
ARTICLE

Genome-wide gene–environment interactions on
quantitative traits using family data

Colleen M Sitlani*,1, Josée Dupuis2, Kenneth M Rice3, Fangui Sun2, Achilleas N Pitsillides2,
L Adrienne Cupples2 and Bruce M Psaty4,5

Gene–environment interactions may provide a mechanism for targeting interventions to those individuals who would gain the

most benefit from them. Searching for interactions agnostically on a genome-wide scale requires large sample sizes, often

achieved through collaboration among multiple studies in a consortium. Family studies can contribute to consortia, but to do so

they must account for correlation within families by using specialized analytic methods. In this paper, we investigate the

performance of methods that account for within-family correlation, in the context of gene–environment interactions with binary

exposures and quantitative outcomes. We simulate both cross-sectional and longitudinal measurements, and analyze the

simulated data taking family structure into account, via generalized estimating equations (GEE) and linear mixed-effects models.

With sufficient exposure prevalence and correct model specification, all methods perform well. However, when models are

misspecified, mixed modeling approaches have seriously inflated type I error rates. GEE methods with robust variance estimates

are less sensitive to model misspecification; however, when exposures are infrequent, GEE methods require modifications to

preserve type I error rate. We illustrate the practical use of these methods by evaluating gene–drug interactions on fasting

glucose levels in data from the Framingham Heart Study, a cohort that includes related individuals.

European Journal of Human Genetics (2016) 24, 1022–1028; doi:10.1038/ejhg.2015.253; published online 2 December 2015

INTRODUCTION

Genome-wide searches for gene–environment interactions represent
an agnostic approach for the evaluation of whether genetic markers
modify associations between traits and exposures of interest.1 Such
interactions could lead to strategies for targeting interventions toward
the people who are most likely to benefit from them. For example,
many drugs have unintended side effects or variable effectiveness
across people. A person’s underlying genetics may contribute to
whether they experience side effects or respond well to treatment.2,3

Identifying specific genetic contributions that influence treatment
response would permit treatment strategies that minimize side effects
or maximize treatment response. Alternatively, variable response to
interventions aimed at primary or secondary prevention could also
lead to targeted intervention strategies. For example, there is growing
evidence that the association between various dietary and behavioral
exposures and disease risk may be modified by genetic factors.4,5

Identifying such interactions could permit personalized strategies for
disease prevention. In the case of tailoring drug treatment, interest lies
in characterizing gene–environment interactions where the environ-
mental exposure is drug use, whereas in the case of tailoring efforts at
prevention, other examples of exposures include pesticide exposure,
nutrition, nicotine use, and exercise.
Adequate power for genome-wide investigation of these gene–

environment interactions requires large sample sizes,1 which are
often obtained by combining information from multiple studies.
To properly account for all sources of variability6 and to allow for
misspecification of exposure–outcome relationships,7 robust

variance estimates are helpful. However, when environmental
exposures have low prevalence, common robust methods may
not preserve type I error rate at the low significance levels required
in genome-wide analyses because of data sparsity.8 The smaller the
contributing study, the bigger the problem. Sitlani et al.8 evaluated
small-sample modifications in the context of analyses of gene–
environment interactions using longitudinal data from samples of
unrelated individuals. Comparable methods for genome-wide
gene–environment interaction in samples that include related
individuals have not yet been evaluated.
In this article, we discuss the available methods for evaluating

genome-wide gene–environment interactions in family data, including
small-sample modifications to ensure validity when environmental
exposures are infrequent. We consider both cross-sectional and
longitudinal analyses. We evaluate the type I error rates of these
methods via simulations. We then apply the methods to data from the
Framingham Heart Study (FHS), evaluating gene–drug interactions on
fasting glucose levels, both cross-sectionally and longitudinally. Finally,
we discuss the implications of our findings and make practical
recommendations for future studies of genome-wide gene–environ-
ment interactions that involve family data.

SUBJECTS AND METHODS

Methods
A number of approaches exist for investigating gene–environment interaction
on a genome-wide scale.1 In this article, we discuss an agnostic approach that
evaluates interaction between single-nucleotide polymorphisms (SNPs) and

1Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA; 2Department of Biostatistics, Boston University School of Public
Health, Boston, MA, USA; 3Department of Biostatistics, University of Washington, Seattle, WA, USA; 4Departments of Medicine, Epidemiology, and Health Services, University of
Washington, Seattle, WA, USA; 5Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
*Correspondence: Dr CM Sitlani, Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 1730 Minor Avenue, Suite 1360, Seattle, WA 98101,
USA. Tel: +1 206 287 2777; Fax: +1 +206 287 2662; E-mail: csitlani@uw.edu
Received 3 August 2015; revised 9 October 2015; accepted 27 October 2015; published online 2 December 2015

European Journal of Human Genetics (2016) 24, 1022–1028
& 2016 Macmillan Publishers Limited All rights reserved 1018-4813/16

www.nature.com/ejhg

http://dx.doi.org/10.1038/ejhg.2015.253
mailto:csitlani@uw.edu
http://www.nature.com/ejhg


environmental exposures on quantitative traits. In particular, we are interested
in the following statistical model:

E Yit Gi; Eit ;Zitj � ¼ b0 þ bEEit þ bGGi þ bG:EEitGi þ gTZit

� ð1Þ
where i indexes participants, t indexes measurement time, Y is a quantitative
outcome of interest, E is an environmental exposure, G is a SNP dosage, and
Z is a vector of adjustment variables. There can be multiple measurements over
time for each person. SNP dosage, which may be either observed or
imputed,9,10 is modeled additively. This model focuses on associations between
SNPs and environmental exposures on the level of the quantitative outcome.
Alternatively, with longitudinal data, primary interest could be in associations
with the rate of change of the quantitative outcome over time.11 Interactions of
G, E, and G×E with time would be required to address questions about
associations with rates of change. However, in this article, the coefficient of
interest is the interaction coefficient βG:E, and in particular, tests of whether this
interaction coefficient is zero.
Several options are available for such tests, using data from related

individuals. Typically either linear mixed-effects models (LMMs)12 or general-
ized estimating equations (GEE methods)13 are used. For LMMs, the correlation
among individuals in the same family is accounted for by adding to Equation (1)
a random effect with variance–covariance matrix proportional to the
relevant kinship matrix. Further, when there are repeated observations within
the same individual, a random intercept for each person induces exchangeable
patterns of within-person correlation. For GEE methods, a working correlation
matrix is specified to account for correlation within families or within
individuals. Owing to the constraints of available standard software for fitting
GEE models, this working correlation matrix can only explicitly accommodate a
single source of clustering; therefore, in the analyses of repeated measures on
individuals within families, the working correlation in GEE methods only takes
into account within-individual correlation to the extent that it contributes to
within-family correlation.
Robustness to model misspecification differs between LMMs and GEE

methods, a difference that is reflected in the usual choice of the estimates of
the variances of model parameters for each method. Standard use of LMMs
assumes correct mean and variance model specification and therefore uses
model-based variance estimates.7,14 Standard implementation of GEE methods,
on the other hand, uses semirobust variance estimates that allow for mis-
specification of the working correlation matrix.15,16 For canonical link functions,
such variance estimates are also robust to misspecification of the mean model.17

In the context of gene–environment interactions, robust variance estimates are
often required to properly estimate variability in effect size estimates and to allow
for model misspecification.6,7 Therefore, LMMs are not always appropriate for
investigation of gene–environment interactions. GEE methods, using traditional
sandwich variance estimates, may be preferable. However, GEE’s performance is
known to be poor when only a small number of clusters are available.18 In the
context of gene–environment interactions, Sitlani et al.8 illustrated that poor
performance occurs when small gene–environment strata exist, for example,
when binary environmental exposures are infrequent. Use of traditional GEE
methods may result in inflated type I error rates.18 Therefore, despite the large
sample sizes that are achieved by collaborations within genetic consortia,
genome-wide statistical tests of interaction at the individual study level often
have inflated type I error rates when traditional sandwich variance estimates are
used in the setting of infrequent binary environmental exposures.
Methods exist for improving small-sample properties of robust variance

estimates in the context of GEE analysis, but they have not been evaluated in
the context of data from related individuals. Specifically, type I error rates can
be controlled by modifying the variance estimates and/or the reference
distribution used to compute P-values.8,19

Options for alternate variance estimates include (1) reducing bias in the
sandwich variance estimate by incorporating an expression for the leverage of
each cluster in estimation of the cluster-specific variance, as proposed by Mancl
and DeRouen,20 (2) pooling data across clusters to estimate a common
correlation matrix, decreasing the reliance on a single cluster’s information in
the estimation of the variance, as proposed by Pan,21 and (3) a combination of
the previous two methods that further improves small-sample performance,
proposed by Wang and Long.19 Pan’s method, and thus Wang and Long’s

(WL’s) method, rely more heavily on model assumptions, requiring that the
conditional variance of the outcome given covariates be correctly specified and
that a common correlation structure exists across all subjects.
Either separately or in combination with alternate variance estimates, control

of type I error rate can be improved by changing the reference distribution used
to calculate P-values from a normal reference distribution to a t-reference
distribution.22,23 The t-reference distribution requires an estimate of degrees of
freedom, which incorporates the variability in the variance estimate, giving a
more accurate computation of the P-value. For infrequent binary exposures,
a rough approximation to degrees of freedom can be obtained by estimating the
size of the smallest gene–environment stratum, which is the SNP-specific
number of independent observations with a minor allele and positive exposure
status.8 For cross-sectional data, assuming trait correlation of 0.5 between
siblings, this approximation would be twice the minor allele frequency (MAF)
times the average of the number of exposed participants and the number of
sibships with at least one exposed participant, times the imputation quality for
imputed SNPs. For longitudinal data, we approximate the degrees of freedom
to be twice the MAF times the number of participants exposed at one or more
measurement times, times the imputation quality for imputed SNPs.
Alternatively, Pan and Wall23 suggested an approximation to degrees of
freedom for GEEs that is based on Satterthwaite’s approximation.22 Pan and
Wall’s approximation can be used in the context of alternate standard error
(SE) estimates, as discussed by Wang and Long.19

Simulations
We conducted extensive simulation studies to evaluate the relative performance, with
respect to type I error rate, of methods for testing gene–environment interactions
with family data. Under the null hypothesis of no interaction, uniformity of P-values
was assessed visually by plotting the ratio of observed to expected P-values versus
expected P-values, with both quantities on a − log10 scale, and inclusion of 95%
confidence bands. We evaluated methods across a range of MAF, exposure
frequency, family structure, and number of observations per individual.
For each set of simulated data, we included 1000 individuals with exposure

status drawn randomly from a binomial distribution, genotype based on
random mating and no mutations, and outcomes generated under the null
hypothesis of no SNP, exposure, or SNP× exposure effects. We considered two
different relationship structures: (1) nuclear families with three offsprings, that
is, 200 families each of size five, and (2) three-generational families comprised
of first-generation parents with two offspring, those offspring’s spouses, and
their four children (one from one family and three from the other), as depicted
in Supplementary Figure 1,24 that is, 100 families each of size 10. Genotypes
were first assigned to founders in the simulated data set based on random
generation of each of two alleles from a binomial distribution, and then
genotypes were iteratively assigned to individuals in subsequent generations by
randomly choosing an allele from each parent’s pair. Outcomes were generated
from a multivariate normal distribution with mean zero and variance equal to
the sum of the heritability times twice the kinship matrix plus one minus the
heritability times an identity matrix. Heritability was assumed to be 0.5.
In cross-sectional simulations, we included one observation per person,

whereas in longitudinal simulations, we included four observations per person.
In the latter scenario, the non-heritable contribution to the variance was split
into variability due to a person-specific random intercept and that due to
measurement error. Exposure was allowed to change within person,
varying randomly across observations. All simulations were conducted in
R version 3.0.0,25 and were repeated one million times for each setup, allowing
assessment of the P-value behavior to ~ 1E− 5.
Further simulations were carried out to evaluate larger nuclear families,

smaller numbers of individuals, exposure clustered within families, exchange-
able data generation, a null hypothesis of no SNP× exposure effects in the
presence of SNP and exposure main effects, and model misspecification.
Specifically, model misspecification was introduced via heterogeneity of
outcome variance: variance among exposed individuals was twice as high as
variance among unexposed individuals.
LMMs and GEE methods were evaluated. With cross-sectional data, LMMs

were fitted using the lmekin function from the kinship package, including a
random polygenic effect; with longitudinal data, LMMs were fitted using the
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pedigreemm function from the pedigreemm package, including both a random
polygenic effect and a person-specific normal random effect. With both
cross-sectional and longitudinal data, GEE models were fitted using a working
independence correlation matrix, clustered on family. In addition to traditional
Huber–White (HW) sandwich variance estimates, which were implemented
using the boss package, we also computed Mancl and DeRouen’s (MD’s)
alternate estimator and WL’s alternate estimator. We do not include Pan’s
estimator, as it is quite similar to WL’s estimator. Because of the additional
matrix multiplication and inversion that is necessary for each individual cluster,
the MD estimator requires ~ 15 times more computational time than the HW
estimator. Further, we estimated degrees of freedom in two different ways: (1)
using Pan and Wall’s implementation of Satterthwaite’s methods (t), included
in the boss package, and (2) using the approximate number of independent
observations with a minor allele and positive exposure status (t2). We then
calculated alternate P-values using t-reference distributions with these estimates
of degrees of freedom in place of the usual normal distribution. R code to
compute the alternate variance estimators for GEE methods and the corre-
sponding degrees of freedom for a t-reference distribution can be downloaded
from https://goo.gl/F3AMus.

Application description
In the context of the pharmacogenetics working group within the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE),26 there is
strong interest in gene–drug interactions. Several cohorts in the CHARGE
consortium, including the FHS,27–29 have data from multigenerational families.
The Original FHS cohort was recruited in 1948 and includes 5209 participants
from Framingham, Massachusetts, USA. Original cohort members have
attended exams every other year to investigate cardiovascular disease and
related risk factors. The Offspring cohort was initiated in 1971 and includes
5124 children of the Original cohort and the children’s spouses. Offspring
cohort participants have attended exam visits roughly every 4 years. Last, the
Third-Generation cohort, recruited in 2002, is comprised of 4095 children of
the Offspring cohort and have completed two exams 6 years apart.
To illustrate the methods discussed in this manuscript, we focus on

evaluation of drug–gene interactions on fasting glucose levels, and the drug
of interest is statins. Statins are well known for their capacity to decrease
concentrations of low-density lipoproteins and to reduce the incidence of
coronary heart disease,30 but they have also been associated with an increased
risk of diabetes. In meta-analyses, patients who use intensive-dose statins have
an increased risk of developing diabetes compared with those using moderate-
dose statins (odds ratio 1.09).31 The aim of our drug–gene interaction analysis
was to identify genetic variants that are associated with interindividual variation
in glucose concentration changes in response to statin treatment. Glucose levels
serve as a surrogate for diabetes status. If drug-induced changes in glucose levels
and diabetes risk have a genetic basis, we may one day be able to assess risk of
these side effects before initiating drug use.
Analyses used fasting glucose as the trait of interest, with exposure to statins

assessed by medication inventory. Participants were excluded if they were
treated with non-statin cholesterol-lowering medications (without concurrent
statin use). An additive genetic model, using imputed SNP dosages, was used.
Those with diabetes at baseline were excluded. Repeat fasting glucose levels that
were obtained while participants were taking anti-diabetic medications were
also excluded. Covariates included age, gender, body mass index at baseline,
subcohort within FHS, and principal components for ancestry. SNPs with MAF
≤ 1% were excluded from the analysis. Although the analyses that will
contribute to larger CHARGE meta-analyses include longitudinal data from
all available visits, we also include baseline cross-sectional analyses in this
manuscript to illustrate relative performance of methods.

RESULTS

Simulation results
Figure 1 displays results from simulations using data with different
family structures and numbers of observations per person. Specifically,
the top row (1(a) and 1(b)) uses data from 200 nuclear families, each
of size five, whereas the bottom row (1(c) and 1(d)) uses data from
100 three-generational families, each of size 10. The left column

(1(a) and 1(c)) uses a single cross-sectional measurement, MAF= 0.10
and P(exposure)= 10%, whereas the right column (1(b) and 1(d))
uses four longitudinal measurements, MAF=0.05 and P(exposure)=5%.
The relative performance of LMMs and GEE methods is consistent
across these scenarios. At the low combinations of MAF and exposure
frequency that are the focus of our simulations, with a correctly
specified model, LMMs perform well, whereas GEE methods with
traditional HW variance estimates and a normal reference distribution
have inflated type I error rates. The inflation in type I error rate can be
attenuated by using methods designed for small numbers of clusters,
such as alternate SE estimates and use of a t-reference distribution.
Specifically, both the traditional HW variance estimator and the
alternate MD variance estimator, both using a t-reference distribution
with Satterthwaite estimates of degrees of freedom, decrease type I
error rate substantially. The alternate WL estimator, even without a t-
reference distribution, decreases type I error rate further, bringing it
down to desired levels. The HW estimator with a t-reference
distribution using the more approximate degrees of freedom (t2) also
decreases type I error rate to desired levels.
As MAF and exposure prevalence increase, all methods converge to

appropriate levels of type I error, with the exception of GEE methods
using a normal reference distribution, which would require bigger
sample sizes for MAF on the order of 0.10 (Figure 2). At MAF of 0.40
and exposure of 40%, the HW estimator with the t-reference
distribution using approximate degrees of freedom (t2) no longer
performs much better than the HW estimator with a normal reference
distribution, illustrating that this rougher estimate of degrees of
freedom has less desirable asymptotic properties than the Satterthwaite
estimate of degrees of freedom.
The initial results in Figures 1 and 2 reflect performance of these

methods when the model is correctly specified. Both LMM and the WL
variance estimator rely, at least in part, on correct model specification.
When heteroscedasticity is introduced into simulations, as in Figure 3,
both of these methods have inflated type I error rates. Other methods
have poorer performance than they did when the model was correctly
specified, but their relative performance is unchanged.
Quantile–quantile (QQ) plots of − log10 P-values corresponding to

Figures 1–3 can be found in Supplementary Figures 2–4.
None of the other sensitivity analyses – allowing exposure to be

clustered in families, increasing the size of the nuclear families, generating
exchangeable data instead of using a random effect based on kinship,
decreasing the total sample size, and simulating under a null hypothesis
of no SNP×exposure effects in the presence of SNP and exposure main
effects – changed the relative performance of the methods.

Application results
Figure 4 shows results in FHS data from mixed models and the various
GEE methods examined in simulations. Based on the anticonservative
P-values observed using mixed models and GEE with WL’s SE
estimates, there is reason for concern about model misspecification,
probably due to heterogeneity in outcome variance by drug exposure
status. Among the remaining GEE methods, results are consistent
with our expectations – there is inflation in QQ plots using HW SE
estimates with a normal reference distribution, but this inflation is
attenuated with use of a t-reference distribution and/or MD
SE estimates. With cross-sectional data, there is not sufficient
information to accurately estimate degrees of freedom using
Satterthwaite’s approximation, so substantial inflation remains unless
a more approximate estimate of degrees of freedom is used for the
t-distribution. However, with longitudinal data, Sattterthwaite’s
approximation to degrees of freedom works well.
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With only data from FHS, in the longitudinal analyses using GEE
with modified SE estimates and/or a t-reference distribution, no single
SNP has a P-value for interaction that is less than a genome-wide
significance level of 5E− 8. However, substantial gains in power will be
achieved by combining FHS data with data from other studies in the
CHARGE consortium; more definitive assessments of SNP–statin
interactions on glucose levels will be made in that context.

DISCUSSION

In this article, we have evaluated the performance of methods for
genome-wide evaluation of gene–environment interactions in data
from related individuals. LMMs perform well in simulations, when
model specification is correct. In applications, we will never know for
sure that the model is correct, thus we recommend GEE methods that
require special handling of small samples, but do not rely on correct
model specification. When exposure prevalence and/or MAF is low,
standard GEE tests using a normal reference distribution show
evidence of inflated type I error rate. This inflation can be attenuated
using methods designed for small numbers of clusters, such as more
complicated robust SE estimates and/or a t-reference distribution.

Alternate SE estimates improve performance, with WL’s method
performing better than MD’s under correct model specification.
However, the improvement comes at the cost of computing time
for MD’s method. Further, WL’s estimates rely more heavily on model
assumptions, and do not perform well when the model is misspecified;
for instance, when there is heterogeneity in outcome variance across
exposure groups. Using a t-reference distribution in place of the
typical normal reference distribution also improves performance.
Using rough estimates of degrees of freedom (t2) can decrease
inflation more than using Satterthwaite estimates of degrees of
freedom (t); however, when this is true, MD’s SE estimate performs
better than either modification using typical sandwich SE estimates.
When designing genome-wide analyses of gene–environment

interactions in family data, we recommend careful consideration of
the potential for model misspecification and of the potential for small-
sample problems. Given the importance of allowing for model
misspecification when evaluating gene–environment interactions,
robust methods are generally recommended; however, in scenarios
where model misspecification is unlikely, mixed models using model-
based SE estimates could be implemented. When variants with low

Figure 1 Plots showing the ratio, on a − log10 scale, of observed P-values relative to expected P-values. Each plot is derived from one million simulations.
Simulated data in the top row are from 200 nuclear families, each of size 5, whereas data in the bottom row are from 100 three-generational families, each
of size 10. (a and c) Assumes a single cross-sectional measurement with MAF=0.10 and P(exposure)=10%, whereas (b and d) assumes four longitudinal
measurements with MAF=0.05 and P(exposure)=5%. GEE models use either HW, MD, or WL SE estimates, with reference distribution being normal (n), t
with Satterthwaite estimates of degrees of freedom (t), or approximate estimates of degrees of freedom (t2).
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MAF and/or infrequent exposures are of interest, a modification to
standard GEE methods will be useful. If computational burden is a
substantial factor, then typical HW SE estimates with a t-reference
distribution are recommended; however, in general, MD SE estimates
with a t-reference distribution have superior performance.
Our evaluations have focused on the problem of getting type I error

correct. However, it is worth considering the relative power of
methods with appropriate type I error rates. As might be expected,
the methods that exploit modeling assumptions, when these assump-
tions are valid, have the highest power. For example, when models are
correctly specified, LMMs have the highest power and GEE models
using WL’s method are next best. Both of these methods break down
when there is model misspecification, in which case the relative power
is not terribly different across the remaining GEE methods. Typical
robust variance estimates with a t-reference distribution have slightly
higher power than MD’s method, but they also break down more
easily with small effective sample sizes, making the power gain
irrelevant. The bottom line is that there is a tradeoff between
robustness to model misspecification and power, with the methods
that make stronger assumptions having more power when those
assumptions are valid.
The focus in this article has been on analysis of quantitative traits;

further research is needed to guide analytic decisions when binary
disease traits are of interest. In the cross-sectional case, consideration of
two-step, empirical Bayes, and various hybrid approaches32 would be
warranted, provided that they could accommodate the correlation
within families. Both GEE methods, and LMMs, have standard
extensions to binary outcomes using logistic link functions. However,
the interpretation of results is complicated by the non-collapsibility of
the logistic link function, and non-convergence can be a substantial
hurdle in fitting generalized LMMs. Owing to differing interpretations,
direct comparisons between GEE methods and LMMs would no longer
be justified. However, both the modifications to variance estimates and
the small-sample correction that uses a t-reference distribution were
derived in the general case that can incorporate the logistic link
function, thus the GEE methods discussed here can also be applied to
binary disease traits.
Population substructure can lead to spurious findings in genetic

analyses. The methods that we discuss in this manuscript use

adjustment for principal components to account for genetic sub-
structure. It is known that mixed models provide more robust
protection against cryptic relatedness and population structure than
GEE models with principal component adjustment.33,34 Yet in the
context of gene–environment interactions, as we have shown, the
model-based SEs from mixed models are not always adequate.
Given family-based data collection, there are additional alternatives
that use the information within families to account for genetic
substructure. Moreno-Macias et al.35 discuss relevant methods for
exploring gene–environment interactions, both cross-sectionally and
longitudinally, by incorporating information from a case-parent
design.35 These methods include extensions of the family-based
association test and adjusted linear mixed models. Although these
within-family methods protect against population substructure, the
authors do not compare them to ordinary mixed models that adjust
for principal components, which could alleviate some of the bias from
using mixed models that do not adjust for principal components.
Further, they show substantial loss of power using the within-family
methods in scenarios where other methods give unbiased estimates.
Therefore, we recommend consideration of within-family methods in
family-based studies where population substructure and/or admixture
have been shown to be problematic even after adjustment for principal
components, with the caveat that the model-based SE estimates may
not be adequate. However, for many family-based cohort studies,
principal components are adequate to adjust for population
substructure,36 thus the increased power gained from using methods
that do not make within-family comparisons justifies their use.
In observational cohort studies such as the FHS, confounding by

indication and time-dependent confounding (in the longitudinal case)
could present additional challenges in the evaluation of gene–
environment interactions. Causal methods that incorporate propensity
scores or marginal structural models might alleviate these potential
biases. However, more work is needed to guide their implementation
in the context of GWAS.
In summary, the choice of methods for analyzing gene–environ-

ment interactions should take into account multiple factors, including
population substructure, model specification, and amount of data that
will inform interaction estimates. Particularly when data are sparse,

Figure 2 Plots showing the ratio, on a − log10 scale, of observed P-values relative to expected P-values. Each plot is derived from one million simulations.
Simulated data are single cross-sectional measurements from 100 three-generational families, each of size 10. (a) Assumes MAF=0.10 and
P(exposure)=40%, whereas (b) assumes MAF=0.40 and P(exposure)=40%. GEE models use either HW, MD, or WL SE estimates, with reference
distribution being normal (n), t with Satterthwaite estimates of degrees of freedom (t), or approximate estimates of degrees of freedom (t2).

Gene–environment interactions in family data
CM Sitlani et al

1026

European Journal of Human Genetics



Figure 3 Plots showing the ratio, on a − log10 scale, of observed P-values relative to expected P-values. Each plot is derived from one million simulations.
Simulated data are from 100 three-generational families, each of size 10. Models are misspecified because outcome variance is twice as high among
exposed participants as it is among unexposed participants. (a) Assumes a single cross-sectional measurement with MAF=0.10 and P(exposure)=10%;
(b) assumes four longitudinal measurements with MAF=0.05 and P(exposure)=5%; and (c) assumes a single cross-sectional measurement with MAF=0.10
and P(exposure)=40%. GEE models use either HW, MD, or WL SE estimates, with reference distribution being normal (n), t with Satterthwaite estimates of
degrees of freedom (t), or approximate estimates of degrees of freedom (t2).

Figure 4 QQ plots of − log10(P-values) obtained from analysis of SNP–statin interactions on fasting glucose levels in FHS. (a) Uses only data from the first
visit for each person, whereas (b) uses data from all visits with available measures of glucose and drug use. GEE models use either HW, MD, or WL SE
estimates, with reference distribution being normal (n), t with Satterthwaite estimates of degrees of freedom (t), or approximate estimates of degrees of
freedom (t2).
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we recommend modified GEE methods that improve small-sample
performance and provide robustness to model misspecification.
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