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Abstract

Novel x-ray medical imaging sensors, such as photon counting detectors (PCDs) and large area 

CCD and CMOS cameras can involve irregular and/or sparse sampling of the detector plane. 

Application of such detectors to CT involves undersampling that is markedly different from the 

commonly considered case of sparse angular sampling. This work investigates volumetric 

sampling in CT systems incorporating sparsely sampled detectors with axial and helical scan 

orbits and evaluates performance of model-based image reconstruction (MBIR) with spatially 

varying regularization in mitigating artifacts due to sparse detector sampling.

Volumetric metrics of sampling density and uniformity were introduced. Penalized-likelihood 

MBIR with a spatially varying penalty that homogenized resolution by accounting for variations in 

local sampling density (i.e. detector gaps) was evaluated. The proposed methodology was tested in 

simulations and on an imaging bench based on a Si-strip PCD (total area 5 cm × 25 cm) consisting 

of an arrangement of line sensors separated by gaps of up to 2.5 mm. The bench was equipped 

with translation/rotation stages allowing a variety of scanning trajectories, ranging from a simple 

axial acquisition to helical scans with variable pitch. Statistical (spherical clutter) and 

anthropomorphic (hand) phantoms were considered. Image quality was compared to that obtained 

with a conventional uniform penalty in terms of structural similarity index (SSIM), image 

uniformity, spatial resolution, contrast, and noise.

Scan trajectories with intermediate helical width (~10 mm longitudinal distance per 360° rotation) 

demonstrated optimal tradeoff between the average sampling density and the homogeneity of 

sampling throughout the volume. For a scan trajectory with 10.8 mm helical width, the spatially 

varying penalty resulted in significant visual reduction of sampling artifacts, confirmed by a 10% 

reduction in minimum SSIM (from 0.88 to 0.8) and a 40% reduction in the dispersion of SSIM in 

the volume compared to the constant penalty (both penalties applied at optimal regularization 

strength). Images of the spherical clutter and wrist phantoms confirmed the advantages of the 

spatially varying penalty, showing a 25% improvement in image uniformity and 1.8 × higher CNR 

(at matched spatial resolution) compared to the constant penalty.
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The studies elucidate the relationship between sampling in the detector plane, acquisition orbit, 

sampling of the reconstructed volume, and the resulting image quality. They also demonstrate the 

benefit of spatially varying regularization in MBIR for scenarios with irregular sampling patterns. 

Such findings are important and integral to the incorporation of a sparsely sampled Si-strip PCD in 

CT imaging.
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1. Introduction

CT techniques involving acquisition of sparsely sampled projection data have been gaining 

renewed interest, owing largely to the development of novel reconstruction methodologies. 

Typically, few-view or reduced angular coverage acquisitions are considered, either as a 

dose reduction technique (Bian et al 2010, Wang et al 2014), or to increase temporal 

resolution in dynamic (Chen et al 2009a, Tang et al 2010), cardiac (Nielsen et al 2005, Song 

et al 2007), and respiratory-gated imaging (Abascal et al 2015).

Another form of sparsity arises when the data in each of the projection views are collected 

with low sampling density, due e.g. to the presence of gaps in the detector matrix. A number 

of novel detector designs features such gaps, often because of manufacturing constraints that 

require tiling a number of discrete, individual sensors (each with its own readout electronics) 

to achieve field of view (FOV) consistent with clinical requirements. For example, CCD and 

CMOS detectors are being translated from preclinical to clinical cone-beam CT (CBCT) 

systems, promising faster image acquisition and higher spatial resolution than conventional 

flat-panel detectors (FPDs) in applications such as breast imaging (Shen et al 2013, Gazi and 

Boone 2014) or multiresolution imaging (Chen et al 2009b, Jain et al 2015). Manufacturing 

of large area CCD and CMOS sensors is limited by the size of crystalline Si wafers and thus 

modular detectors with gaps in the junctions between individual sensors are used (Rong et al 
2002, Farrier et al 2009, Konstantinidis et al 2012).

This form of sparsity is not limited to the case of gaps in the detector matrix and could arise 

in a variety of other scenarios in x-ray imaging such as scatter correction with stationary 

(Niu and Zhu 2011) or moving blockers (Wang et al 2010) as well as dose reduction 

techniques that block part of the beam to spare dose to radiation sensitive areas (Cho et al 
2012). Furthermore, similar sampling patterns arise in other medical imaging scenarios such 

as high-resolution PET with gaps between detector elements (De Jong et al 2003), multi-

pinhole SPECT imaging (Peterson et al 2009), three-dimensional (3D) photoacoustic 

imaging with sparse arrays of acoustic detectors (Ephrat et al 2008), diffuse optical 

tomography (Süzen et al 2010), MRI with sparse k-space sampling (Lustig et al 2007), and 

even in other imaging applications where sparse or incomplete data are used to estimate 

complete datasets, as in satellite imaging (Zhang et al 2007) or image in-painting for video 

applications (Bertalmio et al 2001).
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Photon counting detectors (PCDs) are another important example of emerging CT detector 

technology that may necessitate unconventional sampling patterns in the detector plane. 

They offer potential benefits in image quality and dose, arising from reduced electronics 

noise, capability for energy discrimination, and better use of low-energy photons (optimal 

energy weighting) compared to energy-integrating detectors (Tapiovaara and Wagner 1985, 

Tanguay et al 2013, Xu et al 2014). A variety of PCD-based x-ray systems have been 

proposed for applications such as mammography (Thunberg et al 2004, Fredenberg et al 
2010a, Cole et al 2012), radiography (Francke et al 2001, Weigel et al 2014), tomography 

(Maidment et al 2005, Schmitzberger et al 2011, Alivov et al 2014), and energy-resolved 

imaging (Wang et al 2011, Alessio and MacDonald 2013, Silkwood et al 2013). A 

comprehensive review of current implementations, potential benefits, and clinical and 

preclinical applications of PCDs can be found in (Taguchi and Iwanczyk 2013).

Current implementations of PCDs include sensors based on CdTe or CdZnTe crystals 

(Takahashi and Watanabe 2001, Schlomka et al 2008, Iwanczyk et al 2009), microchannel 

plates (Shikhaliev et al 2004), Si-strip (Beuville et al 1998, Yoshida and Ohsugi 2005), as 

well as HgI2 and GaAs (Schieber et al 2006, d'Aillon et al 2012). Among these technologies, 

Si-strip detectors offer fast response that accommodates photon fluxes appropriate for x-ray 

imaging without signal degradation from pileup (Bornefalk and Danielsson 2010). Si-strip 

PCDs have entered clinical use in scanning-slot mammography (Fredenberg et al 2010b), 

where an edge-on configuration is used to compensate for the relatively low stopping power 

of Si at x-ray energies. To accommodate the readout electronics, a sparse arrangement of 

linear sensors is used, causing gaps in coverage of the detector plane that are significantly 

larger than those present in tiled CMOS/CCD detectors (Fredenberg et al 2009).

Application of analytical reconstruction methods to sparsely sampled CT data results in 

noticeable degradation of image quality regardless of the exact form of the sparsity, with 

streak artifacts in cases of insufficient angular sampling (Crawford and Kak 1979), and ring 

artifacts in the case of detection gaps (Zbijewski et al 2007). Possible solutions to mitigate 

the effects of sparse sampling include: (i) estimation of the missing samples (i.e. angular 

views or detector pixels) using spatial interpolation (Galigekere et al 1999, La Riviere and 

Pan 1999, Bertram et al 2009, Nelms et al 2009), (ii) Fourier-based data filling methods 

(Van Velden et al 2008), and (iii) in-painting techniques (Li et al 2012), followed by 

analytical image reconstruction. The performance of such approaches is dependent on the 

acquisition trajectory and degrades with increasing sparsity. Application of sinogram 

consistency conditions was proposed in (Chen and Leng 2005) to estimate missing data for 

moderate detector gaps (5% to 10% of total detector area). The results showed however 

residual streak artifacts in the corrected data. Furthermore, the consistency conditions were 

derived for fan-beam CT and are not directly applicable to cone-beam systems. In some 

cases, data redundancy weighting schemes such as those used in short-scan conventional CT 

configurations (Stenner et al 2008, Taguchi and Cammin 2015) could mitigate the effects of 

gaps in the projection plane, but the applicability of such approaches is likely limited to 

specific detector sampling patterns and scanning orbits (in particular, to orbits that fulfill 

data sufficiency conditions regardless of the presence of the gaps, i.e. once the totality of line 

integrals collected in a scan is considered).
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Model-based iterative reconstruction (MBIR) methods have been shown to better handle 

incomplete data and non-standard geometries than analytical reconstruction and can thus be 

advantageous in application to sparsely sampled CT acquisitions (Thibault et al 2007, 

Zbijewski et al 2007, Wang et al 2008). Reconstruction of sparsely sampled CT data benefits 

in particular from MBIR methods employing the compressed sensing theory, either in the 

form of constrained minimization of the reconstructed image total variation (TV) (Sidky and 

Pan 2008, Niu and Zhu 2012) or through edge preserving image roughness penalties based 

on modifications of the L1 norm of a sparse representation of the image (Jia et al 2011, 

Wang et al 2014), or of the difference with a high quality, fully sampled prior image (Chen 

et al 2008, Stayman et al 2013, Dang et al 2014). In a complementary effort to the design of 

penalty functions appropriate for use with sparsely sampled data, recent work (Cho and 

Fessler 2015) investigated the effect of spatially varying regularization strength. A 

previously reported spatially varying penalty design (Fessler and Rogers 1996) was 

expanded to include voxel under-sampling in CT acquisitions with limited angular span, 

yielding more homogenous resolution across the volume in penalized weighted least-squares 

(PWLS) reconstruction.

The performance of MBIR for sparsely distributed projection data depends on the sampling 

pattern. The impact of the sampling pattern on image quality in constrained TV 

minimization MBIR was evaluated in (Sidky and Pan 2008, Bian et al 2010, Abbas et al 
2013, Jørgensen et al 2013). For the case of angular undersampling, the results point to 

better image quality for evenly distributed projections compared to clustered projections 

(which locally reduce to limited angle tomography) with similar sampling density. 

Furthermore, the general compressed sensing theory (Donoho 2006) indicates that random 

distribution of projections along the circular orbit is more appropriate for reconstruction with 

edge-preserving penalties. Recent studies suggest however that this might not be the case for 

CT acquisitions along circular or helical trajectory (Jørgensen et al 2013, Jørgensen and 

Sidky 2015), with better image quality achieved using uniform distribution of the angular 

views than using random sampling.

Compared to the case of angular undersampling, a few studies have explored in detail the 

effects of sparse sampling in the projection plane (Zbijewski et al 2007, Abbas et al 2013). 

Results indicate significant degradation of image quality for large gaps at fixed positions in 

the detector in CT data acquired along a circular orbit even when using MBIR. The effects 

of penalty design and regularization strength have not yet been fully investigated in the 

context of sparse sampling in projection plane.

This work investigates the performance of MBIR with edge-preserving penalties and 

spatially varying regularization for CBCT reconstruction in systems with sparsely sampled 

detectors. A variety of acquisition trajectories is considered and metrics of volumetric 

sampling density are proposed to elucidate the relationship between the quality of 

reconstructed images and local sampling. A benchtop CT implementation based on a 

mammographic Si-strip PCD was used to test the proposed methodology. As explained 

above, due to the location of electronics and the edge-on Si-strip configuration, the PCD is 

an assembly of linear sensors separated by gaps. The pattern of the sensors is designed such 

that the gaps can be compensated in planar mammography by a linear scanning motion of 
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the source-detector assembly. The extension of this approach to CT is not straightforward, 

and the benchtop system used here involves very sparse sampling in the projection plane. 

While silicon has potential advantages over other semiconductors in PCD applications due 

to its excellent charge transport properties, the mammographic PCD in its current 

configuration is less optimal for common clinical CT applications owing both to the 

geometric configuration of the sensors and to the electronics designed for lower energy x-

rays. In the context of this work, the PCD-based benchtop setup serves as an illustration of a 

fairly extreme case of detector undersampling.

Previous work (Zbijewski et al 2013, Sisniega et al 2015) with the same benchtop PCD-

based CT system explored the interplay between volumetric sampling and image quality for 

stacked circular acquisition trajectories and conventional Penalized Likelihood (PL) MBIR 

with quadratic penalties. In this paper, the analysis is extended to helical acquisition 

trajectories. MBIR with edge preserving penalties will be evaluated to mitigate artifacts 

arising from sparse sampling. The benefits of spatially varying penalties in terms of 

providing homogenous image quality across the densely and poorly sampled regions of the 

reconstructed volume will be demonstrated.

2. Materials and methods

2.1. PCD imaging bench and experimental setup

Figure 1(A) shows the imaging bench integrating a Microdose Si-strip PCD (Philips 

Healthcare, Solna, Sweden). The PCD (figure 1(B)) consists of an array of line sensors with 

768 pixels per sensor ‘strip’ and pixels of size 0.05 mm (u direction, axial plane) × 0.5 mm 

(v direction, slice thickness). The sensors are arranged in edge-on configuration, yielding a 

3.6 mm thick Si absorption layer to compensate for the limited stopping power of Si at x-ray 

energies. The sensors are tilted about the v axis to focus on the x-ray source and about the u 
axis to avoid filtering of the x-ray beam through the edge of the silicon sensors. The 

arrangement of tilted strips and the need to accommodate electronics in the edge-on 

configuration creates large gaps in the detection area up to 2 mm in the horizontal (u) 

direction and 2.5 mm in the vertical (v) direction (figure 1(C)). The resulting overall fill 

factor is ~0.25 of the total image size of 25 cm × 5 cm. A pre-patient collimator matched 

with the sensor positions is integral to the original Microdose system to minimize dose to 

regions of the object not sampled by the detector. For simplicity in the current experiments, 

the pre-patient collimator was not used.

The PCD was originally developed for scanning multi-slit mammography. In that case, the 

detector is scanned in the v direction, yielding redundancy in the acquired data that fills 

detector gaps in the u direction with data from subsequent detector lines. Hence, a 

continuous two-dimensional (2D) image covering the full FOV without gaps can be 

acquired.

Each pixel in the detector implements two energy thresholds. Counts below the low 

threshold are treated as noise and disregarded. The high threshold separates events assigned 

to low- and high-energy bins to allow dual-energy imaging. The detector also implements 

coincidence detection by which events triggering two adjacent pixels within a time window 
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of ~20 ns (Xu et al 2014) are treated as a single count and assigned to the high-energy bin of 

the pixel that received the higher pulse (higher deposited energy). In the current study, the 

detector was operated in a photon counting mode without energy discrimination. The low 

threshold was set at ~10 keV to reject electronic noise. The high threshold was set at its 

maximum value. The high-energy bin stored only the coincidence events, which were 

disregarded in data processing and image reconstruction.

The bench also included a fixed anode, pulsed x-ray source (XRS-125-7K-P, Source-Ray, 

Ronkonkoma, NY), and a computer-controlled motion system including a rotation stage 

(B4872TS, Velmex, Bloomfield, NY) and two linear stages (XSlide and BiSlide, Velmex, 

Bloomfield, NY) controlled by stepper motor controllers (VXM-3, Velmex, Bloomfield, 

NY). The x-ray source and PCD were mounted on a rigid arm (identical to that in the 

Microdose mammography system) to provide proper source-detector alignment and 

mechanical stability. The source-to-detector distance (SDD) was 65 cm, with source-to-axis 

distance (SAD) of 50 cm, in a half-fan configuration (figure 1(A)). In addition to rotation, 

the imaging bench allowed lateral (u) and longitudinal (v) translation of the object, with a 

maximum stroke of 500 mm and 50.8 mm, respectively. The longitudinal translation and 

rotation were synchronized during acquisition to perform helical trajectories involving a 

combination of both movements. Geometric calibration of the CT system as well as dark and 

flood field calibration were carried out with the method described in (Zbijewski et al 2013).

The motion system allowed three categories of scan orbits: (i) a single circular axial scan, 

consisting of one 360° rotation with no longitudinal translation; (ii) contiguous axial scans 

comprising several circular scans separated by a longitudinal shift (of the object); and (iii) 

helical scan, combining simultaneous rotation and longitudinal translation (of the object). 

The helical width (HW) for a helical scan was defined as the longitudinal distance (mm) 

traveled by the sample over one complete rotation (360°), in distinction to the classic 

definition of pitch in multi-detector CT (equal to helical width normalized by the width of 

the collimated beam at the axis of rotation). HW was used to avoid any ambiguity that could 

arise from the fact that the width of the collimated beam does not reflect the actual coverage 

of the sparsely sampled detector.

The work reported below focused on helical scan orbits, which were found to provide better 

tradeoff between sampling effects and practical feasibility (namely scan speed) compared to 

axial scans. Analysis of image quality with stacked axial scans was shown in previous work 

(Zbijewski et al 2013, Sisniega et al 2015).

All studies were performed using an x-ray source voltage of 40 kV (with 2.0 mm Al inherent 

filtration), 5 mA tube current, 30 ms pulse duration, and detector readout at 1 frame/s. As 

reported in Xu et al (2014), such conditions are well below the count rate limit of the PCD 

(3 × 106 x-rays/pixel/s), well within the linear range of detector response free from pulse 

pileup effects, and give a zero-frequency detective quantum efficiency (DQE) of ~0.6.

2.2. Experimental studies

2.2.1. Experiment 1: simulation study—The effects of scan orbit and reconstruction 

parameters on image quality were first evaluated in simulated data using the digital phantom 
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shown in figure 2(A). The phantom consisted of a uniform 40 mm diameter cylinder with 

attenuation μbck = 0.024 mm−1 containing a random arrangement of hypodense spheres 

(μinsert = 0.019 mm−1) with radius varying from 1 to 5 mm. The height of the cylinder was 

60 mm, slightly larger than the longitudinal FOV of the system. The digital phantom 

comprised a volume of 800 × 800 × 600 voxels with 0.1 mm × 0.1 mm × 0.1 mm voxel size.

The purpose of the simulation study was to examine the relationship between acquisition 

orbits, detector sampling, and image quality. Noiseless simulated projection data were thus 

used to isolate effects associated with sampling from those arising from quantum noise. Line 

integrals of the digital phantom were computed using an in-house GPU implementation of 

the separable footprint projector (Long et al 2010, Wu and Fessler 2011). System geometry 

was set to the nominal configuration of the imaging bench described in section 2.1. The 

simulated projections included only the active pixels in the sparse Si-strip array of figure 1.

Monochromatic projections were computed as:

(1)

where Ĭ0 is the number of photons in the unattenuated monochromatic beam (set to 3000 

photons per pixel), and l is the line integral. A monochromatic beam was used in the 

simulation study to isolate the effects of sampling from artifacts caused by beam hardening. 

The energy of the beam was 45 keV, approximating the average energy of a 70 kV spectrum 

(+2 mm Al, +0.2 mm Cu) commonly used in extremities x-ray and CBCT imaging. Note 

that the experimental study of section 2.1 employed a lower energy beam (40 kV source 

voltage). While a 70 kV spectrum would be preferable in terms of emulating typical clinical 

techniques, it was found to result in severe artifacts because the PCD was calibrated for 

lower energy photons. However, the effects of beam energy and the discrepancy between the 

simulation and experimental studies are not expected to affect the conclusions of this work, 

which focuses on projection undersampling and optimization of imaging orbits.

The simulations included helical scans with two rotations (720°) over which 720 projections 

were acquired. The width of the helix was varied from 0 mm, yielding a pure circular orbit, 

to 25.2 mm, covering the entire longitudinal extent of the detector in the two rotations. For 

the circular orbit, only one rotation was performed, since no improvement in sampling is 

obtained from the second rotation along identical rays.

2.2.2. Experiment 2: benchtop imaging study—The simulation studies of section 

2.2.1 identified optimal scan trajectories which were in turn evaluated in physical 

experiments involving scans acquired using the imaging bench (figure 1(A)). Two physical 

imaging phantoms were used: a cylindrical phantom with spherical inserts for quantitative 

evaluation of image quality and an anthropomorphic hand phantom for visual assessment in 

realistic anatomy.

The first phantom, shown in figure 2(B), consisted of an acrylic cylinder (120 mm diameter, 

120 mm height) filled with gelatin. Spherical inserts were arranged in three layers within the 
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cylinder, marked as L1, L2 and L3 in figure 2(B). The top and bottom layers (L1 and L3, 

figure 2(C)) consisted of polyethylene (PE) spheres with diameters ranging from 2 to 15 

mm. Due to the manufacturing process, many of the PE inserts contained air cavities. The 

central layer (L2, figure 2(C)) presented three linear arrangements containing a high-contrast 

hyper-dense Teflon sphere, a low-contrast hyper-dense sphere made of simulated blood 

(QRM, Moehrendorf, Germany), and a low-contrast hypo-dense sphere made of simulated 

adipose (QRM, Moehrendorf, Germany). The diameter of the inserts in layers L1, L2 and L3 

were 4 mm, 6 mm, and 12 mm, respectively.

The second phantom was an anthropomorphic hand / wrist formed from a natural skeleton in 

soft-tissue equivalent plastic (Rando™, Greenwich, NY). Acquisition trajectories and 

imaging technique for both phantoms were described in section 2.2.1.

2.3. Image reconstruction

This work used penalized-likelihood (PL) reconstruction to balance data consistency (log-

likelihood, L(μ; y)) with a penalty or regularization term R(μ) that determines local image 

roughness. The reconstructed image is obtained from minimization of the objective function:

(2)

The data consistency term was given by the negative log-likelihood:

(3)

assuming a Poisson model for the detected signal:

(4)

where yi is the signal in the projection data for detector pixel i, I0i is the number of counts 

detected in the bare (unattenuated) beam in pixel i, A is the forward projection operator, and 

μ is a vector of attenuation values in the image volume. In the experimental benchtop study, 

I0i was calculated from an average of 50 flood-field frames obtained with the same x-ray 

technique as in the object scan. Formally, the forward projection operator A includes only 

contributions to the active pixels (not the gaps). In practical implementation, where A and its 

adjoint backprojection operator AT are computed on the fly using ray-tracing or a footprint 

projector, the gaps are excluded by appropriate masking of the simulated projections. The 

Poisson statistics of x-ray quanta were assumed to be the major contributor to noise in the 

projection data, so that the likelihood model in equation (3) was adequate for statistical 

image reconstruction. Modeling of other sources of non-ideality specific to PCDs (e.g. 

coincidence or charge sharing (Taguchi et al 2010, Xu et al 2014)) is beyond the scope of 

this study.
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The penalty term in equation (2) is weighted by the scalar parameter β that controls the 

global tradeoff between the data and regularization. In each experiment, β was varied 

between 0.01% and 10% of the average detector signal in the acquisition. Consequently, the 

magnitude of β depended on the object and scan trajectory, but the relative contributions of 

the data and regularization terms spanned a similar range for all experiments. The lower the 

value of β, the stronger the relative influence of the data term and weaker the action of the 

penalty. Note that the numerical values of β used here are low compared to those commonly 

encountered in other applications of iterative reconstruction in FPD CBCT (Dang et al 2014, 

Wang et al 2014) due to the different magnitudes of detector signal in PCDs compared to 

FPDs.

The regularization was designed not only to control the noise in the reconstructions, but also 

to mitigate image quality degradation due to sparse sampling caused by detector gaps. The 

roughness penalty in equation (2) had the following general form:

(5)

where j and k are voxel indices, κj is a (voxel-wise) factor that controls local regularization 

strength, N is the first order neighborhood of voxel j (six nearest neighbors in 3D), and ψ is 

a potential function.

Specific distributions of κj were previously proposed to enforce homogeneity in spatial 

resolution (or noise) in statistically reconstructed images (Fessler and Rogers 1996). This 

approach was extended in (Cho and Fessler 2015) to the case of non-uniform sampling due 

to sparse distribution of projection views and/or short-arc acquisition trajectories. We used a 

form of κ analogous to that of (Cho and Fessler 2015) to achieve homogenous spatial 

resolution in the presence of detector gaps (as opposed to gaps in angular coverage due to 

missing views, for example):

(6)

where aij are the elements of a projection operator A which only contains the Nd sampled 

(active) projection pixels (excluding the gaps), and gij are the elements of an ‘ideal’ 

hypothetical projection operator G, which represents a continuous sampled detector with no 

gaps, the same pixel pitch, and the same total area as the real detector (Ng pixels). For a 

given local neighborhood in the volume, the value of κj is lower for voxels which receive 

less contributions from projection rays due to detector gaps. Consequently, the relative 

magnitude of the penalty term is reduced for poorly sampled voxels, which prevents over-

smoothing and enforces a more homogeneous tradeoff between the data fidelity term and the 

penalty in equation (2) across the image. Note that for a completely sampled detector G = A 
and κ reduces to that of (Fessler and Rogers 1996).
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This selection of κ assumes relatively smooth variation of the sampling across the volume. 

However, non-negligible high-frequency structures were observed for some of the scan 

trajectories considered. The κ maps were therefore smoothed with a 3D Gaussian kernel 

with 10 voxels FWHM.

The penalty term included an edge-preserving Huber function:

(7)

The value of δ controls the minimum difference in voxel values for which a linear penalty is 

applied, so that for δ → 0 the regularization approximates total variation (TV), whereas 

larger values of δ yield a quadratic behavior throughout the volume, with more natural 

textures but increased blurring. The value of δ was set to 5 × 10−4 mm−1, approximately an 

order of magnitude smaller than the typical contrast in the phantoms (e.g. ~6 × 10−3 mm−1 

for PE and gelatin) and over one order of magnitude smaller than the contrast of the 

sampling artifacts (e.g. from 5 × 10−3 mm−1 to 1 × 10−2 mm−1 in the simulation study). 

Such selection of δ relative to image contrast has been shown to yield improved edge 

preservation compared to a quadratic penalty in earlier studies of intraoperative C-arm 

CBCT imaging (Wang et al 2014).

The PL objective was iteratively solved using the ordered subsets (OS) separable 

paraboloidal surrogates (SPS) algorithm (Erdogan and Fessler 1999). 100 iterations of OS-

SPS with 50 subsets were used. Forward- and back-projection were carried out using the 

same separable footprint projector as in the simulation studies of section 2.2.1. The 

reconstructed volumes were 512 × 512 × 300 voxels with 0.3 mm × 0.3 mm × 0.3 mm voxel 

size. The constant, shift-invariant penalty with κ = 1 for all voxels was compared to the 

proposed spatially varying penalty with κ given by equation (6). Calculation of κ involved 

two squared backprojections—one for the numerator and one for the denominator in 

equation (6)—both performed with a footprint backprojector and assuming a continuous 

detector. For the term in the numerator, the gaps were set to zero while the sampled pixels 

were set to their measured signal (y). For the denominator, all the pixels of the continuous 

detector were set to one to represent the ideal case of complete sampling.

2.4. Metrics of sampling quality and image reconstruction

The performance of various scan trajectories in the presence of detector gaps was evaluated 

using quantitative metrics of sampling in the reconstructed volume and by visual assessment 

of image quality. The effects of image reconstruction algorithm were investigated using the 

structural similarity index (SSIM) in the simulated data and using quantitative metrics of 

spatial resolution, uniformity, and contrast-to-noise ratio (CNR) in the real data acquired on 

the test bench.

2.4.1. Sampling—Sampling in the reconstructed volume was evaluated in terms of 

sampling density and deviation from uniform sampling. Sampling density for a voxel j was 

defined as
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(8)

where Nview is the number of projection views contributing to the backprojection into the 

voxel, Nproj is the total number of projection views in the scan, and j is an index running 

across voxels.

The value of ρsamp was computed for the geometry of the imaging bench, as specified in 

section 2.1, and in a volume of 512 × 512 × 120 voxels with 0.3 mm × 0.3 mm × 0.3 mm 

voxel size. The longitudinal extent of this test volume was less than the coverage of the 

detector in a single circular scan, ensuring a fair comparison for all acquisition trajectories 

independent of their longitudinal range.

The distribution of projection angles (i.e. whether the projection views are uniformly spaced 

or ‘clustered’) was quantified in terms of the difference from uniform sampling. Considering 

(i) the angular increment between neighboring projections contributing to a voxel in a given 

orbit and (ii) the increment that would have been present in a 360° orbit with uniform 

distribution of projections and the same total number of views, the average absolute 

difference from uniform sampling is:

(9)

where Δi is the angular gap (degrees) between the ith view and the previous view 

contributing to the signal in the voxel. The angular gap for the first view ΔNview) was 

computed as the difference between the angular position of the last view (i = Nview) and the 

first view (i = 1) contributing to the voxel. Note that δΘ is normalized to the angular 

increment in a uniformly sampled scan. Due to large storage requirements for the calculation 

of δΘ in all voxels of the volume, δΘ was computed for a subset of 106 voxels randomly 

selected throughout the total volume.

2.4.2. Image similarity—The severity of artifacts in reconstructions of the simulated data 

was quantified in terms of structural similarity (SSIM) relative to the ‘ground truth’ digital 

phantom, as defined in (Wang et al 2004). For a small region of interest (ROI) in the volume, 

the SSIM is:

(10)

where  is the mean attenuation value, σj is the variance of the attenuation values (both 

measured in a local ROI) for image j. The index ref denotes the reference digital phantom, 
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img denotes the reconstructed image being evaluated, and σref-img is the covariance between 

the two images. The scalars c1 and c2 guarantee stability when the mean or variance are 

close to zero (set to c1 = (0.01 × μbck)2 and c2 = (0.03 × μbck)2, where μbck is the background 

attenuation value in the reference volume (section 2.2.1)). SSIM was computed for spherical 

ROIs of radius equal to two voxels centered at all non-zero voxels throughout the reference 

volume.

2.4.3. Image quality: spatial resolution, uniformity, and contrast-to-noise ratio
—The effects of penalty design and regularization strength were evaluated in images of the 

gelatin phantom using the optimal acquisition trajectory identified in the simulation studies. 

Spatial resolution was measured in terms of the edge spread function (ESF) following the 

method described in (Wang et al 2014). Separate measurements were obtained for two 

inserts—one low-contrast hyperdense PE insert in the L1 layer of figure 2(C) and one low-

contrast hypodense insert (12 mm diameter adipose) in the L3 layer. This approach 

recognizes the resolution non-uniformity due to non-uniform sampling and to the 

dependence on local image contrast associated with MBIR.

Oversampled profiles were obtained for each spherical insert by plotting the voxel values 

within a 45° cone as a function of their distance to the center of the sphere, as illustrated in 

figure 2(D). The ESF was obtained by fitting the oversampled edge profiles to an error 

function (erf):

(11)

where a, c, and r are fitting parameters related to average attenuation, contrast, and edge 

location, respectively, and ε is the width of the erf function given by:

(12)

The width of the erf function, ε, provided the spatial resolution metric, averaged across 8 

conical regions on each sphere. Prior to ESF analysis, air bubbles present in some of the 

spherical inserts were segmented and filled using a grayscale morphological filling 

operation.

Image non-uniformity was quantified using a large ROI (~65 cm2) selected in a uniform area 

of the gelatin background. We used the standard deviation of voxel values in this ROI as a 

metric of non-uniformity, denoted Δ. Due to the large size of the ROI, the metric Δ captures 

not only the noise, but also the non-uniformity due to artifacts (as opposed to using a small 

ROI, where standard deviation typically only captures local noise).

CNR was measured for a low-contrast insert (12 mm diameter adipose) in the central slice 

(see figure 2(C)). Two 4 mm diameter circular ROIs were used, one at the center of the 
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insert  and one in the background , 10 mm from the center of the 

insert.

3. Results

3.1. CT imaging performance with a sparsely sampled detector: simulation study

3.1.1. Impact of scan trajectory on volume sampling—Examination of the line 

sensor pattern of the Si-strip PCD (figure 1) indicates that in the limiting case of a helical 

orbit with HW = 0 (equivalent to a single axial scan), the sampling of the volume will 

consist of disjoint rings of relatively dense sampling, interspersed by regions from which no 

line integrals are collected due to detector gaps. This is apparent in the axial distributions of 

the sampling density ρsamp in figure 3(A) and, even more conspicuously, in the coronal 

distributions in figure 3(B). The images in figure 3 were obtained with the spatially constant 

penalty (κ = 1) and low regularization strength (β = 9, equal to 0.01% of the average 

detector signal) to emphasize the effects of sampling. The areas of low ρsamp are associated 

with shading and streak artifacts and reduced spatial resolution due to increased relative 

contribution of the penalty. By translating the sample along the longitudinal axis in a helical 

scan, the scan trajectory fills in the gaps using data from line sensors that were initially 

below the axial plane of interest. For low HW (i.e. a short longitudinal distance covered in 

one rotation), this yields improved median ρsamp and reduced variability in ρsamp throughout 

the volume, as illustrated by the ρsamp distributions in figure 3. This results in a marked 

reduction in the severity and spatial extent of the undersampling artifacts in the 

reconstructed images. However, because the angular span of the helical scans was held 

constant at 720°, the increase in HW leads to increased longitudinal travel between 

consecutive projection views. As a result, although the sampling becomes more homogenous 

with increasing HW, the angular range of projection views contributing to a voxel decreases 

above certain HW. In particular, for the voxels at the center of the field of view in figure 3, 

the axial scan produces higher ρsamp than any of the helical orbits. This tradeoff between 

more homogenous sampling and reduced angular separation of views locally contributing to 

the image results in initial reduction of undersampling artifacts at low HW (up to ~10.8 

mm), followed by the increased distortion of the spherical inserts at large HW.

The sampling density ρsamp measured as a function of HW is shown in figure 4(A). In 

agreement with the analysis above, the median number of views contributing to a voxel 

initially increases with increasing HW. This is accompanied by a more uniform distribution 

of projection angles contributing to a voxel compared to a circular scan, as indicated by the 

initial decrease in δΘ in figure 4(B) compared to circular scan (HW = 0). Minimum median 

δΘ was achieved for HW of 2.5 mm, followed by an increase in median δΘ for larger values 

of HW. For HW above 10.8 mm, the median δΘ exceeded the value for a circular scan due 

to the larger angular increment between neighboring views, which also results in a decrease 

in median ρsamp.

The interquartile range of ρsamp and δΘ decreases with increasing HW, indicating a more 

homogeneous sampling of the volume using helical trajectories. The upper and lower bounds 

of the whisker plots show the maximum and minimum sampling, with scan trajectories of 
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HW ≥ 10.8 mm achieving minimum ρsamp larger than 0.05 (i.e. every voxel receives 

contributions from at least 5% of the projection views in the scan, equal to ~40 views). The 

increase in minimum ρsamp for helical widths larger than 10.8 mm is offset by a decrease in 

median ρsamp (and eventually is worse than for an axial scan of HW = 0).

Visual evaluation from figure 3 combined with the analysis of trends in ρsamp and δΘ in 

figure 4 suggests a value of HW = 10.8 mm as a reasonable choice balancing the average 

sampling density, angular coverage, and homogeneous sampling properties across the 

volume. A helical width of 10.8 mm was therefore used in the subsequent experiments 

reported below.

3.1.2. Effects of spatially varying regularization—The influence of varying the 

regularization strength (parameter β in equation (2)) is shown in figure 5(A) for the case of a 

spatially constant (shift-invariant) penalty. Figure 5(B) shows the effect of the spatially 

varying penalty (given by equation (6)), using three values of β ranging from light to strong 

regularization. The local SSIM is overlaid on the reconstructed images (green-scale). 

Extreme values of β result in poor image similarity. For low β, the action of the penalty is 

not sufficient to significantly reduce artifacts due to projection gaps and SSIM is degraded 

primarily in regions corresponding to undersampling artifacts. Excessively high β, on the 

other hand, introduces over-smoothing, causing reduced SSIM at the edges of the spherical 

inserts.

The SSIM measured as a function of β is shown in figure 5(C) for the spatially constant 

penalty and in figure 5(D) for the spatially varying penalty. For the spatially constant 

penalty, a maximum value of median SSIM = 0.96 is achieved at β = 30. For the spatially 

varying penalty, a maximum median value of SSIM = 0.98 was achieved at β = 60. In both 

cases, these optimal values of β correspond to the narrowest spread in SSIM throughout the 

image, with a more homogenous distribution of SSIM observed for the spatially varying 

penalty than for the constant penalty (minimum SSIM = 0.88 at β = 60 for the spatially 

varying case compared to 0.80 for the spatially constant penalty at β = 30).

Images for the optimal values of β are shown in the middle columns of figures 5(A) and (B). 

The spatially varying penalty achieved better fidelity of reconstruction than the spatially 

constant penalty, yielding a sharper image with reduced artifact. The improved homogeneity 

of SSIM achieved with the spatially varying penalty is evident across all β values—noting, 

for example, the prevalence of low SSIM (green spots) at the center of the phantom for the 

spatially constant penalty. For this cylindrical phantom, the projection values are lowest at 

the center of the object, and the relative weight between signal and penalty thus favors the 

effect of the penalty. For the spatially varying penalty, κ is lower for the more strongly 

attenuated rays at the center, thereby reducing the effect of the penalty in this area and 

yielding a more uniform SSIM distribution.

Note that the factor κ in equation (6) is bounded between 0 and 1. On average, this results in 

reduction of the effective regularization strength for the spatially varying penalty, so that the 

maximum value of median SSIM was achieved for a larger numerical value of β than for the 

constant penalty. For the sake of fair comparison, the images shown in figure 5 correspond 
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to approximately matched values of SSIM between the two penalty types. Note that since κ 
is determined by the data term y, the optimal value of β is also object dependent.

3.2. Image quality assessment in real data

Results from the simulation studies (above) were applied to the acquisition and 

reconstruction of real data to further characterize the tradeoffs between sampling and noise, 

including factors that were not included in the simulation study. Reconstructed axial and 

coronal slices of the gelatin phantom at matched non-uniformity Δ are shown in figure 6, 

comparing the performance of the spatially constant (figures 6(A) and (B)) and spatially 

varying (figures 6(C) and (D)) penalties.

The non-uniformity metric Δ includes the effects of artifacts and quantum noise. 

Comparable Δ can therefore be obtained for images with a very different tradeoff between 

noise and artifacts. Figure 6 shows that at equal Δ, the non-uniformity for the spatially 

constant penalty is dominated by the artifacts, whereas the non-uniformity for the spatially 

varying penalty is dominated by noise. This indicates that the constant penalty is less 

effective at reducing the undersampling artifacts and requires stronger regularization to 

achieve comparable Δ compared to the spatially varying penalty. This stronger regularization 

results in increased blurring for the spatially constant penalty at matched Δ.

Another effect of the spatially varying regularization is the homogenization of the 

resolution-noise properties of the image. This can be observed in the coronal views in figure 

6, where the constant penalty shows a larger difference between the appearance of the edge 

of the phantom (sharp and noisy) and of the spheres placed at the center (slightly blurred) 

compared to the spatially varying penalty.

3.2.1. Spatial resolution—Quantitative evaluation of spatial resolution for the PE insert 

in the top layer L1 is shown in figure 7. Zoomed images of the insert indicate that the 

spatially varying penalty exhibits sharper edges at matched non-uniformity Δ than the 

constant penalty. The spatial resolution is quantified in figure 7(B), where solid lines mark ε 
and dashed lines mark standard deviation in ε (σε) measured across the eight angular cones 

on each sphere used for resolution measurement. The spatially varying penalty yielded 

improved (lower) ε than the spatially constant penalty, corresponding to narrower ESF and 

better resolution for equal levels of image uniformity.

For both types of penalty, the spatial resolution was found to exhibit anisotropy that 

increased with reduced regularization strength, as reflected by increased σε values for higher 

non-uniformity Δ. Resolution anisotropy σε was higher for the spatially varying penalty, but 

closer inspection of the σε curves reveals that this occurred at spatial resolutions that were 

beyond the range achievable by the constant penalty. For cases where ε was matched, the 

anisotropy was actually comparable between the two types of penalty, indicating that the 

local action of the penalty is similar for the spatially varying and spatially constant case. 

This finding is illustrated in the zoomed images framed by solid and dashed lines and 

representing matched spatial resolution (but different non-uniformity) for the spatially 

varying and the spatially constant penalties. For the case marked by solid frames, the value 

of ε is 0.81 mm and σε is 0.18 mm for the spatially constant penalty, compared to 0.82 mm 
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and 0.19 mm for the spatially varying penalty. For the case denoted by dashed frames, σε is 

also matched at matched spatial resolution, with ε = 0.93 mm and σε = 0.19 mm for the 

spatially constant penalty, and ε = 0.97 mm and σε = 0.2 mm for the spatially varying 

penalty. Both cases confirm that for comparable ε, the value of σε is similar for both 

penalties.

Note that the slightly distorted circular shapes observed in these images are likely due to the 

penalty function based on voxel differences within a 1-neighborhood (i.e. ignoring diagonal 

neighbors) as discussed in (Wang et al 2014).

3.2.2. Contrast-to-noise ratio—The measured CNR is plotted as a function of spatial 

resolution ε for the 12 mm adipose insert in figure 8. The value of ε was measured in the 

same adipose insert using the method described in section 2.4.3.

Zoomed images in figure 8(A) indicate improved CNR at matched resolution for the 

spatially varying penalty. The plot in figure 8(B) confirms this trend, showing moderately 

improved CNR at matched ε for the spatially varying penalty (black curve) compared to the 

constant penalty (gray curve). Even after taking into account the dispersion of the resolution 

measurements (σε) represented by the horizontal error bars, the benefit in CNR is 

maintained, especially for values of ε larger than ~1.1 mm. The slightly improved CNR 

performance of the spatially varying penalty at equal resolution, despite the similar local 

resolution properties observed in section 3.2.1, is associated with the subtle undersampling 

artifacts that increase standard deviation inside the ROIs used for CNR measurement. The 

solid and dashed frames in figure 8 indicate two cases with approx. matched CNR (8 and 

13–14, respectively). The spatially constant penalty requires additional blurring to reduce 

the bright sampling artifact located below the insert, so that matched CNR with the image 

with spatially varying penalty (and less artifact) is achieved at higher ε.

3.3. Imaging performance in anthropomorphic phantom

Axial and coronal views of the anthropomorphic hand phantom are shown in figure 9. Data 

were acquired with HW = 10.8 mm and reconstructed using the spatially varying penalty 

with three levels of regularization strength. Figure 9(A) shows the case of no regularization 

(β = 0), included as a baseline for comparison and illustrating the inherent level of artifact 

and noise in the data. Figure 9(B) illustrates low regularization (β = 105). This relatively low 

level of regularization provided marked reduction of sampling artifacts, significantly 

improved homogeneity in soft tissue regions, and improved delineation of fine structures 

within the bone while preserving spatial resolution. Residual sampling artifacts are still 

visible, however. As shown in figure 9(C), these artifacts can be further reduced with 

stronger regularization (β = 400) at the cost of reduced spatial resolution (visible in 

particular in the inner bone).

4. Discussion and conclusions

This work investigated the sampling properties of helical trajectories with projection data 

that are sparsely sampled in the detector plane. The helical acquisition orbit showed 

significant improvement in image quality compared to an axial circular scan.
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Moderate helical widths were found to provide the best tradeoff between maximizing the 

average sampling density, achieving relatively uniform distribution of projection views, and 

maintaining homogenous sampling properties throughout the volume. The significance of 

achieving homogenous sampling has been noted in earlier studies. In (Abbas et al 2013), 

image quality degradation was found for a sparse detector involving large gaps at fixed 

positions compared to a detector with comparable average sampling density but a more 

homogenous distribution of samples achieved through a pattern of more numerous, smaller 

or moving gaps. Similarly, the observation that trajectories with more uniform distribution of 

projection views (low δΘ) are preferred over those with more clustered distribution (large 

δΘ) is in agreement with previous studies (Abbas et al 2013, Jørgensen et al 2013).

A helical width of 10.8 mm was found to yield optimal sampling for the sparse PCD 

considered in this work. This optimal HW depends however on the particular arrangement of 

sensors and gaps in the detector. For example, a pattern with a smaller vertical gap between 

the sensors would likely benefit from shorter HW. While the tradeoffs involved in orbit and 

regularization design for sparsely sampled detectors are complex, the primary goal of this 

work was to propose a methodology that is general enough to be applicable to a variety of 

detector configurations.

In addition to the effects of the acquisition orbits, this work investigated the performance of 

MBIR in mitigating undersampling artifacts, in particular with respect to the effects of 

spatially varying penalty (Cho and Fessler 2015). The spatially varying penalty takes into 

account the variations in sampling density to yield similar relative contributions of the 

penalty and data throughout the volume. Consequently, over-regularization of poorly 

sampled sub-volumes and under-regularization of densely sampled sub-volumes are avoided, 

resulting in more homogenous resolution properties of the reconstruction. This demonstrated 

improved mitigation of sampling artifacts and thus better resolution and CNR at equal image 

non-uniformity compared to spatially constant regularization. While the spatially varying 

penalty considered here presents a straightforward solution to incorporating the sparse 

sampling pattern in regularization design, future studies could investigate other forms of 

spatially varying penalty that have recently been proposed, e.g. a penalty designed to 

homogenize noise (Cho and Fessler 2015), and a penalty that uses an estimate of the local 

response function (Gang et al 2014) instead of pure sampling considerations.

Furthermore, reconstruction algorithms posed as constrained minimization of the TV of the 

reconstructed image have been shown to greatly alleviate the effects of undersampling 

(Sidky and Pan 2008, Niu and Zhu 2012, Rose et al 2015), achieving accurate results when 

the sampling is complete in the sense of the gradient-magnitude sparsity of the object. In 

contrast to those TV reconstruction techniques, the MBIR employed here performs 

unconstrained minimization of an objective function that involves a trade-off between a data 

fidelity term and an edge-preserving Huber penalty. By setting a sufficiently small value of 

the parameter δ in the Huber function, a first-order, TV-like penalty is applied across a broad 

range of image intensities. The effects of varying the value of δ were investigated. Only 

minor change in the undersampling artifacts was found when δ was decreased by two orders 

of magnitude from the value used in the experiments described above. This indicates that the 

Huber penalty employed in this study provides a good approximation of pure TV 
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regularization. Constrained TV reconstruction would likely converge to a somewhat different 

solution than the reconstructions obtained with TV-like Huber penalty. Nevertheless, the fact 

that undersampling artifacts were not completely removed with TV-regularized MBIR 

indicates that complete sampling (in the sense of gradient-magnitude sparsity) was not 

achieved for the acquisition orbits and phantoms considered in this work. The objective of 

the study was to identify combinations of acquisition orbits and spatially-varying penalties 

that mitigate undersampling artifacts for CT systems with sparse detectors, acknowledging 

that achieving complete sampling in such systems may often be impossible or impractical.

Similarly, the potential of prior image-based regularization (Chen et al 2008, Stayman et al 
2013, Dang et al 2014) to mitigate undersampling artifacts is acknowledged. However, the 

complex optimization that such a penalty would likely require is beyond the scope of this 

paper, which is concerned with a more general investigation of the fundamental aspects of 

CT imaging with sparse detectors.

The design of the sampling pattern in the PCD considered here was optimized for planar 

imaging and not CT and may thus present an extreme case of sparsity. While other detector 

designs may yield improved image quality, this study demonstrated and quantified the 

interplay between detector sampling, acquisition trajectory, and image reconstruction 

algorithm, and it identified a methodology for optimizing CT image quality in the presence 

of detector gaps. The methods and findings of this study are applicable to other detector 

sampling patterns and other forms of sparsity and could benefit the development of novel CT 

systems with non-conventional detector arrays and acquisition trajectories.
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Figure 1. 
Experimental setup consisting on an imaging bench (A) including a sparse sampling Si-strip 

photon counting detector (B). (C) shows an illustration of the sampling density of the Si-

strip detector (right half) compared to a continuous detector (left half) for a wrist phantom. 

The sampling pattern of the Si-strip detector presents large gaps in the detector area that 

would confound conventional acquisition and reconstruction methods.
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Figure 2. 
(A) Digital phantom used in the simulation study. (B) Cylindrical gelatin phantom employed 

in the experimental benchtop studies. (C) Cone-beam CT images of layers L1, L2, and L3 of 

spheres in the gelatin phantom. (L1 and L3 had equivalent structure). (D) Spatial resolution 

was characterized in terms of the ESF width (ε) determined from a fit to oversampled edge 

profiles of the PE spheres in L1 and L3, obtained from eight 45° conical sections per sphere.
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Figure 3. 
Axial (A) and coronal (B) planes of sampling density ρsamp (top row) with increasing helical 

width HW. The reconstructed images (bottom row) of simulated tomographic data showed 

direct correspondence between spatial variations in sampling and the presence of artifacts 

and/or spatially varying image quality. Labels depict median and interquartile range for 

ρsamp and δΘ.
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Figure 4. 
(A) Sampling density ρsamp and (B) deviation from uniform sampling δΘ as a function of 

helical width HW. In the box-and-whisker plots, the gray horizontal bar indicates the median 

value throughout the volume, the boxes denote the interquartile range, and the whiskers 

correspond to upper and lower bound throughout the volume.
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Figure 5. 
The effect of (A), (C) constant or (B), (D) spatially varying penalties. In (A) and (B), the 

SSIM is overlaid in green-scale, and the three columns represent reconstructions at 

approximately matched median SSIM (shown in the label at the top-left corner of the 

images). In (C) and (D) the SSIM distributions are quantified as box-and-whisker plots for 

the spatially constant and spatially varying regularization methods, respectively. Note the 

larger maximum value of median SSIM and more homogenous distribution in SSIM for the 

spatially varying penalty.
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Figure 6. 
Images of the gelatin phantom reconstructed with various levels of regularization strength. 

(A), (B) Spatially constant and (C), (D) spatially varying regularization. The non-uniformity 

Δ was measured in the ROI shown in (A). Columns correspond to images at matched Δ. The 

spatially varying penalty achieved reduction in artifacts, sharper edges, and superior noise 

and resolution homogeneity than the spatially constant penalty at matched Δ.
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Figure 7. 
Spatial resolution (ε) and image non-uniformity (Δ) for spatially constant and spatially 

varying penalties. (A) Zoomed images of one of the 8 mm PE inserts in the top layer L1 

used for resolution measurement: top row—spatially constant penalty; bottom row—

spatially varying penalty. Images in (A) are shown at matched Δ between the two penalty 

types. (B) Quantitative assessment of spatial resolution. Solid lines denote the width ε of the 

ESF, and dashed lines denote the standard deviation of ε, σε. The constant penalty is shown 

in gray, and the spatially varying penalty in black.
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Figure 8. 
CNR measured as a function of spatial resolution: zoomed images of the 12 mm low-

contrast adipose insert are shown in (A) for the constant and spatially varying penalty at 

matched resolution. CNR curves as a function of resolution (ε) measured in the same insert 

are presented in (B). The gray curve denotes the spatially constant penalty, the black curve 

marks the spatially varying penalty. Horizontal error bars represent the standard deviation, 

σε, of the measured resolution. Zoomed images with solid and dashed frames indicate equal 

CNR between the spatially constant and spatially varying penalty.
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Figure 9. 
(Top) Axial and (Bottom) coronal reconstructions of an anthropomorphic hand phantom 

with three levels of regularization: (A) no regularization; (B) low regularization; and (C) 

strong regularization.
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