The results in Table 2 show the accuracy and PPV of the XPRESS
models, using the clinician-reviewed evaluation set. We also present
the accuracy and PPV of the rule-based definitions as well as the noisy
labeling processes on the same gold standard. Each rule-based defini-
tion (T2DM and MI) took approximately one day to implement on our
patient data extract. In the case of T2DM, our estimate of the perfor-
mance of the rule-based definition is in agreement with the result pub-
lished on PheKB,18 by the eMERGE initiative,14 which gives us
confidence in the correctness of our local implementation of the rule-
based definitions.

Learning good models with noisy labels
Noisy labels may be thought of as the output a procedure that returns
a flipped (ie, wrong) label with a certain probability. Assuming a ran-
dom classification noise model, the probability of label flipping is char-
acterized by the classification error rate (s). From the accuracy of the
noisy labeling process reported in Table 2, the classification error rate
(s) is estimated as 1 – Acc. In order for model-building using noisy la-
bels to be feasible, we need the generalization error (defined as the
probability that a model misclassifies a new observation drawn from
the population) of an XPRESS model to approximate the generalization

Figure 2: Construction of the list of keywords used to assign noisy labels. First, a list of synonymous terms for concepts representing the
descriptive phrase for the phenotype is generated. The list is sorted by frequency of mentions and the terms covering 90% of the men-
tions are inspected to remove terms that are ambiguous or not specific to the phenotype of interest.
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error of a model that best fits the data distribution. Simon,29 and later
Aslam et al.,30 formulate this guarantee as a sample complexity bound
that is given as follows. If we define

D as the target data distribution consisting of observations and correct
labels

Dn as the data distribution consisting of observations and noisy labels
s as the random classification error for Dn

H as the class of learning algorithms to which our models belong
S as the set of m observations drawn from Dn

ĥ as a model in H and trained on S
h* as a model in H that best fits the target distribution D
e(ĥ ) as the generalization error of ĥ
e(h*) as the generalization error of h*
Then for je(ĥ ) - e(h*)j � c, with probability 1 - d, it suffices that

m�O VC Hð Þ
c 1�2sð Þ2 þ

log 1
dð Þ

c 1�2sð Þ2

� �
, where c > 0 and 0 � d�1

The case s¼ 0 corresponds to observation data with clean labels
and the case s¼ 0.5 represents the case when the random flipping of
labels makes learning impossible. For a given error bound c, probabil-
ity 1� d, and classification error rate s, a learning algorithm can learn
equally well from approximately m 1� 2sð Þ2 observations of noisy
data what it can learn from m observations of clean data.

Assuming a 5% bound on the generalization error with a probabil-
ity of at least 0.95, Table 3 shows the minimum sample size estimates
m needed for our phenotype models.

At a 10% classification error rate in the noisy data, 50% more
noisy observations are needed as compared to clean data and at 15%
classification error rate, twice as many are required. As the error rate
rises, the number of additional observations required increases and
approaches infinity as s goes to 0.5. Put another way, we can learn
models with the same performance (PPV, Acc) from 2026 manually la-
beled, zero-error training samples, or from 4135 noisy labeled training
samples. For XPRESS models, the cost of acquiring additional obser-
vations is negligible; creating 2026 manually labeled samples with
zero error is difficult.

DISCUSSION
Statistical phenotype models can provide high precision and recall but
require the expert assignment of phenotype labels to patient records.28

This expert-labeling requirement limits the use of such statistical
learning approaches. Our work demonstrates the feasibility of learning
phenotype models using noisy labeled training data for T2DM and MI,
with performance evaluations based on clinician-reviewed patient re-
cords. Our noisy-labeling strategy achieves a labeling error rate of
�15% for the two phenotypes. The resulting performance of our

Figure 3: Engineering features from structured and unstructured data elements in a patient record.
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XPRESS models (PPV of 0.90 and 0.86 for T2DM and MI, respectively)
compares favorably with the performance of the respective rule-based
definitions (0.96 for T2DM and 0.84 for MI), evaluated using the same
gold standard set of patients. The presence of well-known phenotype
attributes in the top ranked features selected by the XPRESS models
indicates that the performance is on account of learning generalizable
features. We have also examined the trade-offs in a noisy labeling ap-
proach given the error-rate of the labeling process and the number of
training instances required at a given error-rate. Understanding this
trade-off is necessary for constructing phenotype models using noisy-
labeled data. We also note the study by Yu et al.,38 who used manually
selected concepts specific to a phenotype as their search criterion for
labeling training instances. Their classifiers for coronary artery disease
and for rheumatoid arthritis showed a PPV of 0.903 and 0.795 (false
positive rate¼ 0.05). Their approach and results lend support to the
argument that it is possible to learn good phenotype models from la-
beled datasets created via simple labeling techniques.

The development of a rule-based definition requires a rigorous val-
idation,14 and data fragmentation across multiple care facilities ad-
versely impacts the performance of such phenotyping algorithms.39

In the case of complex phenotypes, practices related to diagnoses,
prescriptions, testing, and laboratory thresholds may vary across insti-
tutions.15 Since XPRESS learns the phenotype definition in terms of a
set of feature weights, agreeing on a shared feature space (such as
the Systematized Nomenclature of Medicine, or Logical Observation
Identifiers Names and Codes) across EHR systems provides a simple
way to integrate patient and practice information across multiple
source schemas. Thus, sharing an XPRESS workflow can be a poten-
tial alternative solution to the problem of porting a clinical phenotype
description across different institutions and EHR systems.

Our results in Table 2 show that the models achieve nearly the
same (T2DM) or better (MI) accuracy and precision compared to the
rule-based definitions. As evident in the case of T2DM, a rule-based
definition does provide some performance gain over XRESS, but would
need significant development time. There are certainly situations that
require higher precision. For such cases using a rule-based definition
may be the only choice. However, for use cases that can tolerate a
lower precision in phenotyping (eg, medical device surveillance,40 and
quality measurement,41), the use of noisy labeled training data could
work well.

XPRESS can enable rapid electronic phenotyping,42 in multi-stake-
holder research collaboratives such as the Observational Health Data
Sciences and Informatics (OHDSI),43 that covers over 600 million pa-
tients globally. An assumption of XPRESS (and of the noise tolerant
learning approach) is that noisy labeled data is available in abundance.
For rare phenotypes, this may not always be true.44 The ability to ag-
gregate training data from hundreds of millions of patients at OHDSI
partner institutions, presents a unique opportunity to build phenotype
models for conditions that may be under-represented in any single
EHR database. It also provides an opportunity to extensively conduct
cross-site validations on the XPRESS methodology as well as on spe-
cific phenotype models. In situations where the distribution of covari-
ates in a target population may differ significantly from their global

Table 1: The top 10 features identified by the models for MI
and T2DM

MI T2DM

Feature Weight Feature Weight

cid:infarction 0.0208 cid: diabetes
mellitus

0.1031

cid:onset of illness 0.0101 cid: metformin 0.0455

cid:cardiac arrhythmia 0.0098 Lab: GLUCOSE
BY METER: high

0.0332

cid:coronary artery
bypass surgery

0.0085 Lab: GLUCOSE,
SER/PLAS: high

0.0262

cid:lasix 0.0079 cid: absence of
sensation

0.0184

cid:bypass 0.0067 cid: edema 0.0015

cid:cerebrovascular
accident

0.0061 cid: history of
previous events

0.0011

cid:lupus erythematosus 0.0058 cid: mass of body
structure

0.0010

lab:CK, MB (MASS):normal 0.0051 cid: skin appearance
(normal)

0.0008

code:414.01(Coronary
atherosclerosis of native
coronary artery)

0.0049 cid: follow-up status 0.0007

Table 2: Performance assessed using a manually reviewed
evaluation set for T2DM and MI

T2DM Cases Ctrls Acc PPV

PheKB definition 152 152 0.92 0.96

Noisy labeling process 152 152 0.89 0.81

XPRESS 152 152 0.89 0.90

MI Cases Ctrls Acc PPV

OMOP definition 94 94 0.87 0.84

Noisy labeling process 94 94 0.85 0.80

XPRESS 94 94 0.89 0.86

Numbers for “PheKB definition” show the performance of the rule-
based definitions for identifying T2DM cases (authored by Vanderbilt
University) applied to our database.
Numbers for “OMOP definition” show the performance of the rule-
based definitions for identifying MI cases (broad definition with hospi-
talization) applied to our database.
Numbers in the “Noisy labeling process” row show the performance
of the keywords based label assignment.
Numbers against “XPRESS” show the performance of the XPRESS
models for identifying cases.

Table 3: Minimum sample size estimates for c¼ 0.05 and
d¼ 0.05

MI T2DM

s mmin s mmin

XPRESS 0.15 4135 0.11 3330

Clean Labels 0 2026 0 2026
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distribution,45,46 the XPRESS method may be used to create local phe-
notype models.

Limitations
In the current work, we have only examined two phenotypes; making
it difficult to generalize the findings. It is possible to conduct such an
analysis for multiple phenotypes, if institutional mechanisms for shar-
ing of manually curated evaluation sets can be worked out. We also
acknowledge limitations in two additional areas, where improvements
can reduce the knowledge engineering effort47 namely, optimizing the
labeling error rate and feature engineering. The first is in optimizing
the labeling error rate. Given that negation and family history detection
employs a set of regular expressions that can fail when the negation
cue lies outside the token window.48 Without tinkering with negation
and history detection, one way to reduce the labeling error rate is by
limiting the type of note in which the presence of the keywords is con-
sidered. For example, by searching only discharge notes, we could
achieve a 15% labeling error rate in the MI training data, compared to
an error rate of 34% when all note types are used. However, for
T2DM, restricting to discharge notes resulted in just a 2% percent re-
duction in labeling error rate, which is not useful given the corre-
sponding decrease in the number of training cases. For certain
phenotypes it may be better to accept a higher labeling error rate in
order to obtain a larger training data set. This trade-off between error
rate and sample size, allows for a formal strategy for optimizing the la-
beling error rate. The second area of improvement is defining features
that are informative across phenotypes, port well across different sys-
tems, and are tolerant to missing data. Given that the number of ways
to compute feature representations for clinical concepts is large, an in-
vestigation of optimal feature engineering is likely to be worthwhile.41

We acknowledge that better feature representations may be possible
to further improve both the performance and the portability of the phe-
notype models.

CONCLUSION
We demonstrated the feasibility of using semi-automatically labeled,
noisy training sets to create phenotype models from a comprehensive
representation of the patient clinical record via machine learning. The
XPRESS method provides an alternative to manual labeling for the cre-
ation of training sets to learn statistical models of phenotypes. The
idea of using a specific phrase in patient notes as a positive predictor
of the phenotype is not linked to the choice of the phenotype. As a re-
sult, the effort required to create a training dataset becomes negligi-
ble, making it feasible to apply the XPRESS method to multiple
phenotypes. Adopting such an approach to electronic phenotyping
could accelerate research studies carried out with large observational
healthcare datasets.
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