Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Jan 1;97(1):139–145. doi: 10.1172/JCI118381

G-protein coupled and tyrosine kinase receptors: evidence that activation of the insulin-like growth factor I receptor is required for thrombin-induced mitogenesis of rat aortic smooth muscle cells.

P Delafontaine 1, A Anwar 1, H Lou 1, L Ku 1
PMCID: PMC507072  PMID: 8550825

Abstract

IGF I is an ubiquitous peptide that activates a membrane tyrosine kinase receptor and has autocrine/paracrine effects on vascular smooth muscle cells. Thrombin activates a G-protein coupled receptor and is also a mitogen for vascular smooth muscle cells. To assess the potential role of IGF I as a mediator of thrombin's effects, we characterized expression of IGF I and of its receptor on vascular smooth muscle cells exposed to thrombin. Thrombin dose-dependently decreased IGF I mRNA levels and caused a delayed decrease in IGF I secretion from vascular smooth muscle cells. This effect was mimicked by the hexapeptide SF-FLRN (that functions as a tethered ligand) and was inhibited by hirudin. In contrast, thrombin doubled IGF I receptor density on vascular smooth muscle cells, without altering binding affinity (Kd). An anti-IGF I antiserum markedly reduced thrombin-induced DNA synthesis, whereas nonimmune serum and an anti-fibroblast growth factor antibody were without effect. Cell counts confirmed these results. Downregulation of IGF I receptors by antisense phosphorothioate oligonucleotides likewise markedly inhibited thrombin-induced DNA synthesis. These data demonstrate that a functional IGF I-IGF I receptor pathway is essential for thrombin-induced mitogenic signaling and support the concept of cross talk between G-protein coupled and tyrosine kinase receptors.

Full Text

The Full Text of this article is available as a PDF (229.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander R. W., Brock T. A., Gimbrone M. A., Jr, Rittenhouse S. E. Angiotensin increases inositol trisphosphate and calcium in vascular smooth muscle. Hypertension. 1985 May-Jun;7(3 Pt 1):447–451. [PubMed] [Google Scholar]
  2. Baker J., Liu J. P., Robertson E. J., Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993 Oct 8;75(1):73–82. [PubMed] [Google Scholar]
  3. Bar-Shavit R., Benezra M., Eldor A., Hy-Am E., Fenton J. W., 2nd, Wilner G. D., Vlodavsky I. Thrombin immobilized to extracellular matrix is a potent mitogen for vascular smooth muscle cells: nonenzymatic mode of action. Cell Regul. 1990 May;1(6):453–463. doi: 10.1091/mbc.1.6.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bar-Shavit R., Eldor A., Vlodavsky I. Binding of thrombin to subendothelial extracellular matrix. Protection and expression of functional properties. J Clin Invest. 1989 Oct;84(4):1096–1104. doi: 10.1172/JCI114272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bar-Shavit R., Kahn A., Wilner G. D., Fenton J. W., 2nd Monocyte chemotaxis: stimulation by specific exosite region in thrombin. Science. 1983 May 13;220(4598):728–731. doi: 10.1126/science.6836310. [DOI] [PubMed] [Google Scholar]
  6. Bornfeldt K. E., Gidlöf R. A., Wasteson A., Lake M., Skottner A., Arnqvist H. J. Binding and biological effects of insulin, insulin analogues and insulin-like growth factors in rat aortic smooth muscle cells. Comparison of maximal growth promoting activities. Diabetologia. 1991 May;34(5):307–313. doi: 10.1007/BF00405001. [DOI] [PubMed] [Google Scholar]
  7. Delafontaine P., Bernstein K. E., Alexander R. W. Insulin-like growth factor I gene expression in vascular cells. Hypertension. 1991 May;17(5):693–699. doi: 10.1161/01.hyp.17.5.693. [DOI] [PubMed] [Google Scholar]
  8. Delafontaine P., Lou H., Alexander R. W. Regulation of insulin-like growth factor I messenger RNA levels in vascular smooth muscle cells. Hypertension. 1991 Dec;18(6):742–747. doi: 10.1161/01.hyp.18.6.742. [DOI] [PubMed] [Google Scholar]
  9. Delafontaine P., Lou H. Angiotensin II regulates insulin-like growth factor I gene expression in vascular smooth muscle cells. J Biol Chem. 1993 Aug 5;268(22):16866–16870. [PubMed] [Google Scholar]
  10. Delafontaine P., Meng X. P., Ku L., Du J. Regulation of vascular smooth muscle cell insulin-like growth factor I receptors by phosphorothioate oligonucleotides. Effects on cell growth and evidence that sense targeting at the ATG site increases receptor expression. J Biol Chem. 1995 Jun 16;270(24):14383–14388. doi: 10.1074/jbc.270.24.14383. [DOI] [PubMed] [Google Scholar]
  11. Du J., Delafontaine P. Inhibition of vascular smooth muscle cell growth through antisense transcription of a rat insulin-like growth factor I receptor cDNA. Circ Res. 1995 Jun;76(6):963–972. doi: 10.1161/01.res.76.6.963. [DOI] [PubMed] [Google Scholar]
  12. Fath K. A., Alexander R. W., Delafontaine P. Abdominal coarctation increases insulin-like growth factor I mRNA levels in rat aorta. Circ Res. 1993 Feb;72(2):271–277. doi: 10.1161/01.res.72.2.271. [DOI] [PubMed] [Google Scholar]
  13. Fenton J. W., 2nd Regulation of thrombin generation and functions. Semin Thromb Hemost. 1988 Jul;14(3):234–240. doi: 10.1055/s-2007-1002783. [DOI] [PubMed] [Google Scholar]
  14. Fort P., Marty L., Piechaczyk M., el Sabrouty S., Dani C., Jeanteur P., Blanchard J. M. Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 1985 Mar 11;13(5):1431–1442. doi: 10.1093/nar/13.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gibbons G. H., Dzau V. J. The emerging concept of vascular remodeling. N Engl J Med. 1994 May 19;330(20):1431–1438. doi: 10.1056/NEJM199405193302008. [DOI] [PubMed] [Google Scholar]
  16. Graham D. J., Alexander J. J. The effects of thrombin on bovine aortic endothelial and smooth muscle cells. J Vasc Surg. 1990 Feb;11(2):307–313. doi: 10.1067/mva.1990.17098. [DOI] [PubMed] [Google Scholar]
  17. Hansson H. A., Jennische E., Skottner A. Regenerating endothelial cells express insulin-like growth factor-I immunoreactivity after arterial injury. Cell Tissue Res. 1987 Dec;250(3):499–505. doi: 10.1007/BF00218940. [DOI] [PubMed] [Google Scholar]
  18. Harlan J. M., Thompson P. J., Ross R. R., Bowen-Pope D. F. Alpha-thrombin induces release of platelet-derived growth factor-like molecule(s) by cultured human endothelial cells. J Cell Biol. 1986 Sep;103(3):1129–1133. doi: 10.1083/jcb.103.3.1129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hattori R., Hamilton K. K., Fugate R. D., McEver R. P., Sims P. J. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989 May 15;264(14):7768–7771. [PubMed] [Google Scholar]
  20. Khorsandi M. J., Fagin J. A., Giannella-Neto D., Forrester J. S., Cercek B. Regulation of insulin-like growth factor-I and its receptor in rat aorta after balloon denudation. Evidence for local bioactivity. J Clin Invest. 1992 Nov;90(5):1926–1931. doi: 10.1172/JCI116070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. King G. L., Goodman A. D., Buzney S., Moses A., Kahn C. R. Receptors and growth-promoting effects of insulin and insulinlike growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest. 1985 Mar;75(3):1028–1036. doi: 10.1172/JCI111764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Libby P., O'Brien K. V. Culture of quiescent arterial smooth muscle cells in a defined serum-free medium. J Cell Physiol. 1983 May;115(2):217–223. doi: 10.1002/jcp.1041150217. [DOI] [PubMed] [Google Scholar]
  23. Liu J. P., Baker J., Perkins A. S., Robertson E. J., Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 1993 Oct 8;75(1):59–72. [PubMed] [Google Scholar]
  24. McNamara C. A., Sarembock I. J., Gimple L. W., Fenton J. W., 2nd, Coughlin S. R., Owens G. K. Thrombin stimulates proliferation of cultured rat aortic smooth muscle cells by a proteolytically activated receptor. J Clin Invest. 1993 Jan;91(1):94–98. doi: 10.1172/JCI116206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Newby A. C., George S. J. Proposed roles for growth factors in mediating smooth muscle proliferation in vascular pathologies. Cardiovasc Res. 1993 Jul;27(7):1173–1183. doi: 10.1093/cvr/27.7.1173. [DOI] [PubMed] [Google Scholar]
  26. Paris S., Chambard J. C., Pouysségur J. Tyrosine kinase-activating growth factors potentiate thrombin- and AIF4- -induced phosphoinositide breakdown in hamster fibroblasts. Evidence for positive cross-talk between the two mitogenic signaling pathways. J Biol Chem. 1988 Sep 15;263(26):12893–12900. [PubMed] [Google Scholar]
  27. Pfeifle B., Boeder H., Ditschuneit H. Interaction of receptors for insulin-like growth factor I, platelet-derived growth factor, and fibroblast growth factor in rat aortic cells. Endocrinology. 1987 Jun;120(6):2251–2258. doi: 10.1210/endo-120-6-2251. [DOI] [PubMed] [Google Scholar]
  28. Pfeifle B., Ditschuneit H. H., Ditschuneit H. Binding and biological actions of insulin-like growth factors on human arterial smooth muscle cells. Horm Metab Res. 1982 Aug;14(8):409–414. doi: 10.1055/s-2007-1019031. [DOI] [PubMed] [Google Scholar]
  29. Porcu P., Ferber A., Pietrzkowski Z., Roberts C. T., Adamo M., LeRoith D., Baserga R. The growth-stimulatory effect of simian virus 40 T antigen requires the interaction of insulinlike growth factor 1 with its receptor. Mol Cell Biol. 1992 Nov;12(11):5069–5077. doi: 10.1128/mcb.12.11.5069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993 Apr 29;362(6423):801–809. doi: 10.1038/362801a0. [DOI] [PubMed] [Google Scholar]
  31. Seuwen K., Kahan C., Hartmann T., Pouyssegur J. Strong and persistent activation of inositol lipid breakdown induces early mitogenic events but not Go to S phase progression in hamster fibroblasts. Comparison of thrombin and carbachol action in cells expressing M1 muscarinic acetylcholine receptors. J Biol Chem. 1990 Dec 25;265(36):22292–22299. [PubMed] [Google Scholar]
  32. Sjölund M., Hedin U., Sejersen T., Heldin C. H., Thyberg J. Arterial smooth muscle cells express platelet-derived growth factor (PDGF) A chain mRNA, secrete a PDGF-like mitogen, and bind exogenous PDGF in a phenotype- and growth state-dependent manner. J Cell Biol. 1988 Feb;106(2):403–413. doi: 10.1083/jcb.106.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Stiles C. D., Capone G. T., Scher C. D., Antoniades H. N., Van Wyk J. J., Pledger W. J. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1279–1283. doi: 10.1073/pnas.76.3.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ullrich A., Gray A., Tam A. W., Yang-Feng T., Tsubokawa M., Collins C., Henzel W., Le Bon T., Kathuria S., Chen E. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 1986 Oct;5(10):2503–2512. doi: 10.1002/j.1460-2075.1986.tb04528.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Ververis J. J., Ku L., Delafontaine P. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters. Circ Res. 1993 Jun;72(6):1285–1292. doi: 10.1161/01.res.72.6.1285. [DOI] [PubMed] [Google Scholar]
  36. Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
  38. Weiss R. H., Ives H. E. Dissociation between activation of growth-related genes and mitogenic responses of neonatal vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Dec 16;181(2):617–622. doi: 10.1016/0006-291x(91)91235-5. [DOI] [PubMed] [Google Scholar]
  39. Weiss R. H., Maduri M. The mitogenic effect of thrombin in vascular smooth muscle cells is largely due to basic fibroblast growth factor. J Biol Chem. 1993 Mar 15;268(8):5724–5727. [PubMed] [Google Scholar]
  40. Weiss R. H., Nuccitelli R. Inhibition of tyrosine phosphorylation prevents thrombin-induced mitogenesis, but not intracellular free calcium release, in vascular smooth muscle cells. J Biol Chem. 1992 Mar 15;267(8):5608–5613. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES