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Summary

Bruton’s tyrosine kinase (BTK) mediates B cell signaling and is also present in innate immune 

cells but not T cells. BTK propagates B cell receptor (BCR) responses to antigen-engagement as 

well as to stimulation via CD40, toll-like receptors (TLRs), Fc receptors (FCRs) and chemokine 

receptors. Importantly, BTK can modulate signaling, acting as a “rheostat” rather than an “on-off” 

switch; thus, overexpression leads to autoimmunity while decreased levels improve autoimmune 

disease outcomes. Autoreactive B cells depend upon BTK for survival to a greater degree than 

normal B cells, reflected as loss of autoantibodies with maintenance of total antibody levels when 

BTK is absent. This review describes contributions of BTK to immune tolerance, including studies 

testing BTK-inhibitors for treatment of autoimmune diseases.
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Introduction

The primary contribution of Bruton’s tyrosine kinase (BTK) to human health is to support 

humoral immunity, as demonstrated by its first mention in the literature, a description of a 

boy who was highly susceptible to infection with encapsulated bacteria (1). This report, by 

Colonel Ogden C. Bruton, described a disease that came to be known as X-linked 
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agammaglobulinemia (XLA). Patients with XLA lack most antibodies, yet they can do 

relatively well with treatment, consisting of regular administration of replacement 

immunoglobulins from pooled human serum, and antibiotics (2, 3). The protein defective in 

XLA was discovered in 1993, both in humans and in the similar X-linked immunodeficiency 

(xid) mouse model, and is now known as Bruton’s tyrosine kinase (4–8). That same year, xid 
mice were reported to be protected against collagen-induced arthritis (CIA), the first report 

to specifically link Btk with autoimmune inflammatory arthritis (9). Since that time, BTK’s 

structure and function have been painstakingly delineated and a profusion of small 

molecular BTK-inhibitors has been developed for use in lymphoma and autoimmune 

disease(10–22). There is evidence from mouse models that Btk has a special role in 

governing immune tolerance in B cells (23–26). Thus, unlike other methods of targeting B 

lymphocytes, BTK inhibitors hold promise for improving B cell-related autoimmunity 

without inducing the degree of immunodeficiency seen in XLA. This review describes the 

known features of BTK pertinent to immune tolerance and its potential as a therapeutic 

target in autoimmunity.

B cell contributions to autoimmunity

B cell signaling is critical to B cell tolerance, and BTK plays a central role. Autoantibodies 

are often considered to be a readout of autoreactive T cell help, but this approach ignores 

contributions of B cell intrinsic tolerance mechanisms, which begin in the bone marrow, 

prior to T cell interactions. Approximately 70–80% of developing B cells are autoreactive, 

but most are culled at the immature stage via a process known as receptor editing or by 

apoptosis (27). In genetic backgrounds that favor autoimmunity this selection process is 

flawed, and there are increased numbers of naïve autoreactive B cells available to interact 

with T cells (28–30). These B cells act as antigen-presenting cells (APCs), specialized to 

concentrate autoantigen, and can be the exclusive APC that drives T cell mediated 

autoimmunity (31–33). B cells also produce cytokines and have regulatory functions (34). B 

cells in inflamed tissue may have specialized roles, as their removal can prevent autoimmune 

disease, even when T cells remain (35, 36). B cell responses in germinal centers that form in 

these inflamed tissues may lead to autoantibodies and autoreactive memory B cells. 

Therefore, understanding how B cell signaling mediates B cell tolerance is a key to 

preventing and treating autoimmune disease (23–26, 37, 38).

BTK-mediated signaling

The B cell receptor (BCR) is the primary sensor that initiates signaling (Figure 1). There are 

two primary components of the BCR: Membrane-bound antibody, and Igα/Igβ heterodimers 

that provide the cytosolic signaling function. Each B cell expresses 2 × 105 identical BCRs, 

and antigen-engagement triggers the signaling cascade, prompting phosphorylation by SRC-
family kinases of immunoreceptor tyrosine-based activation motifs (ITAMs) on Igα and Igβ 
(39). Dual phosphorylation of these ITAMs allows spleen tyrosine kinase SYK to dock and 

become activated(40). These proximal, or initiating, signaling components are critical to the 

survival of B cells, and loss of any of these components results in severe depletion of the B 

cell compartment. Initiation of the signaling cascade affects multiple components that 

interact to propagate the signal. BTK is a 659 amino acid protein, arranged in five domains 

that enable multiple functions (Figure 2 and (41)). The N-terminal pleckstrin homology (PH) 
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domain binds phosphatidylinositol 3,4,5-triphosphate (PIP3) generated by phosphoinositide 

3-kinase (PI3K) in response to BCR signaling, resulting in recruitment of BTK from the 

cytosol to the cell membrane. The PH domain of Btk is critical, as xid mice that have a 

mutation (R28C) in this component have a phenotype that is almost identical to that of Btk-

deficient mice in which the protein is absent (6–8, 10, 42, 43). BTK’s SRC homology 2 

(SH2) domain binds phosphorylated tyrosines, which facilitates docking to the adaptor 

protein BLNK, a signalosome hub that anchors multiple proteins in close proximity for 

signaling interactions. BTK is activated by tyrosine phosphorylation at Y551, classically 

accomplished by LYN, as well as by SYK, which requires BLNK docking to facilitate this 

interaction (17, 44, 45). BTK’s SRC homology 3 (SH3) binds various other proteins, in 

some cases dependent on its own autoregulated phosphorylation status (17, 41, 46). Thus, 

BTK has docking functions, as well as enzymatic activity, and there is evidence that it may 

make important contributions as an adaptor molecule, independent of its catalytic function 

(11, 12, 22). This has potentially important implications for predicting and understanding the 

effects of small molecular inhibitors that exclusively target the kinase function. The primary 

action of BTK’s kinase domain is to phosphorylate phospholipase C gamma 2 (PLCγ2), 

which then cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to generate two second 

messengers, inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) (41, 47). IP3 binds 

its receptor on the endoplasmic reticulum to initiate calcium flux, leading to nuclear 

transport of the transcription factor nuclear factor of activated T cells (NFAT). DAG 

activates Protein Kinase C β (PKCβ) with downstream activation of the NFκB pathway, as 

well as several mitogen-activated protein kinase (MAPK) pathways(15, 48–50). Of note, 

BTK also mediates signaling via CD40, Fc Receptors, chemokine receptors and TLRs, in 

myeloid cells as well as in B cells, although many of those pathways are less well-defined 

(10, 14, 15, 37, 49–53).

BTK regulation of B cell signaling responses relevant to autoimmunity

B cells are highly sensitive to the loss of proximal signaling proteins such as IgM or Syk, 

which cause B cell immunodeficiency(54–56). However, proteins involved in signal 

propagation can modulate signal responsiveness, rather than turning it on or off. Because 

tolerance induction and maintenance require nuanced responses to signaling, these proteins 

are good targets for fine-tuning and improving tolerance, and Btk regulation in mouse 

models has been shown to be important for B cell tolerance. Transgenic Btk overexpression 

causes a systemic lupus erythematosus-like disease, propagated by spontaneous germinal 

centers and autoantibody formation (25), and a model featuring constitutively activated Btk 

results in autoreactive IgM plasma cells (57). Conversely, Btk expression at 25% normal 

levels abrogates autoantibody production and an autoimmune syndrome produced in lyn-

deficient mice (23). Autoreactive-prone B1a cells and anergic (An1) B cells both rely on 

Btk, and our lab has shown that Btk-deficiency eliminates 95% of anti-insulin B cells and 

protects against Type 1 diabetes (T1D) in nonobese diabetic (NOD) mice (10, 26, 37). Btk 

may also affect cytokine contributions to autoimmune disease, by supporting IL10 

production by B cells(38). We showed that this B cell cytokine alteration may have 

downstream effects on T cells from Btk−/−/NOD mice, which also produce lower levels of 

IL10 in response to stimulation with anti-CD3/anti-CD28. This was specific to IL10, as 

IFNγ and IL17 production were normal (37). Importantly, IL10 has been shown to drive 
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autoantibody production by human B cells from patients with systemic lupus erythematosus 

(SLE, lupus) and IL10 blockade has provided protection against lupus in the NZB x NZW 

model (58, 59).

Functional outcomes of BTK deficiency in humans

XLA is caused by more than 600 different mutations in the BTK gene, and is characterized 

by near-complete absence of B cells in humans, due to developmental arrest at the pre-B cell 

stage. These patients have fewer than 1% normal B cell levels, undetectable plasma cells, 

and very low serum immunoglobulin levels (1, 60–62). They are highly susceptible to 

infections with encapsulated bacteria that cause pneumonia, otitis media and sinusitis, 

requiring lifelong immunoglobulin replacement purified from donor pools. This treatment 

generally allows patients to live otherwise healthy lives, implying that BTK’s primary 

importance in humans resides in humoral immunity(2, 3). Patients with XLA are not 

generally thought to develop autoimmune disease, despite the fact that their few remaining B 

cells have an immature, high-IgM, phenotype, and are enriched for polyreactive, 

autoreactive-prone specificities (62, 63). There has been only one report of a patient 

developing T1D and a few reports of juvenile arthritis (64–66). Of note, however, a recent 

survey of XLA patients showed a majority had some self-reported symptoms consistent with 

inflammation or autoimmunity, although few had been formally diagnosed with autoimmune 

disease(67). The authors of that study noted that so little antibody is present that it is 

unlikely to cause these findings, but hypothesized that myeloid cell defects might contribute. 

Indeed, macrophages, neutrophils, dendritic cells and mast cells also express BTK (51, 68–

71), although its role is not well-defined in those cell types. Some TLR responses are 

aberrant in the absence of BTK, which could contribute to susceptibility to infectious 

diseases (72, 73). In addition, overproduction of inflammatory cytokines in response to TLR 

signaling has been reported, which could contribute to inflammation in XLA patients (74, 

75). In mouse models, Btk-deficient bone marrow-derived dendritic cells (BMDCs) 

exhibited increased levels of CD86 in response to lipopolysaccharide (LPS), and became 

antigen-presenting MHC class-IIhigh cells at a higher rate than their Btk-sufficient 

counterparts. This inflammatory phenotype was linked to a decreased ability of these 

BMDCs to produce IL-10, impairing the regulation of these cells (71).

BTK-deficiency as models for BTK-inhibitors

It is important to recognize that BTK-deficiency in human patients does not predict BTK 

inhibitor effects, for at least two reasons. First, BTK is a complex molecule with multiple 

functions, as discussed above. (Fig 2 and (11)). BTK-inhibitors target only the kinase 

domain, leaving other BTK activities intact, and in fact, ibrutinib does not recapitulate the 

XLA phenotype, as it does not reduce total IgG levels(19). Second, patients suffering from 

autoimmunity have a full repertoire of mature B cells, including those with normal and 

autoreactive specificities, cell populations not available for study in XLA patients. Thus 

there is no “natural experiment” in humans that allows in vivo evaluation of BTK function in 

mature B cells, or to differentiate their effects on autoreactive versus normal B cells. Btk-

deficient murine B cells offer an advantage for these studies. Although they show slight 

delay in developmental progression at the pre-B cell stage, in addition to decreased Vκ 
transcription, this is offset by increased IL-7-driven proliferation that allows development of 
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mature peripheral B cells for study of BTK function (76, 77) Btk-deficient murine B cells in 

the periphery have a developmental block in maturation at the transitional stage, but have 

50–80% of normal B cell numbers, and contain some B cells in all subsets except for 

peritoneal B1a cells (8, 10, 37). These Btk-deficient B cells are suboptimally activated in 

response to stimulation of BCR, CD40, and TLRs (10, 37). While deficient in T-independent 

humoral responses, they are nevertheless able to respond to T-dependent immunizations. 

This suggests that B cells that have matured beyond the bone marrow stage may not rely 

heavily on Btk to respond to T cell-dependent vaccines (41). Therefore using small 

molecular inhibitors to target BTK in humans with mature B cells may not cause major 

humoral immunodeficiency, in contrast to XLA, in which B cells lack BTK from birth.

BTK contributions to pre-clinical models of autoimmune disease

Studies identifying a role for Btk in autoimmunity began using the xid mouse model more 

than a decade before the protein itself was discovered (Table I). Most of these early studies 

tested this x-linked antibody defect in a variety of murine models that depend upon 

autoantibodies, such as SLE and hemolytic anemia. The first of these used F1 males of New 

Zealand Black (NZB) mice crossed with CBA/N mice that carried the xid mutation during 

studies to understand gender differences in autoimmunity and showed data suggesting 

reduced autoantibody (anti-erythrocyte) production (78). The same group next found that 

NZB mice with the xid mutation did not develop anti-DNA antibodies, while aged (16 

month old) MRL/1 mice with xid still did (79). The authors noted that NZB autoantibodies 

are mostly IgM and likely to arise from the T-independent B1 subset that is absent in xid 
mice, while MRL/1 autoantibodies were mostly IgG, associated with T cell driven 

lymphoproliferation. These findings implied that different B cell subsets and immune 

processes were responsible for the autoantibodies in the different models. Of note, a second 

group found that anti-erythrocyte and anti-DNA autoantibodies did occur in some NZB mice 

with xid, implying heterogeneity in this model (80). Next, congenic NZB mice with only the 

xid component of the CBA/N strain were developed (81). These mice were protected against 

autoantibody production, splenomegaly, hemolytic anemia, and early death, despite retaining 

the T cell abnormalities associated with NZB mice. Further work with this model showed 

that aging, or polyclonal stimulation with TLR ligands, could overcome disease 

protection(82, 83). Additional murine models of SLE, including NZBxNZW, C3H.gld/gld, 

and MRL.lpr/lpr have also been crossed with xid mice with similar results (Table I and 

references (84–86)). The first published work to use Btk-deficiency in a model of 

autoimmune arthritis was performed as part of a study of x-linked genes in 1993, just prior 

to identification of the protein responsible for the defect. The xid locus from CBA/N mice 

was crossed onto DBA/1 mice. DBA/1-xid offspring proved resistant to induction of 

collagen-induced arthritis, and failed to develop autoantibodies to type II collagen (9). 

Fourteen mice were used in this experiment, and the mechanism of disease protection was 

not elucidated at that time, although the findings were considered surprising, since CIA 

depends on T cells, and T cell-dependent B cell responses, not thought to be affected by xid. 

Our lab recently used the K/BxN spontaneous and serum transfer models to further 

investigate the role of Btk in arthritis, and discovered that its primary contribution is in the B 

cell compartment, especially germinal center development and function. Interestingly, 

autoantibodies were severely reduced while total IgG remained at near normal levels in Btk-
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deficient K/BxN mice, and spontaneous autoimmune arthritis was strikingly reduced (87). 

However, Btk-deficient recipients of K/BxN serum transfer developed arthritis at the same 

rate as Btk-sufficient littermates, indicating that innate contributions to arthritis are not 

affected by loss of Btk. This differs from a number of studies using BTK inhibitors that have 

shown efficacy in both innate and adaptively driven forms of autoimmune arthritis (88–90). 

These findings suggest that off-target effects of the inhibitors may contribute to their disease 

outcomes, and highlight the importance of including genetic approaches to define functional 

effects of Btk, rather than relying exclusively on inhibitors. We have also shown that Type 1 

diabetes (T1D), considered to be T cell-mediated, is prevented by Btk-deficiency in the 

nonobese diabetic (NOD) mouse model of this disease, despite the absence of this protein in 

T cells, reinforcing the evidence that the primary function of B cells in this disease is to 

present autoantigens to T cells (31–33, 37). Anti-insulin B cells and autoantibodies were 

severely reduced, while total B cell numbers and total IgG levels were not (26, 37). We also 

showed that Btk supports naturally occurring autoreactive-prone anergic (An1) and 

autoreactive marginal zone (MZ) NOD B cells (26, 37, 91), which may also have 

implications for arthritis, as this subset was recently shown to be a primary source of anti-

collagen B cells in collagen-induced arthritis (92).

BTK inhibitors

The recognition of BTK as an important B cell target has generated a race to produce BTK-

specific kinase inhibitors. The first inhibitor was described in 1999, and now dozens of 

recent publications report the outcomes of pre-clinical and clinical trials for these drugs, 

including ibrutinib, CC-292, RN486 and CGI1746 (Table II and (18, 21, 53, 88–90, 93–

101). Many BTK-inhibitors are dosed orally and appear to be fairly well tolerated (18). 

Ibrutinib was recently the first-in-class to be FDA approved for treatment of mantle cell 

lymphoma and Waldenstrom macroglobulinemia (101, 102). This orally dosed daily drug is 

an irreversible inhibitor that binds BTK Cys481 (103). The irreversibility allows it to bind 

BTK in cells for 24 hours, even though the serum half-life is 2–3 hours, a feature which is 

thought to reduce side effects. Known off-target binding includes EGFR, HER2, HER4, 

BMX, JAK3, TEC and BLK (21). Ibrutinib also binds interleukin-2-inducible T cell kinase 

(ITK), shifting T cells away from TH2 toward TH1 cytokine profiles (103). Ibrutinib was 

shown to prevent both collagen induced arthritis (CIA) and collagen autoantibody induced 

arthritis (CAIA), and to reduce inflammatory cytokine release by macrophages and 

monocytes (89). CGI1746 stabilizes BTK in an inactive nonphosphorylated enzyme 

conformation, and was found to decrease FcγR mediated inflammation induced by immune 

complexes, and to prevent autoantibody production and arthritis in the CIA, CAIA, and 

K/BxN serum transfer models (88). CC-292 (formerly AVL-292) also binds Cys481 

irreversibly and prevented CIA as well as improving arthritis outcomes when used 

therapeutically after disease onset in that model (96). Of note, a search of ClinicalTrials.gov 

reveals an on-going study of CC-292 versus placebo as co-therapy with methotrexate in 

active rheumatoid arthritis (NCT01975610). RN486 is a reversible inhibitor shown to 

prevent and reverse autoimmune and inflammatory arthritis in CIA, CAIA, and rat adjuvant 

induced arthritis (AIA) (90, 104). An early, non-covalent, reversible, BTK-inhibitor, LFM-

A13 was shown to affect BTK responses and to effectively prevent graft-versus-host disease 

in murine allogenic bone marrow transplant studies (93, 105). However, it also has off-target 
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effects as well as a high IC 50 (17.2 μM), requiring high doses for effect, and use of this 

drug in pre-clinical trials has become less common recent years (99). This explosion in the 

number of therapeutic trials of BTK-inhibitors highlights the importance of fully 

understanding their mechanisms of action. Our data suggest that low, intermittent dosing 

might be used to eliminate autoreactive B cells without inducing global B cell 

immunodeficiency. Lower dosing may be particularly useful for improving specificity of 

drug action, as specific kinase inhibition is difficult due to similarities in the kinase domains 

of different proteins. These drugs are designed very carefully for exclusive binding of BTK, 

yet even the best are known to have off-target effects, which may affect outcomes (103). Of 

note, the fact that other kinase inhibitors have had difficulty translating to clinical use for 

autoimmune disease has raised some skepticism, leading some experts to express only 

guarded optimism about this class of drugs (106).

Early studies of B cell-related outcomes in patients on BTK-inhibitors

The effect of BTK inhibitors on normal or autoreactive human B cells is not yet known. 

Some recent studies of patients with B cell malignancies treated with ibrutinib show that 

immunoglobulin levels are not reduced, indicating that targeting BTK with inhibitors need 

not replicate the typical immunodeficient phenotype associated with XLA(19, 107, 108). For 

example, patients with chronic lymphocytic leukemia (CLL) treated with ibrutinub showed 

no reduction in IgG for the first 6 months, followed by a decrease of 23% at 24 months, then 

stabilizing after that. IgM increased transiently and IgA levels showed substantial and 

sustained improvement, doubling at 24 months. Patients with the best IgA recovery also had 

fewer infections and infection rate correlated with IgA, not IgG levels. Polyreactive IgM and 

IgA, but not IgG, antibodies also increased, thought to be concurrent with renewed B cell 

populations, but also possibly similar to polyreactive antibodies seen in XLA patients (63). 

The number of normal B cells increased but did not recover entirely, remaining abnormally 

low even at 24 months, even in patients with otherwise normal lymphocyte counts. B cell 

precursors were present in about half of bone marrow samples (109). This evidence of 

improvement from an impaired baseline after treatment needs to be replicated in patients 

who do not start treatment in a state of humoral immunodeficiency however. There is also 

early evidence from patients undergoing treatment for leukemia that BTK inhibitors may 

have a beneficial effect on autoimmunity. One retrospective study that assessed autoimmune 

cytopenias in CLL showed a much lower than expected incidence in patients treated with 

ibrutinib (110). This was not a randomized controlled trial, and also does not address 

autoimmunity in other disease processes, but is early evidence suggestive that BTK-

inhibitors may be useful for targeting autoreactive B cells in humans.

Conclusions

BTK structure, and function in murine B cells, has been well-defined since its discovery 

more than two decades ago. BTK contributions to human immunity are best-known by the 

defects conferred when it is absent, including loss of B lymphocytes and antibodies, while 

its role in shaping mature and autoreactive human B cell repertoires is not clear. BTK-

inhibitors target only the kinase domain and do not necessarily impair the linker function. 

Their use in humans so far does not appear to recapitulate the XLA phenotype, although 
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published studies at this time are limited to studies of patients with B cell related 

lymphomas. Furthermore, off-target effects of these drugs limit the interpretation of the role 

of BTK. Nevertheless, these drugs appear to be well-tolerated, and work in preclinical 

models suggests that they may prove useful for targeting autoreactive B cells in patients with 

autoimmune disease.

Expert Commentary

After more than two decades of careful work to understand BTK contributions to immunity 

and autoimmunity, we now stand at the verge of applying this knowledge to human health. 

Small molecular inhibitors are in the pipeline and the first is now in use in patients with B 

cell related lymphoma. Pre-clinical trials for autoimmunity are underway. Questions that 

must be answered include how these inhibitors affect patients, including normal and 

autoreactive B cells and antibodies as well as autoimmune disease outcomes, and potential 

for immunodeficiency. Given the fact that XLA patients have B cells that tend to be 

autoreactive it is also important to maintain vigilance for a possible increase in 

autoimmunity. B cell repertoire studies currently applied to patients with autoimmune 

disease would be valuable in understanding the impact of BTK inhibitors on patient 

repertoire (28, 63, 111). Also, BTK has been reported to have a role in B cell migration and 

adhesion (112), and in clinical trials with Ibrutinib-treated mantle cell lymphoma (MCL), 

patients exhibited egress of malignant cells from lymphatic tissue into peripheral blood 

(113). The impact of this mechanism of action may vary by autoimmune disease, as 

disruption of lymphoid structures by CXCL13 blockade has been shown in mouse models to 

ameliorate CIA and EAE (114, 115), but not T1D (116). Increased study of how 

lymphocytosis may affect autoimmune pathogenesis may be important in the future. In 

addition, the role of BTK in inflammatory responses mediated by innate cell populations is 

very poorly understood. Detailed studies of innate signaling responses such as those 

governed by TLRs have mostly been performed in B cells and there is evidence that BTK-

mediated myeloid cell responses to the same TLRs may differ. BTK inhibitors that recently 

became commercially available for research are currently commonly used in these 

investigations and results of those studies are often cited as evidence of BTK’s role in 

various signaling pathways. However, their off-target effects may confound some of those 

outcomes and other approaches using specific genetic targeting are also needed. 

Understanding which drug effects can be attributed to BTK signaling, and which may be due 

to off-target kinase binding, is important for these studies, as well as for best practices in 

drug design and dosing. Finally, some chronic lymphocytic leukemia (CLL) patients have 

been reported to develop resistance to Ibrutinib, through mutations affecting binding to BTK 

or by hyper induction of PLCγ2 (117–120). Though autoreactive B cells lack the oncogenes 

that drive B cell lymphomas to continuously proliferate, the possibility of acquired 

resistance should not be ignored when considering treatment with BTK inhibitors.

Five-year view

The rapid advances in the development of BTK-inhibitors, including their current use in 

cancer and clinical trials for autoimmunity, suggests that these drugs will be in clinical use 

for autoimmune disease within five years. It may be hoped that careful dosing would blunt 

autoimmunity without inducing immunodeficiency, which would represent an advance over 
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other anti-B cell drugs, such as rituximab, which eliminates all B cells. Caveats, however, 

are the unknown outcomes cited above, including the possible paradoxical increases in 

autoreactive B cells due to altered selection during development or in germinal centers, as 

well as the potential for immunodeficiency. Careful analysis of these outcomes during 

clinical trials will help refine the transition of this promising class of drugs into useful 

treatments for patients with autoimmune disease.
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Key Issues

• Autoreactive B cells depend more upon B cell signaling than normal B 

cells do, as indicated by loss of autoreactive prone B cells including 

B1a, An1, transgenic anti-insulin B cells, marginal zone B cells in the 

nonobese-diabetic mouse model of autoimmune diabetes.

• Total IgG is normal or near-normal while autoantibodies are 

significantly reduced in Btk-deficient mouse models.

• Btk-deficient mice can still make T-dependent immune responses, 

suggesting that precise BTK targeting may have an advantage over 

global B cell elimination for treatment of autoimmunity without 

induction of humoral immunodeficiency.

• X-linked aggamaglobulinemia cannot predict the potential effect of 

BTK-inhibitors on mature human B cells, as cells do not develop 

beyond the pre-B cell stage.

• BTK is a multi-component signaling protein with adaptor function as 

well as kinase function, and most kinase inhibitors target only the 

kinase component.

• Several BTK-inhibitors have proven effective in multiple pre-clinical 

models of autoimmune and inflammatory arthritis.

• Comparison of BTK-deficiency with effects of BTK-inhibition suggest 

that some proportion of their disease protective effects may be due to 

off-target binding.

• BTK-signaling in innate cells requires further investigation.#
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Figure 1. Simplified schematic of BTK’s position in the signaling cascade
Antigen-BCR binding triggers a signaling pathway in which BTK is recruited to the cell 

membrane from the cytosol, docks with the linker protein BLNK and phosphorylates 

PLCγ2, with downstream calcium flux and cellular activation via nuclear translocation of 

transcription factors NFκB and NFAT. Yellow=kinase, blue=adaptor, pink=transcription 

factor. Dashed arrows=multiple proteins involved. Inspired by Dal Porto and Cambier (129).
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Figure 2. Structural rendering of subunits of BTK
PH/Tec domain, blue and orange (130) (residues 2–170, 1BTK.pdb). SH3 domain, green 

(131)(residues 212–275, 1AWW.pdb). SH2 domain, purple (132) (residues 270–386, 

2GE9.pdb). Kinase domain, red (133) (residues 397–659, 1K2P.pdb). The arrangement of 

the structures is for context, and is not intended to imply relative position or lack of inter-

domain motion. PH=pleckstrin homology; SH=SRC homology. Image made with the 

PyMOL Molecular Graphics System, Version 1.6.0.0 (Schrödinger, LLC).
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Table I

BTK and autoimmunity in murine models

Autoimmune disease studies Model used Immune outcomes Disease outcomes

Hemolytic anemia
Ref: (78)
1979

CBA/N (xid) x NZB Reduced anti-erythrocyte antibodies N/D

Lupus
Ref: (79)
1980

CBA/N (xid) x NZB and CBA/N 
(xid) x MRL/1

Reduced anti-DNA antibodies in NZB 
(mostly IgM) but not aged MRL/1 
(mostly IgG).

N/D

Hemolytic anemia and Lupus
Ref: (80)
1980

CBA/N (xid) x NZB Found that some offspring did have 
anti-erythrocyte and anti-DNA 
antibodies, suggesting heterogeneity in 
the model.

N/D

Lupus
Refs: (81–83)
1981, 1982, 1987

NZB.xid Loss of anti-DNA autoantibodies.
Loss of splenomegaly.
T cell abnormalities of NZB were not 
reversed.

Protection from fatal renal 
disease. Disease could be 
restored by age or chronic 
stimulation with TLR 
ligands.

Lupus
Ref: (84)
1982

NZBxNZW.xid/xid Loss of anti-DNA autoantibodies, but 
not normal antibodies. Even 
immunization to DNA could not induce 
autoantibody formation.

Protection from fatal renal 
disease.

Lupus
Refs:(85, 86)
1983, 1987

MRL.lpr/lpr xid and C3H.gld/gld 
xid

Decreased autoantibody production, 
despite persistence of T cell 
abnormalities and lymphadenopathy.

Reduced renal damage and 
death from autoimmunity.

Collagen-induced arthritis 
(CIA)
Ref: (9)
(1993)

Xid Lack of antibodies against type II 
collagen

Protection against arthritis.

Lupus-like autoimmune 
disease induced by Lyn 
deficiency
Ref:(121, 122)
1998

Lyn-deficient xid and Btk−/−/ 
Lyn−/−

Severe reduction of B cell numbers and 
impaired B cell function;
Protection against autoantibodies seen 
in Lyn−/−

Protection against 
glomerulonephritis and/or 
splenomegaly seen in 
Lyn−/−

Lupus-like autoimmune 
disease induced by Lyn 
deficiency
Ref: (23)
2003

Btklo/ Lyn−/− Restoration of B cell numbers and 
function compared with Btk−/−/ Lyn−/−;
Protection against autoantibodies seen 
in Lyn−/−

Protection against 
splenomegaly seen in 
Lyn−/−

Experimental autoimmune 
encephalomyelitis (EAE)
Ref: (123)
2002

Myelin oligodendrocyte 
glycoprotein-induced (MOG)- 
EAE DBA/1-xid

Reduced anti-MOG antibodies; 
increased MOG-specific T cell 
responses without change in IFNγ

Reduced severity of EAE

EAE, Dextran sulfate sodium 
(DSS)-induced colitis, 
carrageenan-induced edema
Ref: (124)
2004

Xid mice Poor macrophage survival and 
production of reactive oxygen 
intermediates (ROI) in response to 
lipopolysaccharide (LPS); normal 
phagocytosis, normal CD80/CD86 
regulation, and near-normal motility of 
macrophages.

Reduced EAE, colitis and 
foot-pad edema

Lupus
Ref: (38)
2008

56R.Btk−/− and Btklo/56R.Btk−/− Loss of anti-DNA antibodies seen in 
56R model;
Btklo restored anti-DNA IgM but not 
IgG

ND

Lupus-like autoimmune 
disease
Ref: (25)
2012

B cell-specific BTK 
overexpression

Increased B cell activation and 
survival, spontaneous germinal centers, 
increased plasma cells and 
autoantibodies

Lupus-like autoimmune 
disease in lungs, kidneys 
and salivary glands

Type 1 diabetes
Refs: (26, 37, 91)

Btk−/−/NOD Loss of most anti-insulin Tg B cells, 
An1 B cells, a subset of MZ B cells, 

Protection against T1D in 
NOD mice. Disease 
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Autoimmune disease studies Model used Immune outcomes Disease outcomes

2014, 2009, 2015 and anti-insulin antibody. Preservation 
of total IgG levels.

restored by presence of 
residual Btk−/− anti-insulin 
Tg B cells
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Table II

Pre-clinical studies of BTK-inhibitors for autoimmunity.

Autoimmune disease studies Models Drug Immune outcomes Disease outcomes

Murine autoimmune arthritis
Ref: (100)
2007

Collagen induced arthritis 
(CIA)

“Compound 
4” by Celera

ND Improved arthritis scores

Murine Lupus
Ref: (125)
2010

MRL/Fas Ibrutinib Decreased autoantibodies Improved renal impairment

Murine autoimmune arthritis
Ref:(88)
2011

CIA, serum transfer 
models: collagen 
autoantibody induced 
arthritis (CAIA) and 
K/BxN

CGI1746 Decreased FcγR mediated 
inflammation induced by 
immune complexes; 
prevented autoantibody 
production

Prevented autoimmune 
(CIA) and inflammatory 
arthritis (CAIA and K/BxN)

Rat autoimmune inflammatory 
arthritis
Ref: (126)
2011

Rat Collagen induced 
arthritis

GDC-0834 ND Reduced ankle swelling

Murine autoimmune and 
inflammatory arthritis
Ref: (89)
2011

CIA and CAIA Ibrutinib Reduced inflammatory 
cytokine release by 
macrophages and 
monocytes

Prevented arthritis in both 
CIA and CAIA.

Rodent arthritis
Refs: (90, 104)
2012, 2015

mouse CIA, CAIA, and 
rat adjuvant-induced 
arthritis (AIA)

RN486 Reduced tumor necrosis 
factor α (TNFα) 
production by monocytes 
stimulated with IgG-coated 
beads, reduced B cell 
activation, reduced 
autoantibodies and 
inflammatory markers in 
serum

Prevented arthritis in CIA 
and CAIA models and 
reduced arthritis when used 
therapeutically in CIA; 
reduced splenomegaly and 
AIA in rats

Glomerular nephritis (Lupus)
Ref: (127)
2012

B6.sle1 and B6.Sle1.Sle3 PCI-32675 
(Ibrutinib), 
given for 56 
days

Reduced autoantibodies, B 
cells, DCs, macrophages, 
neutrophils and activated T 
cells; normal numbers of 
naïve T cells

Reduced splenomegaly and 
glomerular nephritis, 
Reduced B cells in the 
kidneys despite no decrease 
in cellularity overall

Murine autoimmune arthritis
Ref: (96)
2013

CIA CC-292 ND Prevented and treated CIA

Glomerular nephritis (Lupus)
Ref: (20)
2013

NZB x NZW RN486 given 
for 8 weeks 
beginning at 
age 32 weeks

Reduced IgG 
autoantibodies, autoreactive 
B cells, B cell activation 
and splenic plasma cells, 
with preserved total IgG

Reduced proteinuria and 
glomerulosclerosis, IgG, 
IgM and C3 deposition, 
reduced macrophage 
infiltrations

Glomerular nephritis (Lupus)
Ref: (128)
2013

NZBxW_F1 and Anti-
glomerular basement 
membrane (GBM) 
antibody induced 
nephritis

PF-06250112, 
given for 12 
weeks 
beginning at 
age 26 weeks

Reduced autoantibodies 
compared with vehicle-
treated, reduced naïve B 
cells at high doses, reduced 
germinal center (GC) B 
cells and splenic plasma 
cells at all doses, reduced 
activated T cells with 
normal numbers of naïve T 
cells, preserved total IgG 
and IgA levels.

Reduced proteinuria, 
glomerular injury, cellular 
inflammatory infiltrates, IgG 
and C3 in the spontaneous 
model and prevention of 
proteinuria in the antibody-
induced model.

Type 1 diabetes
Ref: (26)
2014

Non-obese diabetic mice Ibrutinib Eliminated transgenic anti-
insulin B cells in vitro

ND

Human rheumatoid arthritis 
and psoriatic arthritis
Ref: (53)
2014

In vitro assays using 
synovial explants and 
human macrophages

RN486 BTK was present in B cells, 
macrophages, monocytes 
and neutrophils in tissues. 
RN486 significantly 

ND
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Autoimmune disease studies Models Drug Immune outcomes Disease outcomes

inhibited IL6 production by 
stimulated macrophages, 
but only trended toward 
TNFα reduction.
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