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Genome-wide association studies identify genetic loci
for low von Willebrand factor levels
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Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand

disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF

levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low

VWF levels. For this meta-analysis, we included 31149 participants of European ancestry from 11 community-based studies. From

all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were

available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for

blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was

performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5×10−8 and comprised five

loci on four different chromosomes: 6q24 (smallest P-value 5.8×10−10), 9q34 (2.4×10−64), 12p13 (5.3×10−22), 12q23

(1.2×10−8) and 13q13 (2.6×10−8). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5)

(6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1
has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO,
STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is
associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels.
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INTRODUCTION

Von Willebrand factor (VWF) is a multifunctional glycoprotein, which is
secreted by endothelial cells and released upon endothelial cell activation.
VWF initiates the adherence of platelets to the injured vessel wall, and the
subsequent platelet aggregation facilitates adequate hemostasis.1,2

Plasma levels of VWF antigen (VWF:Ag) are characterized by a
large interindividual variation and range from 0.60 to 1.40 IU/ml in
healthy individuals.3 Various environmental and lifestyle factors affect
VWF:Ag levels, but ~ 60% of the variability in VWF:Ag levels can be
explained by genetic factors.4

The necessity of maintaining normal VWF levels in the circulation
is illustrated by two clinical manifestations that may occur when VWF
exceeds its normal range. High VWF:Ag levels are associated with an
increased risk of venous thrombosis and arterial thrombosis.5–8

Conversely, low VWF:Ag levels are associated with an increased
bleeding tendency and are a characteristic of von Willebrand disease
(VWD). VWD is the most common inherited bleeding disorder in
humans and is caused by a quantitative deficiency of VWF (type 1 and
3 VWD) and/or a qualitative defect of VWF molecules (type 2
VWD).9
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Most severe forms of type 1 VWD are caused by dominant-negative
family-based variations in the VWF gene (VWF).10,11 However,
in individuals with moderately decreased VWF:Ag levels, VWF
variations are often not found and linkage with the VWF locus is
rarely seen.10,11 Hence, it is difficult to differentiate between subjects
with physiologically low VWF:Ag levels and subjects with low VWF:Ag
levels because of VWD.12,13 However, as VWF:Ag levels are strongly
genetically determined, it is expected that more common genetic
variations in genes other than VWF are likely to be involved in the
occurrence of low VWF:Ag levels and therefore in the etiology of type
1 VWD. We have previously shown that several loci outside the
VWF gene are indeed associated with VWF:Ag levels and that the
VWF decreasing alleles are more frequently observed in individuals
diagnosed with VWD.13 To identify common genetic loci that are
associated with low VWF:Ag levels, related to an increased bleeding
tendency, we performed a meta-analysis of genome-wide association
studies in 11 large population-based cohort studies.

METHODS

Study populations
This meta-analysis was conducted in the CHARGE Consortium,14 which
includes data from several population-based cohort studies. VWF:Ag measure-
ments were available in four of these: the Rotterdam Study (RS) I and II, the
Framingham Heart Study (FHS) and the Atherosclerotic Risk in Communities
(ARIC) study. In addition, we included data from seven other studies that had
VWF:Ag measurements and genome-wide data available: the British 1958 Birth
cohort (B58C) study, the PROspective Study of Pravastatin in the Elderly at
Risk (PROSPER), the Prevention of Renal and Vascular Endstage Disease
(PREVEND) study, Lothian Birth Cohort 1921 and 1936 (LBC1921, LBC1936),
Vis Croatia Study (CROATIA-Vis) and ORKNEY complex Disease Study
(ORCADES) (see Supplementary Tables 1 and 2). The designs of the studies
have been described previously.15–25

Genome-wide scans and VWF:Ag measurements were available for analysis
in 31 149 individuals. Eligible participants were not using a coumarin-based
anticoagulant at the time of VWF:Ag measurement and were of European
ancestry by self-report. All studies were approved by their respective institu-
tional review committee. In addition, written informed consent was obtained
from all participants, as well as permission to use their DNA for research
purposes.

Baseline measurements and VWF measures
Baseline measures of clinical and demographic characteristics were obtained at
the time of cohort entry for ARIC, CROATIA-Vis, ORCADES, PROSPER,
PREVEND and RS, and at the time of phenotype measurements for B58C,
LBC1921, LBC1936 and FHS. Measures were obtained using standardized
methods as specified by each study and included measures of height and
weight, as well as self-reported treatment of diabetes and hypertension, current
alcohol consumption and prevalent cardiovascular disease (history of myocar-
dial infarction, angina, coronary revascularization, stroke or transient ischemic
attack). Blood group antigen phenotypes (O and non-O) were reconstructed
using genotype data of rs687289:C4T, which is a marker for the O allele.26

VWF:Ag was measured in all cohorts using enzyme-linked immunosorbent
assays (ELISA) (Supplementary Table 3).

Genotyping
For the genotyping, DNA was collected from phlebotomy from all studies
except B58C, which used cell lines. Genome-wide assays of SNPs were
conducted independently in each cohort using various Affymetrix and Illumina
panels (Supplementary Table 3). Each study conducted genotype quality
control and data cleaning, including assessment of Hardy–Weinberg equili-
brium and variant call rates. Details on genotyping assays have been described
in detail previously and are provided in Supplementary Table 3.14

For this analysis, we investigated genetic variation in the 22 autosomal
chromosomes.27 Genotypes were coded as 0, 1 and 2 to represent the number

of copies of the coded alleles for all chromosomes.27 Each study independently
imputed its genotype data to the ≈2.6 million SNPs identified in the HapMap
Caucasian (CEU) sample from the Centre d’Etude du Polymorphisme
Humain.28–30 Imputation software, including MACH, BIMBAM or IMPUTE,
were used to impute unmeasured genotypes with SNPs that passed quality
control criteria based on phased haplotypes observed in HapMap. Imputation
results were summarized as an ‘allele dosage’, which was defined as the
expected number of copies of the minor allele of that SNP (a continuous value
between 0 and 2) for each genotype. Each cohort calculated the ratio of
observed to expected variance of the dosage statistics for each SNP. This value,
which generally ranges from 0 to 1 (ie, poor to excellent), reflects imputation
quality.
Public Repository: Our data are available on the European Genome-

phenome Archive (https://ega.crg.eu, accession number: EGAS00001001341).

Statistical analysis
Genotype–phenotype data were analyzed independently by each study. VWF:Ag
measurements were used as dichotomous variable (low versus normal) with low
VWF defined as the lowest 5% within blood groups, that is, blood group O and
non-O. All studies used logistic regression with an additive genetic model
adjusted for age and sex to conduct analyses of all directly genotyped and
imputed SNPs and their association with dichotomous VWF:Ag measures. FHS
used generalized estimation equations to account for familial correlation. ARIC
and PROSPER adjusted for field site, additionally. B58C adjusted for sex, date
and time of sample collection, postal delay and the nurse who performed the
inclusion, which also adjusts for the region of residence. Age adjustment was
not necessary in B58C, as all cohort members were born in 1 week.
An inverse-variance weighted meta-analysis was performed using METAL

software (http://www.sph.umich.edu/csg/abecasis/Metal/index.html) with geno-
mic control correction being applied at the cohort level.31

The a priori threshold of genome-wide significance was set at a P-value of
5.0x10− 8. When more than one SNP clustered at a locus, the SNP with the
smallest P-value was selected to represent the locus.

RESULTS

For this meta-analysis 31 149 participants of European ancestry were
included. The sample size and participant characteristics from each
cohort are displayed in Supplementary Table 1. The mean age ranged
from 45 years in B58C to 87 years in LBC1921 and on average 48% of
the participants was female.
A quantile–quantile plot of the observed P-value from meta-analysis

against expected P-value distribution is shown in Figure 1. Figure 2
illustrates the primary findings from the meta-analysis and presents
P-values for each of the interrogated SNPs across the 22 autosomal
chromosomes. A total of 97 SNPs exceeded the genome-wide
significance threshold of 5× 10− 8 and clustered around five genetic
loci on four different chromosomes (Table 1 and Figure 3). The SNP

Figure 1 Quantile–quantile plot of the observed and expected distribution of
P-values for all ~2.6 million SNPs and their association with low VWF levels
based on meta-analyzed data.
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with the strongest signal was rs8176704:A4G, which is located at
9q34 (intron) in the ABO blood group gene (P= 2.4 × 10− 64). The
odds ratio (OR) for having VWF levels in the lowest 5% was 2.83
(95% CI 2.52; 3.18). In addition, we performed a conditional analysis.
Based on this analysis, we found three independent signals at 9q34.
The analysis shows that rs579459 and rs8176747 are independently
significant after taking into account the LD structure and their
correlation with rs817704. The second most significant locus was
marked by rs216303:T4C, which is located at 12p13 (intron) in the
VWF gene (OR 0.57; 95% CI: 0.51; 0.64, P= 5.3× 10− 22). The third
genome-wide significant signal at chromosomal position 6q24 (intron)
was within STXBP5 (Syntaxin Binding Protein 5). Rs1221638:A4G
was associated with the smallest P-value (5.8× 10− 10) in this region
(OR 1.28; 95% CI: 1.19; 1.39). The fourth statistical significant signal
was marked by rs4981022A4G, which is located at 12q23 (intron) in
STAB2 (stabilin-2) (OR 0.79; 95% CI: 0.73; 0.85, P= 1.2 × 10− 8). The
final genome-wide significant locus was marked by rs17057285:A4C
(OR 0.41; 95% CI: 0.30; 0.56, P= 2.6× 10− 8), which is 200 kb
upstream from UFM1 (ubiquitin-fold modifier 1). There are two
SNPs close to rs17057285. The first one is rs17057209, which is 52 kb
far from rs17057285 and is in complete LD with rs17057285 (R2= 1).
Both these SNPs are missing in 5 studies (VIS, ORKNEY, PREVEND,
LBC1921, LBC1936) out of 11 studies that contributed to the study.
The third SNP is rs7323793, which is 67 kb far and is partly in LD with
rs17057285 (R2= 0.496). Rs7323793 is missing only in the
PREVEND study.
In addition to our five genome-wide significant loci, five other loci

demonstrated multiple-SNP hits with P-values below 1.0 × 10− 6:
rs10848820:A4G (P= 1.2× 10− 7) within TSPAN9 (tetraspanin 9),
rs4276643:T4C (P= 3.4× 10− 7) within SCARA5 (scavenger receptor
class A, member 5), rs17398299:A4C (P= 4.1 × 10− 7) close to 1

gene, LPHN2 (latrophilin 2), rs5995441:T4C (P= 8.3× 10− 7) within
CARD10 (caspase recruitment domain family, member 10) and
rs3750450:T4G (P= 9.6 × 10− 7) within EPB41L4B (erythrocyte
membrane protein band 4.1 like 4B).

DISCUSSION

In this meta-analysis of GWA data from 11 population-based cohorts
comprising 31 149 individuals of European ancestry, we identified five
genetic loci that are associated with low VWF levels: ABO, VWF,
STXBP5, STAB2 and UFM1.
The most significant signal in our study came from a well-known

determinant of VWF:Ag levels, the ABO locus. The presence of blood
group A and B antigens on VWF molecules leads to a decreased
clearance of VWF molecules. Consequently, individuals with blood
group O have 25% lower VWF plasma concentrations compared with
individuals with blood group non-O.32 Although we used a different
cutoff point for low VWF levels for blood group O and non-O
separately to minimize the effect of blood group, the ABO locus still
reached a very high level of statistical significance. This implies that
blood group O versus non-O explains not the total ABO locus effect,
and that A or B antigens also determine VWF levels. Indeed, carriers
of the B antigen have higher VWF levels compared with carriers of the
A antigen and carriers of both antigens have the highest VWF
levels.33,34

The second locus is within the VWF gene. It has been well
established that common genetic polymorphisms in the VWF gene
contribute to the variability in VWF:Ag levels.35–37 The most
significant SNP that marked the VWF locus was rs216303:T4C,
which is located within an intronic region. Until recently, intronic
polymorphisms were often considered less relevant for disease
development and regulating protein levels in plasma. However, there
is now an increasing recognition that intronic variants can contribute
by, for example, influencing the form and efficacy of gene splicing and
mRNA stability.37 Another possibility is that SNPs in the intronic
regions are in high LD with functional SNPs in adjacent regions.
The third locus is within the STXBP5 gene, which encodes the

syntaxin binding protein 5. STXBP5 can bind to Soluble N-ethylma-
leimide-sensitive factor (NSF) Attachment protein Receptor (SNARE)
proteins, among which syntaxin-2 and syntaxin-4. Syntaxin-4 has been
shown to be involved in Weibel Palade Body exocytosis,38 the well-
known mechanism for the secretion of VWF molecules from
endothelial cells. We have previously shown in a well-defined cohort
of young patients with a first event of arterial thrombosis that genetic
variation in STXBP5 is associated with VWF:Ag levels.13,39 The LD
between rs1221638:A4G and the SNP that had the highest signifi-
cance in the previous meta-analysis is D′= 0.90 and R2= 0.67.

Figure 2 −Log10 P-values for each of the ~2.6 million tests performed as
part of the GWA analysis of low VWF levels. The gray dashed horizontal line
marks the 5×10−8 P-value threshold of genome-wide significance.

Table 1 Genome-wide significant association of five loci with low VWF levels

SNP

Most significant Region MAF P-value OR (95% CI)a Het I2 Het P-value Gene

Rs8176704 hg18:g.13512373A4G 9q34 0.07 2.4×10−64 2.83 (2.52; 3.18) 46.4 0.01 ABO (intronic)

Rs216303 hg18:g.6029306T4C 12p13 0.09 5.3×10−22 0.57 (0.51; 0.64) −12.6 0.39 VWF (intronic)

Rs1221638 hg18:g.147576998A4G 6q24 0.43 5.8×10−10 1.28 (1.19; 1.39) 0 0.85 STXBP5 (intronic)

Rs4981022 hg18:g.102674004A4G 12q23 0.32 1.2×10−08 0.79 (0.73; 0.85) −0.5 0.29 STAB2 (intronic)

Rs17057285 hg18:g.37635821A4C 13q13 0.005 2.6×10−08 0.42 (0.30; 0.56) 23.2 0.10 200 kb from UFM1

Abbreviations: SNP, single-nucleotide polymorphism; MAF, minor allele frequency; P, statistical significance level; OR, odds ratio; Het, heterogeneity.
Reference sequence Hg 18 (NCBI build 36).
aOR represents the risk of having VWF:Ag levels in the lowest 5% relative to the upper 95%.
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The fourth locus was marked by rs4981022:A4G, which is located
in STAB2. STAB2 is a transmembrane receptor protein and is
primarily expressed in liver and spleen sinusoidal endothelial cells.
STAB2 can bind various ligands, such heparin, LDL, bacteria and
advanced glycosylation products, and subjects them to endocytosis.40

STAB2 variation might be important in the regulation of VWF levels
via the clearance of VWF molecules.
The final genome-wide significant locus was marked by rs17057285:

A4C, which is upstream from UFM1. UFM1 encodes the ubiquitin-
fold modifier 1, which has been recently identified as a novel protein-
conjugating system.41 Although the precise function has not been
elucidated yet, the UFM1 cascade seems to be involved in cellular
homeostasis, influencing cell division, growth and endoplasmatic
reticulum function.42 UFM1 is highly expressed in the pancreatic

islets of Langerhans and has a role in the development of type 2
diabetes. Another study showed possible involvement in the develop-
ment of ischemic heart disease. In this study, chronic inflammation in
mice led to a strong upregulation of UFM1 in cardiomyocytes.43 As
VWF:Ag levels also have been associated with an increased risk of
ischemic heart disease, this is an interesting finding. However, UFM1
has not yet been linked to VWF directly yet and is a novel association
needing replication.
Four of the identified loci for low VWF:Ag levels (ie, ABO,

VWF, STXBP5 and STAB2) have previously shown to be involved
in the regulation of VWF:Ag levels in general.44 The other
identified new genetic loci for continuous VWF:Ag levels
(ie, SCARA5, STX2, TC2N and CLEC4M) were not associated with
low VWF levels.

Figure 3 Regional plots of top marker loci associated with low VWF levels. (A–E) The association P-values (− log10 transformed, indicated by the left y axis)
for SNPs in a 60-kb region of each of the five loci (ABO, VWF, STXBP5, STX2, UFM1) are plotted against their chromosome positions (NCBI build 3) on x
axis. The top SNPs are presented as a large diamond in red font and neighboring variants are presented in different colors based on linkage disequilibrium
based on HapMap Caucasian data: red: 1≤ r240.8; orange: 0.8≥ r240.6; yellow: 0.6≥ r240.3; green: 0.3≥ r240.1; blue: 0.1≥ r240.05; light blue:
0.05≥ r240.0. The left y axis is the P-value on the − log10 P-value scale and the gray line marks the threshold of genome-wide significance (P=5×10−8).
Shown in light blue are the estimated recombination rates in HapMap with values indicated by the right y axis. Regional genes and their direction of
transcription are depicted with green arrows. The full colour version of this figure is available at EJHG Journal online.
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UFM1 is a novel genetic locus associated with low VWF levels that
was not associated with the continuous VWF:Ag levels. Rs17057285:
A4C, the SNP with the highest P-value that marks this locus, has a
very small minor allele frequency of ~ 0.5%. Therefore, this finding
should be interpreted with care.
In today’s clinical practice, it is hard to distinguish between

physiologically low VWF levels and VWF:Ag levels due to VWD,
because both VWF levels and bleeding symptoms are highly variable
and occur frequently in the general population.45 Until recently, it was
believed that low VWF:Ag levels and VWD are caused by variations in
the VWF gene only. However, now it has been shown that 35% of
type 1 (partial quantitative deficiency of VWF) VWD patients have no
apparent VWF variations.10,11 This suggests that genetic variations in
genes other than VWF may lead to low VWF:Ag levels, also in patients
diagnosed as having VWD.13 Indeed, our current findings confirm this
hypothesis that next to ABO blood group and VWF, other genetic loci
are involved in the occurrence of low VWF levels.
In the current study, we have not included a replication cohort.

Generally, it has been recommended to include all cohorts in the
discovery panel to maximize statistical power, rather than use some of
the cohorts for replication. In addition, the identified genetic loci
comprise extremely small P-values and were previously discovered in
the meta-analysis using VWF:Ag as a continuous measure. For these
reasons, it is very unlikely that our findings are false positive or came
out by chance.
In conclusion, we identified five genetic loci that are associated with

low VWF levels: ABO, VWF, STXBP5, STAB2 and UFM1. Our
findings confirm the hypothesis that genes other than VWF lead to
low VWF:Ag levels. Further research is warranted in order to elucidate
whether these genetic loci also contribute to the incidence of bleeding
symptoms and VWD.
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