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Purpose
To compare a novel generalized competing event (GCE) model versus the standard Cox proportional
hazards regression model for stratifying elderly patients with cancer who are at risk for competing
events.

Methods

We identified 84,319 patients with nonmetastatic prostate, head and neck, and breast cancers from
the SEER-Medicare database. Using demographic, tumor, and clinical characteristics, we trained risk
scores on the basis of GCE versus Cox models for cancer-specific mortality and all-cause mortality.
In test sets, we examined the predictive ability of the risk scores on the different causes of death,
including second cancer mortality, noncancer mortality, and cause-specific mortality, using Fine-
Gray regression and area under the curve. We compared how well models stratified subpopulations
according to the ratio of the cumulative cause-specific hazard for cancer mortality to the cumulative
hazard for overall mortality (w) using the Akaike Information Criterion.

Results

In each sample, increasing GCE risk scores were associated with increased cancer-specific mortality
and decreased competing mortality, whereas risk scores from Cox models were associated with
both increased cancer-specific mortality and competing mortality. GCE models created greater
separation in the area under the curve for cancer-specific mortality versus noncancer mortality (P <
.001), indicating better discriminatory ability between these events. Comparing the GCE model to
Cox models of cause-specific mortality or all-cause mortality, the respective Akaike Information
Criterion scores were superior (lower) in each sample: prostate cancer, 28.6 versus 35.5 versus
39.4; head and neck cancer, 21.1 versus 29.4 versus 40.2; and breast cancer, 24.6 versus 32.3
versus 50.8.

Conclusion

Compared with standard modeling approaches, GCE models improve stratification of elderly
patients with cancer according to their risk of dying from cancer relative to overall mortality.

J Clin Oncol 34:1270-1277. © 2016 by American Society of Clinical Oncology

A common approach to risk stratification is
to model variables on a combined end point, such
as overall survival or event-free survival, aggregating
one or more disease-specific events with death from
other causes. This approach is problematic,
however, when variables have opposing effects
on competing events, because it is not possible to
discriminate effects on primary versus competing
events when these events are pooled.” As a result,

Competing risks settings are those in which an
individual may experience multiple different
events.! Competing events are important to
recognize because they complicate the inter-
pretation of effects on primary events of inter-
est.'”” With advancing age, the risk of competing
mortality for patients increases, and the benefit of

intensifying treatment potentially diminishes.
Improved methods for stratifying patients
according to competing event risk are needed to
help individualize treatment.
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common prognostic models applied do not
efficiently distinguish patients at risk for dying of
cancer versus noncancer causes, leading to sub-
optimal risk assessment strategies.
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In contrast, competing event models can better discriminate
effects of treatments and risk factors on specific events.® We
previously developed a generalized competing event (GCE) model
that better stratifies patients with endometrial cancer according
to risk of death from cancer relative to overall mortality; however,
this approach has not been validated in other settings. Therefore,
we sought to validate the broader utility of this method by com-
paring risk scores derived using standard Cox proportional hazards
regression models versus the GCE model in three different pop-
ulations (prostate cancer, head and neck cancer (HNC), and breast
cancer), all of which are subject to an appreciable risk of competing
cancer and noncancer events.

Population and Sampling Method's

This study was institutional review board approved. Using SEER-
Medicare database, we identified 51,713 patients with localized prostate
cancer diagnosed from 2000 to 2009 and treated with definitive
radiotherapy (RT), 9,677 patients with primary nonmetastatic HNC
diagnosed from 1996 to 2009 and treated with RT with or without
surgery and/or chemotherapy, and 22,929 patients with nonmetastatic
primary breast cancer diagnosed from 2004 to 2009 and treated with
mastectomy or lumpectomy with or without RT and/or chemotherapy.
SEER covers 26% of the US cancer population.” Medicare provides
health insurance for 97% of persons age = 65 years. SEER-Medicare
links registry data with claims files for beneficiaries enrolled in fee-for-
service programs. We excluded patients if their cancer was diagnosed
on death certificate or autopsy only or if they had incomplete data or

noncontinuous Medicare part A/part B in the year preceding diagnosis.
We also excluded 16,546 patients treated with radical prostatectomy
because we found too few patients died of cancer (141 deaths, < 1%) to
draw definitive conclusions about the impact of GCE models in this
population. All patients were age > 66 years.

Main Outcomes

Cancer-specific mortality was defined as death as a result of prostate,
HNGC, or breast cancer, as appropriate for the context. Competing mor-
tality was defined as either noncancer mortality or second cancer mortality.
All-cause mortality was defined as death from any cause. Surviving patients
were censored at last follow-up.

Statistical Analysis

First, we partitioned each sample into training and validation sets (Fig
1), using 60%/40% random samples (without replacement). This was to
optimize the tradeoff between robustness of the training sample and
number of events in the test sets. Training cohorts were used to build
models, whereas validation cohorts were used to compare models. In each
training cohort, we used multivariable Cox regression'® to develop risk
scores for all-cause and cause-specific mortality using a standard set of
covariates plus additional disease-specific covariates. Risk scores were
calculated by taking the inner product of the coefficient vector with the
data vector of the patient.*®

For the GCE models, we performed Fine-Gray regressions'' on both
cause-specific and competing mortality as a function of the same covari-
ates, and we computed risk scores in the same fashion, using training
cohorts. Second cancer mortality and noncancer mortality events were
pooled together as a single competing mortality event in the GCE risk score
calculation. Covariates were retained in the final GCE model if they were
significant (P < .05) in any individual regression model. We chose this
cutoff to guard against overfitting in training samples (note that including

Prostate Cancer Data
Treated with RT,
diagnosed from

2000-2009
(n=51,713)

Prostate Validation Prostate Data With

Head and Neck Cancer Data
Treated with RT + surgery
and/or chemotherapy,
diagnosed from
1996-2009
(n=9,677)

Head and Neck Cancer Head and Neck Cancer

Breast Cancer Data
Treated with surgery +
chemotherapy and/or RT,
diagnosed from
2004-2009
(n =22,929)

Breast Cancer Breast Cancer

Data Without PSA PSA Information Validation Data
Information
Treated with RT, Treated with RT, Treated with RT +
diagnosed diagnosed surgery and/or
from 2000-2009 from 2004-2009 chemotherapy,
(n = 18,809) (n =32,904) diagnosed from
1996-2009
(n =3,871)

Data Without PSA

Prostate Validation

Prostate Training
Data With_

Information PSA Information
Treated with RT, Treated with RT,
diagnosed diagnosed
from 2004-2009 from 2004-2009
(n =13,162) (n=19,742)

Training Data Validation Data Training Data

Treated with RT £ Treated with surgery +  Treated with surgery =

surgery and/or chemotherapy chemotherapy
chemotherapy, and/or RT, and/or RT,
diagnosed from diagnosed from diagnosed from
1996-2009 2004-2009 2004-2009
(n = 5,806) (n=9,172) (n =13,757)

Fig 1. Diagram for data abstraction and partitioning into training and validation datasets. PSA, prostate-specific antigen; RT, radiotherapy.
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fewer covariates reduces variance in the explanatory variables, attenuating
the comparisons between GCE and standard models). GCE risk scores
were computed by subtracting the competing mortality risk score from the
cancer-specific mortality risk score. Note that GCE risk scores can take on
any real value, with increasing values corresponding to an increasing ratio
of cancer mortality to noncancer mortality risk (Appendix, online only).
Despite concerns about the appropriateness of using Cox models for cause-
specific mortality,'*! we chose this method for comparison because it has
been widely applied for this purpose in the oncology literature. Bootstrap
resampling with replacement (1,000 iterations) was used to obtain 95% CIs
for the coefficients from the GCE model.

Standard covariates included age at diagnosis (continuous), sex,
race (black v white/other), marital status (married v unmarried),
median household income (lower v higher than mean), stage, grade,
and modified Charlson comorbidity index (CCI), calculated using
Medicare claims during the year preceding diagnosis.'* For prostate
cancer models, additional covariates included region (West v East v
Midwest v South), type of RT (external beam RT only v RT plus
brachytherapy v brachytherapy only), and prostate-specific antigen
(PSA; continuous). We imputed the mean PSA value where PSA was
missing (n = 18,809). Stage was grouped according to American Joint
Committee on Cancer staging criteria (3rd and 6th editions), and grade
was dichotomized as high (grade 3 and 4) versus intermediate and/or
low (grade 1 and 2). For HNC models, additional covariates tested
included anatomic subsite and postoperative RT (yes v no). Stage was
dichotomized as regional versus localized, and grade was dichotomized as
above. Multiple imputation with 20 iterations was performed for missing
grade data, given fewer than 20% missing data (n = 1,697). No other
variables were imputed. For HNC data, we performed additional analyses
controlling for chemotherapy and RT technique (n = 8,920); however,
these were not significant in any regression model, and, therefore, were not
included in the final GCE model for HNC. For breast cancer models,
additional covariates included region (West v East v Midwest v South),
teaching hospital (yes v no), tumor size (<2cmv=2cmto<5cmv=
5 cm v size unknown), estrogen receptor and/or progesterone receptor

status (positive v negative v unknown), sentinel lymph node biopsy (yes v
no), axillary lymph node examination (yes v no), tumor laterality (left v
right), surgery (mastectomy v lumpectomy), chemotherapy (yes v no), and
RT technique (hypofractionated v conventional). Hypofractionated RT was
defined as 13 to 24 daily fractions, and conventional RT was defined as 25 to
36 daily fractions.

Event probabilities were calculated for the whole samples using
cumulative incidence functions.'>'® The predictive ability of the models on
the different cause of death incidences was tested in validation cohorts using
the area under the curve (AUC) on the basis of receiver operating char-
acteristics curves with competing risks.'” We also used the Akaike Infor-
mation Criterion and Bayesian Information Criterion to compare how well
the risk scores stratified equally binned subgroups according to the ratio of
the cumulative cause-specific hazard for cancer mortality to the cumulative
hazard for all-cause mortality (w). We used the Nelson-Aalen method (ie,
negative logarithm of the survival function) to estimate cumulative hazards
and plotted w values for quantiles of the appropriate risk score (Appendix).
Last, we performed a second resampling of the training and test sets for all
three cohorts, to confirm the robustness of our conclusions. Additional
details are provided in the Appendix. All tests were two tailed, and P <.05
indicated statistical significance. Data were extracted using SAS (SAS/STAT
User’s Guide, Version 9.3; SAS Institute, Cary, NC) and analyzed in R version
3.2.2 (www.r-project.org). We published an R package called gcerisk to
facilitate GCE modeling used in this study.

Cancer Outcomes and Model Comparisons

Sample characteristics are provided in Appendix Tables Al to A3
(online only). For patients with prostate cancer, the 10-year
cumulative incidences of all-cause, cancer-specific, second cancer,
and noncancer mortality were 40.2% (95% CI, 39.4% to 41.1%),

Table 1. Multivariable Regression Analyses for Prostate Cancer

Characteristic GCE Regression, " Ratio* (95% ClI)

PCM Cox Regression, HR (95% Cl)

ACM Cox Regression, HR (95% ClI)

Age at diagnosis, per year 0.97 (0.94 to 1.00)

1.04 (1.01 to 1.06) 1.06 (1.05 to 1.07)

Radiation therapy
EBRT or BT alone

Married

Yes 1.36 (0.99 to 1.88)
Registry region

West Ref

East 0.74 (0.50 to 1.09)

Midwest 0.88 (0.57 to 1.36)

South 0.77 (0.55 to 1.10)
Stage

T Ref

T2 1.55 (1.16 to 2.07)

T3 2.38 (1.16 to 4.87)
Grade

Low/intermediate Ref

High 2.92 (2.02 to 4.22)

Ref

EBRT + BT 1.15 (0.78 to 1.70)
CCl

0 Ref

1 0.53 (0.37 to 0.76)

2 0.69 (0.43 to 1.11)

=3 0.35 (0.20 to 0.63)
PSA, per unit 1.01 (1.00 to 1.01)

1.10 (0.81 to 1.49)

Ref
0.79 (0.55 to 1.14)
1.06 (0.71 to 1.59)
1.22 (0.88 to 1.70)

Ref
1.71 (1.30 to 2.25)
2.83 (1.54 to 5.22)

Ref
3.67 (2.57 to 5.23)

Ref
0.97 (0.69 to 1.37)

Ref
0.97 (0.69 to 1.37)
1.61 (1.03 to 2.53)
1.81 (1.02 to 3.19)
1.01 (1.01 to 1.02)

0.85 (0.77 to 0.93)

Ref
1.03 (0.92 to 1.16)
1.17 (1.02 to 1.35)
1.48 (1.33 to 1.66)

Ref
1.16 (1.06 to 1.27)
1.39 (1.05 to 1.85)

Ref
1.37 (1.25 to 1.50)

Ref
0.85 (0.74 to 0.97)

Ref
1.64 (1.47 t0 1.82
2.10 (1.81 to 2.42
3.95 (3.40 to 4.58,
(

)
)
)
1.01 (1.00 to 1.01)

Abbreviations: ACM, all-cause mortality; BT, brachytherapy; CCl, Charlson Comorbidity Index; EBRT, external beam radiotherapy; GCE, generalized competing event;
HR, hazard ratio; PCM, prostate cancer mortality; PSA, prostate-specific antigen; Ref, reference.
*Estimate of the o™ ratio for each covariate using the Fine-Gray model for subdistribution hazards. For further explanation of the GCE estimate, see Appendix.
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4.7% (95% CI, 4.3% to 5.0%), 9.4% (95% CI, 9.0% to 9.9%), and
26.2% (95% CI, 25.4% to0 26.9%), respectively. Note that second
cancer mortality and noncancer mortality together comprise
competing mortality, so the cumulative incidence of competing
mortality is the sum of their cumulative incidences (35.6%).
Compared with standard models, the effects of stage, grade, and
PSA in the GCE model were in the same direction, whereas the
effect estimates for age and CCI were generally opposite
(Table 1). All-cause mortality was increased for patients in the
Midwest and Southern regions, but the effects of region were
not significant in the other two models.

For patients with HNC, the 5-year cumulative incidences of all-
cause, cancer-specific, second cancer, and noncancer mortality were
59.3% (95% CI, 58.2% to 60.3%), 24.2% (95% CI, 23.4% to 25.1%),
15.9% (95% CI, 15.1% to 16.7%), and 19.1% (95% CI, 18.3% to
20.0%), respectively. With the GCE model, the effect estimates for
stage, anatomic subsite, and postoperative RT were generally com-
parable to standard models. Compared with standard models, the
GCE model gave more weight to female sex, suggesting a potential
benefit of treatment intensification for elderly women. The GCE
model suggested a null effect of age, and an opposite effect of CCI, in
contrast to standard models (Table 2).

For patients with breast cancer, the 5-year cumulative
incidences of all-cause, cancer-specific, second cancer, and non-
cancer mortality were 20.1% (95% CI, 19.5% to 20.8%), 4.8% (95%
CI, 4.5% to 5.2%), 3.1% (95% CI, 2.8% to 3.4%), and 12.2% (95%
CIL 11.7% to 12.7%), respectively. With the GCE model, effect
estimates for stage, grade, tumor size, and nodal examination were
comparable to the Cox models in magnitude and direction, in
contrast to GCE estimates for age, teaching hospital, and CCI, which
were opposite of those from Cox models (Table 3).

Predictive Ability of Models on Cause-Specific Events

When Cox models were tested on patients with prostate
cancer, increasing risk scores were associated with increased cancer-
specific, second cancer, and noncancer mortality (Appendix). In
contrast, the GCE risk score was associated with increased cancer-
specific mortality (subdistribution hazard ratio [SDHR], 2.12; 95% CI,
1.89 to0 2.37; P <.001) and was associated with decreased second cancer
mortality (SDHR, 0.88; 95% CI, 0.81 to 0.95; P <.001) and noncancer
mortality (SDHR, 0.64; 95% CI, 0.60 to 0.67; P < .001). The GCE
model produced a greater difference in AUC for cancer-specific and
noncancer mortality (0.64 v 0.42; P <.001) than did the Cox model of
all-cause mortality (0.66 v 0.67; P > .05) or cancer-specific mortality
(0.72 v 0.59; P <.001). Results did not differ when we tested patients
with prostate cancer with or without known PSA information.

When Cox models were tested in patients with HNC, increasing
risk scores were associated with increased cancer-specific, second
cancer, and noncancer mortality (Appendix). In contrast, the GCE
risk score was associated with increased cancer-specific mortality
(SDHR, 2.37; 95% CI, 2.09 to 2.70; P <.001) and second cancer
mortality (SDHR, 1.44; 95% CI, 1.25 to 1.66; P < .001) but
decreased noncancer mortality (SDHR, 0.62; 95% CI, 0.54 to 0.70;
P <.001). Again, the GCE model produced a greater difference in
AUC for cancer-specific and noncancer mortality (0.66 v 0.55; P <
.001) than did the Cox models of all-cause mortality (0.74 v 0.71;
P >.05) and cancer-specific mortality (0.75 v 0.68; P <.001). Results
were similar when we controlled for treatment or analyzed oro-
pharynx versus nonoropharynx subpopulations separately.

When Cox models were tested in patients with breast cancer,
increasing risk scores were associated with increased cancer-specific,
second cancer, and noncancer mortality (Appendix). In contrast, the
GCE risk score was associated with increased cancer-specific
mortality (SDHR, 1.95; 95% CI, 1.71 to 2.23; P < .001) but

Table 2. Multivariable Regression Analyses for Head and Neck Cancer Training Cohort

HNCM Cox Regression, HR (95% Cl) ACM Cox Regression, HR (95%Cl)

1.04 (1.03 to 1.05) 1.05 (1.04 to 1.05)

Characteristic GCE Regression, " Ratio* (95% ClI)

Age at diagnosis, per year 0.99 (0.98 to 1.00)
Sex

Female 1.45 (1.24 to 1.68)
Married

Yes 1.03 (0.89 to 1.18)
Household income

Higher 1.04 (0.90 to 1.19)
Stage

Localized Ref

Regional 1.99 (1.72 to 2.31)
Anatomic subsite

Oropharynx Ref

Hypopharynx 1.37 (1.08 to 1.75)

Nasopharynx 1.99 (1.28 to0 3.10)

Oral cavity 1.25 (1.05 to 1.48)
CCl

0 Ref

1 0.82 (0.70 to 0.96)

2 0.76 (0.62 to 0.94)

3 0.61 (0.44 to 0.84)

=4 0.76 (0.54 to 1.08)

Postoperative radiation therapy

Yes

0.67 (0.59 to 0.77)

1.14 (1.01 to 1.28)

0.82 (0.73 to 0.91)

0.91 (0.82 to 1.02)

Ref
2.49 (2.21 to 2.81)

Ref
1.64 (1.37 to 1.96)
1.67 (1.24 to 2.23)
1.76 (1.55 to 2.00)

0.95 (0.88 to 1.02)

0.80 (0.75 to 0.86)

0.88 (0.83 to 0.95)

Ref
1.78 (1.67 to 1.91)

Ref
1.49 (1.32 to 1.67)
1.24 (1.00 to 1.53)
1.61 (1.49 to 1.75)

Ref Ref
1.15 (1.01 to 1.30) 1.32 (1.22 to 1.42)
1.41 (1.20 to 1.66) 1.71 (1.55 to 1.89)

(

(
1.51 (1.18 to 1.93)
1.97 (1.52 to 2.56)

0.62 (0.55 to 0.69)

1.98 (1.72 to 2.28)
2.46 (2.10 to 2.88)

0.74 (0.69 to 0.79)

Abbreviations: ACM, all-cause mortality; CCI, Charlson Comorbidity Index; GCE, generalized competing event; HNCM, head and neck cancer mortality; HR, hazard ratio.
*Estimate of the " ratio for each covariate using the Fine-Gray model for subdistribution hazards. For further explanation of the GCE estimate, see Appendix.
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Table 3. Multivariable Regression Analyses for Breast Cancer Training Cohort

Characteristic

GCE Regression, w* Ratio* (95% Cl)

BCM Cox Regression, HR (95% Cl)

ACM Cox Regression, HR (95% ClI)

Age at diagnosis, per year
Married

Lymph node examination
No

0.94 (0.93 to 0.96)

Yes 0.97 (0.77 to 1.23)
Teaching hospital

Yes 0.83 (0.67 to 1.02)
Registry region

West Ref

Midwest 1.26 (0.92 to 1.72)

East 1.10 (0.83 to 1.46)

South 1.19 (0.93 to 1.52)
Household income

Below mean Ref

Above mean 1.19 (0.97 to 1.46)
Stage, ref: localized

Regional 1.82 (1.31 to 2.53)
Grade, ref: low/intermediate

High 2.07 (1.64 to 2.62)
Tumor size

<2cm Ref

=2to<bcm 1.83 (1.46 to 2.30)

=5cm 3.15 (2.06 to 4.80)

Unknown size 2.20 (1.16 to 4.17)
ER status

Negative Ref

Positive 0.62 (0.45 to 0.86)

Unknown 7.19 (2.06 to 25.1)
PR status

Negative Ref

Positive 0.77 (0.57 to 1.02)

Unknown 0.10 (0.03 to 0.34)
Sentinel lymph node biopsy

Yes 0.88 (0.69 to 1.12)

1.33 (1.03 to 1.71)

Laterality

Left 1.13 (0.93 to 1.37)
CCl

0 Ref

1 0.84 (0.66 to 1.05)

2 0.51 (0.37 to 0.71)

=3 0.39 (0.27 to 0.56)
Radiation therapy

Yes 0.97 (0.74 to 1.27)
Chemotherapy

Yes 1.01 (0.63 to 1.62)

1.02 (1.01 to 1.04)

0.79 (0.65 to 0.96)

1.30 (1.09 to 1.55)
Ref

1.01 (0.77 to 1.32)

0.89 (0.70 to 1.13)

1.35(1.10 to 1.67)

Ref
1.05 (0.88 to 1.26)

1.97 (1.55 to 2.52)
1.95 (1.45 to 2.63)
Ref
2.39 (1.97 to 2.89)
4.86 (3.61 to 6.56)
1.97 (1.16 to 3.35)
Ref
0.54 (0.41 to 0.70)
5.76 (0.23 to 145.4)
Ref
0.70 (0.54 to 0.89)
0.10 (0.01 to 2.50)
0.74 (0.60 to 0.91)
2.04 (1.66 to 2.50)
1.15 (0.97 to 1.36)
Ref
1.44 (1.18 to 1.76)
1.44 (1.08 to 1.91)
1.95 (1.45 to 2.63)
0.62 (0.49 to 0.79)

1.11 (0.77 to 1.60)

1.06 (1.06 to 1.07)

0.81 (0.73 to 0.89)

1.46 (1.34 to 1.59)
Ref

0.87 (0.76 to 1.00)

0.80 (0.71 to 0.91)

1.17 (1.05 to 1.30)

Ref
0.93 (0.85 to 1.02)

1.43 (1.24 to 1.66)
1.20 (1.09 to 1.33)
Ref
1.50 (1.36 to 1.65)
2.45 (2.04 to 2.95)
1.10 (0.81 to 1.49)
Ref
0.71 (0.62 to 0.82)
0.97 (0.41 to 2.31)
Ref
0.84 (0.75 to 0.95)
0.71 (0.30 to 1.66)
0.81 (0.73 to 0.90)
1.57 (1.42 to 1.75)
1.07 (0.98 to 1.16)
Ref
1.59 (1.44 to 1.76)
2.28 (2.00 to 2.60)
3.36 (2.94 to 3.84)
0.65 (0.58 to 0.73)

1.14 (0.91 to 1.43)

Abbreviations: ACM, all-cause mortality; BCM, breast cancer mortality; CCl, Charlson Comorbidity Index; ER, estrogen receptor; HR, hazard ratio; PR, progesterone receptor.
*Estimate of the o™ ratio for each covariate using the Fine-Gray model for subdistribution hazards. For further explanation of the GCE estimate, see Appendix.

decreased second cancer mortality (SDHR, 0.76; 95% CI, 0.65 to
0.88; P <.001) and noncancer mortality (SDHR, 0.51; 95% CI, 0.47
to 0.56; P < .001). Again, the GCE model produced a greater
difference in AUC for cancer-specific and noncancer mortality (0.64
v0.36; P <.001) than did the Cox models of all-cause mortality (0.79
v0.80; P >.05) and cancer-specific mortality (0.82 v 0.73; P <.001).

Predictive Ability of Models on the Relative Hazard for
Events of Interest (w)

With increasing GCE risk scores, we observed significant
increases in the proportion of the hazard for overall mortality
attributable to cancer (w). GCE models better stratified patients
according to their risk of dying from cancer relative to other causes.
In contrast, risk scores from the Cox models did not optimize the

1274 © 2016 by American Society of Clinical Oncology

relative event composition (Fig 2). For patients with prostate
cancer, the Akaike Information Criterion was superior (lower) for
GCE models versus the Cox models of cause-specific and all-cause
mortality (25.3 v 31.2 v 35.3). Similar findings were observed for
patients with HNC (24.1 v 26.7 v 36.6) and patients with breast
cancer (12.7 v 33.2 v 41.6). The Bayesian Information Criterion
was also superior for the GCE models in each of the three samples
we tested: prostate, 26.2 versus 32.1 versus 36.2; HNC, 25.0 versus
27.6 versus 37.5; and breast, 13.6 versus 34.1 versus 42.5.

We validated a novel approach to improve prognostication beyond
that achievable with traditional methods. Standard approaches to

JOURNAL OF CLINICAL ONCOLOGY
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Fig 2. Ratio of the cumulative hazard for cancer mortality to all-cause mortality [w(Acsps/Aacnil as a function of the normalized generalized competing event risk score
versus normalized cancer mortality risk score versus normalized all-cause mortality risk score for (A-C) prostate cancer, (D-F) head and neck cancer, and (G-1) breast cancer.
w is calculated at 10 years for prostate cancer and 5 years for head and neck and breast cancer.

risk stratification typically involve characterizing patient risk of
mortality, or event-free survival, and then tailoring treatment
according to this risk. This is not a problem when effects of
variables on specific events composing the end point are similar.
However, this condition often does not hold in oncology, because
the causes of cancer recurrence and/or mortality are generally
different than for other causes of mortality. Traditional models are
constrained, in general, because they assign a mean effect of a
variable on both events of interest and competing events. In
contrast, the GCE approach, which estimates the effects of a

WWW.jco.org

variable on specific events separately before aggregating them in a
final model, better stratifies patients according to risk of dying
from cancer relative to overall mortality. These findings indicate that
measures used to evaluate the net benefit of therapies need not, and
perhaps should not, be the same ones used for risk stratification.
The GCE approach can be generalized to other competing
risks settings; its potential is therefore broad. In the context of
clinical research, better risk stratification will improve the ability to
detect treatment benefits within subpopulations, ultimately leading
to more powerful and cost-effective clinical trials.'"®'* GCE scores
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can also be used to better inform patients and physicians about the
potential value of intensive treatment, thus leading to more per-
sonalized care. In terms of prostate cancer management, con-
troversy still remains regarding when to observe or treat,*® likely
because of poorer quality of life associated with local therapies"**
and competing mortality risk as a result of comorbidities.”’
Randomized controlled trials have shown that men with pros-
tate cancer will not see the benefits of treatment for at least a
decade.”* As a consequence, men with less comorbidity are often
not treated for high-risk prostate cancer, whereas younger men
with comorbidity are overtreated for low-risk disease.’”*" In this
setting, a widely accepted method to assess prognosis that incor-
porates patient health status is essential. >

Patients with HNC with comorbidities are also at increased
risk of competing mortality,>*****” making the decision to treat
with aggressive therapy difficult. Breast cancer studies have shown
that for proper estimation of breast cancer death, risk factors
associated with competing mortality should also be considered
when evaluating potential treatments.”***° To this end, numerous
prediction models have been used in prostate cancer,” HNC,***
and breast cancer”” research; however, such models do not directly
isolate the effect of the main outcome of interest relative to overall
mortality risk. Across oncology, it is imperative to determine how
both cancer and noncancer risk factors contribute to risk of cancer
death when risks for competing events are present. GCE models
have the potential to provide patients with better-informed sur-
vivorship information on the basis of their individual health status.

Strengths of our study were the large population-based sample
that provided detailed information about demographic and clinical
factors and causes of death.’® Although some predictors were not
available, such as treatment details, family history, smoking his-
tory,” tissue biomarkers,’® genetic information,”’** body mass
index, reproductive status, performance status, and pathologic risk
factors (eg margin status, extracapsular extension), we were still
able to demonstrate better risk stratification and model performance
using the GCE approach. Including more variables in the GCE
models would likely accentuate the difference between the approaches.
Longer follow-up data might improve model parameter selection and
estimation by increasing incidences of events. We chose to use Fine-
Gray regression models in the construction of GCE risk scores to be

consistent with prior studies.® It is also possible to generate GCE scores
on the basis of Cox regression,® but often these approaches result in
similar estimates' and would likely yield similar findings. In theory,
the GCE approach will outperform standard methods whenever there
is an appreciable incidence of competing events, sufficient variance in
the explanatory variables, and low statistical dependence between
competing events and events of interest. These conditions appeared to
hold in the samples we examined.

In summary, we found that, compared with standard
methods, GCE models better stratified patients according to their
risk of cancer mortality relative to competing causes of death. Our
study directly speaks to the necessity of developing patient-
centered risk models,”® which use patient-specific characteristics
to identify patients likely to benefit from risky or costly therapies.*"**
Additional studies investigating the value of competing event
models are needed, as their use would enhance personalized
medical decision making and improve the efficiency of clinical
trials.
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Appendix

Methods
For each cancer site, we categorized patients on the basis of risk score and calculated the ratio () of the cumulative hazard for
cancer-specific mortality (Acsys) to the cumulative hazard for all-cause mortality(Aacys) within strata:

~ Aesv Acsm
©= = ) (1]
Acsm +Acv Aacu

w ranges from zero to one, with lower values of w indicating that the hazard of cancer-specific mortality is small relative to all-
cause mortality. In this situation, intensifying cancer therapy would be expected to have less benefit on overall survival because of
the increased risk of mortality from noncancer causes. In contrast, for higher values of w, the cumulative hazard of cancer-specific
mortality dominates, and the potential benefit of intensifying treatment is maximized. Thus, » may be viewed as a measure of the
likelihood to benefit from treatment intensification within a risk group. Its derivation comes from the partitioning of an effect on
all-cause mortality () into a weighted average of the cause-specific effects (85 Eq 2), for two events™:

YN
ZAI‘

=w0Ocsm + (1 — w)eCM . (2]

Under this model, we assume proportional hazards for both the composite event and the cause-specific events, that is:

M(t; x) = Ao (t)exp(Bx) (3]

and

Ai(£5.x) = i (t)exp(Bix) [4]

for event time ¢, data vector x, and a set of K mutually exclusive event types i € {1,...,K}. Because the hazard function can be
represented as the sum of the K cause-specific hazard functions, it follows that:

At %) = D hai(E)exp(Bix) - B

We define:
wi(t) = Ai(t) /A1) (6]

that is, w;(#) is the ratio of the cause-specific hazard for event type i to the hazard for all events, hence:

A(E5)/ho(1) = D o0i(t)exp(By) 7]

where w;(t) represents the value of w,(¢) under baseline conditions. We may consider two event types: a (or composite set of)
primary event(s) of interest, and a (or composite set of) competing event(s) (eg, cancer mortality and competing mortality). In this
case, the proportional hazards assumptions imply that the cause-specific hazards must be proportional to each other, so w,(#) is
invariant to t. Then Equation 7 reduces to:

Mt ) [ho(t) = worexp(Byx) + (1~ wor)exp(Byx) - 3]
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If we let wy; = w represent the value for cancer-specific mortality, integrating Equation 8 with respect to ¢ gives us Equation 2.
Continuing with the special case of K = 2, we have the following relationship:

wi(x)/@oi = wi(tx) /woi(t) = (Mi(t; x) /At %))/ (Roi (1) /Ao(2))
= (M5 ) /oi(1)) /(M%) /Mo (1)) = exp(Bix)exp(Bx) = exp((B; — B)x) - (9]

Thus, the linear predictor (8, — B)x quantifies the log(w;(x)/wy;), or the log of the w ratio.
Now for the special case K = 2, we define:

ot = 7\,1(1’)/7\.2(1?) . [10]
Then these relationships follow:

o=0"/1+o0") [11]
and

o =w/(l-w) . [12]

By analogy, exp[(B; — B2)x] quantifies the w™ ratio. Using similar arguments, one can extend this for subdistribution hazard
ratios (SDHRs) using estimates from the Fine-Gray model, so the quantity estimated in this experiment can be thought of as the "
ratio for SDHRs. Appendix Table A1 illustrates the differences in estimates using various generalized competing event models in the
head and neck cancer (HNC) training sample.

Results

Sample Characteristics. Most patients with prostate cancer were white, married, from the Western United States, had lower
median household income (HHI), Charlson Comorbidity Index (CCI) of zero, T1c stage, mean prostate-specific antigen of 10.3,
and lower-grade disease. The majority of patients were treated with radiotherapy (RT) alone (Appendix Table A2). A total of 41,923
patients were alive at last follow-up. Median follow-up times were 57 months for surviving patients and 56 months overall (range, 1
to 131 months). The median times to death from prostate cancer, noncancer causes, and second cancers were 47, 51, and
48 months, respectively. A total of 1,172 patients died of prostate cancer (228 in training cohort, 944 in validation cohort), 6,275
died of noncancer causes (1,304 in training cohort, 4,971 in validation cohort), and 2,343 died of second cancers (522 in training
cohort, 1,821 in validation cohort), respectively.

Most patients with HNC were white, male, and married, and had lower HHI, CCI of zero, locoregionally advanced stage, and
low- to intermediate-grade disease. Larynx and oral cavity were the most common subsites (Appendix Table A3). A total of 3,355
patients were alive at last follow-up. Median follow-up times were 56 months for surviving patients and 31 months overall (range, 0
to 179 months). The median times to death from HNC, noncancer causes, and second cancers were 13, 22, and 33 months,
respectively. A total of 2,378 patients died of HNC (1,429 in training cohort, 949 in validation cohort), 2,274 died of noncancer
causes (1,381 in training cohort, 893 in validation cohort), and 1,670 died of second cancers (987 in training cohort, 683 in
validation cohort), respectively.

Most patients with breast cancer were white, unmarried, had lower HHI, CCI of zero, localized stage, and low- to intermediate-
grade disease, tumor size < 2 c¢m, estrogen receptor and/or progesterone receptor—positive status, treated with mastectomy and
lymph node examination, from the Western United States (Appendix Table A4). A total of 19,237 patients were alive at last follow-
up. Median follow-up times were 47 months for surviving patients and 43 months overall (range, 0 to 84 months). The median
times to death from breast cancer, noncancer causes, and second cancers were 25, 29, and 30 months, respectively. A total of 905
patients died of breast cancer (568 in training cohort, 337 in validation cohort), 2,220 died of noncancer causes (1,327 in training
cohort, 893 in validation cohort), and 567 died of second cancers (333 in training cohort, 234 in validation cohort), respectively.

Predictive Ability of Cox Proportional Hazards Regression Models for Cause-Specific Events. When the Cox model of all-cause
mortality was validated on patients with prostate cancer, an increasing risk score was associated with increased cancer-specific
mortality (SDHR, 3.00; 95% CI, 2.43 to 3.70; P <.001), second cancer mortality (SDHR, 1.47; 95% CI, 1.25 to 1.74; P <.001), and
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noncancer mortality (SDHR, 3.07; 95% CI, 2.77 to 3.41; P <.001). With the Cox model of cancer-specific mortality, an increasing
risk score was associated with increased cancer-specific mortality (SDHR, 2.62; 95% ClI, 2.25 to 3.04; P <.001), second cancer
mortality (SDHR, 1.18; 95% CI, 1.06 to 1.31; P <.001), and noncancer mortality (SDHR 1.54; 95% CI, 1.44 to 1.65; P <.001).

When the Cox model of all-cause mortality was validated in patients with HNC, an increasing risk score was associated with
increased cancer-specific mortality (SDHR, 2.12; 95% CI, 1.91 to 2.34; P <.001), second cancer mortality (SDHR, 1.38; 95% CI,
1.23 to 1.56; P <.001), and noncancer mortality (SDHR, 1.46; 95% CI, 1.32 to 1.62; P <.001). With the Cox model of cancer-
specific mortality, an increasing risk score was associated with increased cancer-specific mortality (SDHR, 2.11; 95% CI, 1.93 to
2.31; P <.001), second cancer mortality (SDHR, 1.37; 95% CI, 1.24 to 1.52; P <.001), and noncancer mortality (SDHR, 1.13; 95%
CI, 1.03 to 1.23; P = .19).

When the Cox model of all-cause mortality was validated in patients with breast cancer, an increasing risk score was associated
with increased cancer-specific mortality (SDHR, 2.19; 95% CI, 2.00 to 2.40; P <.001), second cancer mortality (SDHR, 1.60; 95%
CI, 1.45 to 1.77; P <.001), and noncancer mortality (SDHR, 2.72; 95% CI, 2.55 to 2.89; P <.001). With the Cox model of cancer-
specific mortality, an increasing risk score was associated with increased cancer-specific mortality (SDHR, 2.44; 95% CI, 2.24 to
2.65; P <.001), second cancer mortality (SDHR, 1.36; 95% CI, 1.24 to 1.50; P <.001), and noncancer mortality (SDHR, 1.83; 95%
CI, 1.74 to 1.92; P <.001).
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Table A1. Alternative Multivariable GCE Regression Results for Head and Neck Cancer Training Cohort

Cause-Specific Hazards
(Cox Model), » Ratio (95% Cl)

Cause-Specific Hazards
(Cox Model), o™ Ratio (95% ClI)

SDHRs (Fine-Gray Model),

Characteristic w Ratio (95%Cl)

Age at diagnosis, per year
Sex, ref: male

0.99 (0.98 to 1.00)

0.99 (0.98 to 1.00)

0.98 (0.97 to 0.99)

Female 1.20 (1.10 to 1.32) 1.35(1.17 to 1.57) 1.26 (1.09 to 1.44)
Married, ref: no
Yes 1.02 (0.94 to 1.12) 1.03 (0.90 to 1.19) 1.10 (0.97 to 1.26)

Household income, ref: higher
Lower
Stage, ref: localized

0.97 (0.89 to 1.06)

0.96 (0.83 to 1.10)

0.94 (0.82 to 1.07)

Regional 1.39 (1.27 to 1.55) 1.66 (1.46 to 1.93) 1.21 (1.05 to 1.39)
Anatomic subsite, ref: oropharynx

Hypopharynx 1.10 (0.95 to 1.26) 1.19 (0.92 to 1.52) 1.02 (0.82 to 1.26)

Nasopharynx 1.34 (1.07 to 1.60) 1.77 (1.12 t0 2.64) 1.29 (0.87 to 1.90)

Oral cavity 1.09 (0.98 to 1.21) 1.16 (0.97 to 1.38) 0.91 (0.78 to 1.07)
CCl, ref: 0

1 0.87 (0.79 to 0.96) 0.81 (0.69 to 0.94) 0.81 (0.700.94)

2 0.83 (0.73 to 0.94) 0.74 (0.60 to 0.91) 0.68 (0.56 to 0.83)

3 0.76 (0.61 to 0.93) 0.65 (0.47 to 0.89) 0.56 (0.41 to 0.76)

=4 0.80 (0.63 to 0.98) 0.70 (0.49 to 0.98) 0.56 (0.41 to 0.76)
Postoperative RT, ref: no

Yes 0.84 (0.77 t0 0.91) 0.76 (0.66 to 0.86) 0.92 (0.81 to 1.05)

NOTE. The data column on the left shows the estimate of the w ratio for each covariate using the Cox model for cause-specific hazards. The middle data column shows
the estimate of the w* ratio for each covariate using the Cox model for cause-specific hazards. The data column on the right shows the estimate of the w ratio for each

covariate using the Fine-Gray model for subdistribution hazards
Abbreviations: CCl, Charlson comorbidity index; GCE, generalized competing event; ref, reference; RT, radiation therapy; SDHR, subdistribution hazard ratio.

Table A2. Prostate Cancer Sample Characteristics

Characteristic

With PSA Data

Without PSA Data

No.

Age at diagnosis, mean (SD), years
Married, No. (%)

Household income*, No. (%)

32,904
74 (5)
24,379 (74.1)

18,809
74 (5)
13,863 (73.7)

Higher 13,207 (40.1) 7,481 (39.8)
Lower 19,697 (59.9) 11,328 (60.2)
Race, No. (%)
White 27,159 (82.5) 16,061 (85.4)
Black 3,606 (10.7) 1,807 (9.6)
Other 2,239 (6.8) 941 (5.0)
Registry region, No. (%)
West 12,778 (38.8) 5,928 (31.5)
East 8,112 (24.7) 5,500 (29.2)
Midwest 3,813 (11.6) 2,566 (13.6)
South 8,201 (24.9) 4,815 (25.6)
Stage, No. (%)
T1 19,863 (60.4) 966 (5.1)
T2 12,131 (36.9) 1,024 (5.4)
T3a 299 (0.9) 3 (0)
T3b 264 (0.8) 7 (0)
T3NOS 347 (1.0) 16 (0)
Grade, No. (%)
High 18,071 (54.9) 5,000 (26.6)
Low/intermediate 14,833 (45.1) 13,809 (73.4)
Charlson Comorbidity Index, No. (%)
0 22,005 (66.9) 13,375 (71.1)
1 7,099 (21.6) 3,684 (19.6)
2 2,315 (7.0) 1,151 (6.1)
=3 1,485 (4.5) 599 (3.2)
PSA, mean (SD), ng/mL 10.3 (12.5) NA
Type of RT, No. (%)
EBRT only 20,427 (62.1) 10,752 (57.2)
Brachytherapy 7,908 (24.0) 4,692 (24.9)
EBRT + brachytherapy 4,569 (13.9) 3,365 (17.9)

Abbreviations: EBRT, external beam radiation therapy; NA, not applicable; NOS, not otherwise specified; PSA, prostate-specific antigen.

*Lower household income defined as below the mean median household income of $47,290 annual salary.
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Table A3. Head and Neck Cancer Sample Characteristics

Table A4. Breast Cancer Sample Characteristics

Characteristic Value Characteristic Value

No. 9,677 No. 22,929

Age at diagnosis, mean (SD), years 75 (6) Age at diagnosis, mean (SD), years 77 (7)

Sex, No. (%) Married, No. (%) 9,622 (42.0)
Female 2,808 (29.0) Household income,* No. (%)

Race, No. (%) Higher 11,481 (50.1)
White 7,973 (82.4) Lower 11,448 (49.9)
Black 866 (8.9) Race, No. (%)

Other 838 (8.7) White 20,291 (88.5)
Married, No. (%) 5,345 (55.2) Black 1,478 (6.4)
Household income,* No. (%) Other 1,160 (5.1)

Higher 3,738 (38.6) Registry region, No. (%)

Lower 5,939 (61.4) West 9,410 (41.0)
Grade, No. (%) East 4,371 (19.1)

High 2,458 (25.4) Midwest 3,029 (13.2)

Low/intermediate 5522 (57.1) South 6,119 (26.7)

Unknown 1,697 (17.5) Teaching hospital, No. (%) 7,392 (32.2)
Stage, No. (%) Stage, No. (%)

Localized 4,173 (43.1) Localized 21,953 (95.7)

Regional 5,504 (56.9) Regional 976 (4.3)
Anatomic subsite, No. (%) Grade, No. (%)

Oropharynx 1,087 (11.2) High 5,256 (22.9)

Larynx 4,199 (43.4) Low/intermediate 17,673 (77.1)

Hypopharynx 701 (7.2) Charlson Comorbidity Index, No. (%)

Nasopharynx 204 (2.1) 0 15,594 (68.0)

Oral cavity 3,486 (36.0) 1 4,776 (20.8)
Charlson Comorbidity Index, No. (%) 2 1,483 (6.5)

0 5,098 (52.7) =3 1,076 (4.7)

1 2,656 (27.4) Tumor size, No. (%)

2 1,063 (11.0) <2cm 16,756 (73.1)

3 475 (4.9) = 2 to < bcm 5,045 (22.0)

=4 385 (4.0) =5cm 627 (2.7)
Postoperative RT, No. (%) 3,610 (40.5) Unknown size 501 (2.2)
Type of RT, No. (%) ER status, No. (%)

IMRT 2,311 (23.9) Positive 17,990 (78.5)

Conventional EBRT 6,609 (68.3) Negative 3,154 (13.8)

Unknown 757 (7.8) Unknown 1,747 (7.6)
Chemotherapy, No. (%) PR status, No. (%)

Yes 2,843 (29.4) Positive 15,229 (66.4)

No 6,077 (62.8) Negative 5,708 (24.9)

Unknown 757 (7.8) Unknown 1,805 (7.8)

— — - ) Sentinel lymph node biopsy, No. (%) 11,982 (52.2)

Abbrev@hpns: EBRT, external beam radiation therapy; IMRT, intensity modu- Lymph node examination, No. (%)

lated radiation therapy. _ _ No 4,702 (20.5)
*Lower household income defined as below the mean median household !
income of $47,290 annual salary. Yes. 18,227 (79.5)
Left sided, No. (%) 11,704 (51.0)
RT, No. (%)
No RT 14,424 (62.9)
Conventional EBRT 7,807 (34.0)
Hypofractionated EBRT 698 (3.0)
Mastectomy = chemotherapy and/or RT, No. (%)
+ Chemotherapy and RT 171 (0.7)
+ RT only 275 (1.2)
+ Chemotherapy only 19 (0.1)
No chemotherapy or RT 7,248 (31.6)
Lumpectomy * chemotherapy and/or RT, No. (%)
+ Chemotherapy and RT 1,084 (4.7)
+ RT only 6,975 (30.5)
+ Chemotherapy only 141 (0.6)
No chemotherapy or RT 7,016 (30.6)

WWW.jco.org

Abbreviations: EBRT, external beam radiation therapy; ER/PR, estrogen
receptor/progesterone receptor.

*Lower household income defined as below the mean median household
income of $47,290 annual salary.
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