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Abstract

Human neural progenitors derived from pluripotent stem cells develop into electrophysiologically 

active neurons at heterogeneous rates, which can confound disease-relevant discoveries in 

neurology and psychiatry. By combining patch clamping, morphological and transcriptome 

analysis on single human neurons in vitro, we defined a continuum of poor to highly functional 

electrophysiological states of differentiated neurons. The strong correlations between action 

potentials, synaptic activity, dendritic complexity and gene expression highlight the importance of 

methods for isolating functionally comparable neurons for in vitro investigations of brain 

disorders. While whole-cell electrophysiology is the gold standard for functional evaluation, it 

often lacks the scalability required for disease modeling studies. Here, we demonstrate a 

multimodal machine-learning strategy to identify new molecular features that predict the 

physiological states of single neurons, independently of the time spent in vitro. As further proof of 

concept, we selected one of the potential neurophysiological biomarkers identified in this study – 

GDAP1L1 – to isolate highly functional live human neurons in vitro.
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Introduction

The unprecedented access to live neurons from patients via human induced pluripotent stem 

cell (iPSC) models is revolutionizing medical research opportunities in neurology and 

psychiatry. The translational success of these models depends on the ability to recapitulate in 
vitro the complexity of functional human brain circuits. Rapidly growing technological 

advances, which build on decades of elegant investigations on neurodevelopmental processes 

in animal models1,2, offer a panoply of protocols to drive cellular fates towards neurons of 

particular neurotransmitter classes (e.g., dopaminergic, serotonergic) and brain region 

identities (e.g., cortical neurons, midbrain neurons, motor neurons)3–7. Many important 

studies have also shown that electrophysiologically active neurons can be generated from 

iPSCs or fibroblast-direct conversion5,8–13. Despite the clear success of generating highly 

functional neurons, it is also evident that such human cultures often comprise neuronal 

populations of heterogeneous electrophysiological states14. Indeed, patch-clamping 

experiments have reported an important variability of functional maturity among cell lines, 

cell batches and even within the same culture dish15–17. Co-culture with astrocytes or 

lengthy periods of time spent in neuronal medium have been reported to increase neuronal 

maturity on average but may also increase tissue culture variability18. In addition, the length 

of time required to reach functional maturation significantly varies among numerous 

published reports from 3 weeks to more than 5 months18,19. Such wide ranges may depend 

on many technical aspects such as loose criteria defining maturity, discrepancies in tissue 

culture protocols, or inherent differences among batches of cells20. Patch clamping is the 

current gold standard to demonstrate the functionality of a neuronal culture. However, patch 

clamping is low throughput and provides information for only a handful of neurons selected 

from several hundreds of thousands of cells. This technical limitation precludes a thorough 

characterization of the functional maturity of the actual neurons used with a variety of read 

outs for identifying the particular traits of patients’ cell lines (e.g., biochemistry, 

morphology, cell survival). In this study, we demonstrate a strategy to define functional 

states of human neurons in vitro, independently of time spent in culture. We bridge the gap 

between electrophysiology and molecular profile by successfully combining patch clamping, 

morphology and RNA-seq on single human neurons (PatchSeq). Using a machine-learning 

classifier trained on our multimodal data set, we reveal new biomarkers that efficiently 

predict which neurons are highly functional. These biomarkers allow for the functional 

classification of a large number of neurons without patch clamping and can be used to 

stratify functional heterogeneity.

Material and Methods

Human neuronal culture

Human dermal fibroblasts were reprogrammed into pluripotent cells with the four Yamanaka 

factors (Oct3/4, Sox2, Klf4 and c-Myc), either in a retroviral vector or a non-integrating 

Sendai viral vector. Human iPSCs and embryonic stem cells (ESCs) were differentiated into 

neural progenitor cells (NPCs) as previously described6. NPCs were expanded for 3 to 5 

passages (split 1:2 or 1:3 per passage) and stored at −80°C. Then they were thawed and 
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expanded for at least one more passage in neural progenitor medium (DMEM/F12 

supplemented with FGF8, SHH, B27 and N2, without retinoic acid). Dissociated NPCs were 

directly plated on glass coverslips (Fisher Scientific 12-545-80) coated with poly-ornithine 

(Sigma P3655) and laminin (Invitrogen 23017-015) in 24-well plates. Twenty-four hours 

later, the cells were switched gradually (half medium change) to neuronal medium: 

BrainPhys basal13 supplemented with 1x N2 (Gibco, Cat No. 17502-048), 1x B27 (Gibco, 

Cat No. 17504-044), brain-derived neurotrophic factor (BDNF, 20 ng/ml; Peprotech, Cat No. 

450 - 02), glia-derived neurotrophic factor (GDNF, 20 ng/ml; Peprotech, Cat No. 450-10), 

ascorbic acid (AA, 200 nM; Sigma, Cat No. A0278), dibutyryl cyclic AMP (cAMP, 1mM 

Sigma, Cat No. D0627), and laminin (1 µg/ml; Invitrogen, Cat No 23017-015). Half of the 

neuronal medium was gently replaced two to three times a week. The plates were kept in a 

humidified incubator at 37°C with 5% C02 and 21% O2. The pH (~7.3 –7.4) and the 

osmolarity (~300–305 mOsmol/L) of medium were maintained constant over time.

Patch clamping

For whole-cell patch-clamp recordings, individual coverslips were transferred into a heated 

recording chamber and continuously perfused (1 ml min−1) with either BrainPhys basal 

medium or artificial cerebrospinal fluid (ACSF) bubbled with a mixture of CO2 (5%) and O2 

(95%) and maintained at 25°C. The composition of ACSF was adjusted to match the 

inorganic salt concentration and osmolarity of BrainPhys basal. ACSF contained (in mM) 

121 NaCl, 4.2 KCl, 1.1 CaCl2, 1 MgSO4 (or 0.4 MgSO4 and 0.3 MgCl), 29 NaHCO3, 0.45 

NaH2PO4-H2O, 0.5 Na2HPO4 and 20 glucose (all chemicals from Sigma).

For single-cell patch-clamp electrophysiological recordings, we used a digidata 1440A/ 

Multiclamp 700B and Clampex 10.3 (Molecular Devices). Patch electrodes were filled with 

internal solutions containing 130 mM K - gluconate, 6 mM KCl, 4 mM NaCl, 10mM Na-

HEPES, 0.2 mM K-EGTA; 0.3mM GTP, 2 mM Mg-ATP, 0.2 mM cAMP, 10 mM D-glucose, 

0.15% biocytin and 0.06% rhodamine. The pH and osmolarity of the internal solution were 

close to physiological conditions (pH 7.3, 290–300 mOsmol). Data were all corrected for 

liquid junction potentials (10 mV). Electrode capacitances were compensated on-line in cell-

attached mode (~7 pF). Recordings were low-pass filtered at 2 kHz, digitized, and sampled 

at intervals of 50 ms (20 kHz). To control the quality and the stability of the recordings 

throughout the experiments, access resistance, capacitance and membrane resistance were 

continuously monitored on-line and recorded. The resistance of the patch pipettes was 

between 3 and 5 MOhm. The access resistance of the cells in our sample was ~40 MOhm on 

average. Spontaneous synaptic AMPA events were recorded at the reversal potential of Cl− 

and could be reversibly blocked by AMPA receptor antagonist (10 uM NBQX, Sigma 

Ref#N183). Spontaneous synaptic GABA events were recorded at the reversal potential of 

cations and could be reversibly blocked with GABAa receptor antagonist (10 uM SR95531, 

Sigma Ref#S106). Statistical analysis of electrophysiology data was assisted with Clampfit 

10.3, Matlab 201 4b, Igor Pro 6, Prism 6, MiniAnalyis, Excel and custom-made Python 

programs.
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Electrophysiological recording protocol

The same electrophysiological protocol was applied to all neurons (n = 290). Whole cell 

patch-clamp recordings were obtained in the absence of any receptor antagonists in ACSF or 

BrainPhys basal. After breaking the membrane seal, we first maintained the cell in voltage 

clamp (VC) at −70 mV by injecting small amounts of current when necessary (‘Baseline at 

−70 mV’). We applied a test pulse of −5mV to measure passive cell properties (membrane 

resistance, access resistance, capacitance). Voltage-dependent sodium and potassium 

channels properties were examined with an IV curve. Spontaneous synaptic events mediated 

by AMPA receptors were recorded for at least 5 min at −70 mV (close to Cl− reversal 

potential). The nature of AMPA synaptic events was confirmed on a small subset of cells (n 

= 15, excluded from RNAseq) by reversible blockade with AMPA receptor antagonist (10 

µM NBQX). The patch was then switched to current clamp. Small currents were injected if 

necessary to maintain the cell resting potential around −70 mV. Current steps (increments 2 

pA, n = 15, 500 ms) were applied to measure the properties of evoked action potentials 

(APs). Next, spontaneous APs were recorded for 1 to 5 min at −70 mV and then at resting 

potential without injecting any current (CC 0 pA). The patch was then reversed to voltage 

clamp and slowly increased to the reversal potential of cations (~0 mV). Once the baseline 

stabilized, we recorded spontaneous gabaergic synaptic activity for 5 to 10 min. The nature 

of GABA synaptic events was confirmed on a small subset of cells (n = 5, excluded from 

RNAseq) by reversible blockade with GABAa receptor antagonist (10 µM Gabazine).

AP type classification

“Type 0 cells” did not express voltage-dependent sodium currents and were excluded from 

analysis. “Type 1 neurons” expressed small Nav currents but were not able to fire APs above 

−10 mV. The arbitrary limit of −10 mV was chosen as it is close to the reversal potential of 

cations (0 mV). Healthy APs usually reach or overshoot the reversal potential of cations. 

“Type 2 neurons” fired one AP above −10 mV, which was followed by a plateau. “Type 3 

neurons” also fired one AP above −10 mV and one or a few aborted spikes below −10 mV. 

“Type 4 neurons” fired more than one AP above −10 mV but at a frequency below 10 Hz. 

“Type 5 neurons” fired APs above −10 mV at 10 Hz or more. Our categorization of 

functional types of neurons followed a continuum that relates to the stage of maturity of the 

neurons. While Type 1 neurons are considered immature, Type 5 neurons are considered 

more mature and functionally active. Although after ~3–6 weeks of maturation we found on 

average ~75% of Type 4–5 neurons, we found every ePhys type of cell at most 

differentiation time points we looked at (range of 2 weeks to 5 months after NPC 

maturation). This finding suggests some degree of variability in the electrophysiological 

maturity of neurons even within cultures of the same age. Remarkably, in our samples, the 

large majority of cells receiving active excitatory synapses were Type 5 neurons and we 

almost never found clear, spontaneously active AMPA and GABA synaptic inputs in Type 1 

neurons and rarely in Type 2.

Neuromorphometry

Images of the patch-clamped cells were taken with a 40× water-immersion objective, 

differential interference contrast filters (all Olympus), an infrared digital camera (Rolera 
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XR-Qimaging), and an epifluorescence mercury lamp. Mosaics of the several fields of views 

to cover the span of the neurites were taken and stitched later on Neurolucida (MBF 

Biosciences). Before patch clamping, the targeted cells were imaged with DIC and 

epiflucorescence (most cells patched expressed synapsin-GFP). The entire cells were filled 

with a red fluorescent dye (rhodamine) and another set of images was taken rapidly after 

completion of the electrophysiological recordings. All the images were stitched and 

analyzed on Neurolucida. The soma size and shape were measured on the DIC images 

before patching to avoid deformation by the patch pipette. The images from the intracellular 

rhodamine dye, occasionally supplemented by GFP vectors, were used to guide the 

neuromorphological reconstruction. For all cells, the morphology was reconstructed within a 

radius of 150 um. Many cell processes reached beyond that distance but, for homogeneity of 

the sample, we restricted the analysis to that arbitrary radius. Occasionally, patched cells 

with pictures of insufficient quality were excluded from the analysis. When necessary, some 

processes partially hidden by the patch electrode were extrapolated.

Single cell collection and cDNA preparation

Following electrophysiological recording, we applied slight additional negative pressure to 

establish a stronger connection between cell and patch electrode, but without completely 

aspirating the cell in the pipette. The neuron, including its processes (axon and dendrites), 

was then transferred in a volume of ~2 µl of internal patch solution into a PCR tube 

containing 8.0 µl sample buffer by slowly retracting the patch pipette from the chamber bath 

and breaking the tip of the electrode along the inside wall of the tube. Sample buffer was 

made according to the protocol supplied by Clontech with the SMARTer™ Ultra Low RNA 

Kit and included both ERCC spike-ins (Life Technologies) and ArrayControl spikes 1, 4 and 

7 (RNA standard for the Fluidigm C1) for the purpose of quality control (QC). Successful 

removal of the cell from the coverslip was always confirmed by DIC optics. Collected single 

cells were immediately spun down and put on ice for SMARTer™ cDNA synthesis 

following manufacturer’s instructions (Clontech). Briefly, first-strand cDNA was 

synthesized from poly(A)+ RNA by incubation with 1 µl of 3’ SMART CDS Primer II A (24 

µM) for 3 min at 72°C, followed by reverse transcription in a 20-µl final reaction volume 

using 200 units of SMARTScribe™ Reverse Transcriptase for 90 min at 42 °C and 

inactivation for 10 min at 70°C. First-strand cDNA was then purified using Agencourt 

AMPure XP SPRI Beads (Beckman Coulter Genomics) and amplified by long-distance PCR 

using the Advantage® 2 PCR Kit (Clontech) with the following PCR thermocycler program: 

95°C for 1 min, 18 cycles of 95°C for 15 s, 65°C for 30 s, 68°C for 6 min, and 72°C for 10 

min. PCR-amplified double-stranded (ds) cDNA was immobilized onto SPRI beads, purified 

by two washes in 80% ethanol, and eluted in 12 µl of purification buffer (Clontech). The 

quality (Agilent 2100 Bioanalyzer High Sensitivity DNA Kit; Agilent) and quantity (Qubit 

dsDNA High Sensitivity Assay Kit; Invitrogen) of each ds cDNA sample were assessed 

prior to library preparation.

qPCR assays

To select the single-cell cDNA samples suitable for mRNA-seq, we determined the level of 

expression of GAPDH and beta-actin (ACTB) in each sample by TaqMan real-time PCR. 

Samples with Ct values ≤ 30 for both housekeeping genes were typically considered positive 
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for library preparation. For each gene, duplicate 10-µl PCR reactions were performed on an 

ABI Prism 7900 Sequence Detector (Applied Biosystems) using 0.50 µl of 1:5-diluted ds 

cDNA template in standard TaqMan Gene Expression Assay with FAM reporter. Real-time 

PCR assays for detection of the ERCCs and ArrayControl RNA spikes were performed 

using, respectively, standard TaqMan Gene Expression Assays (Life Technologies) and 

SYBR Green PCR Master Mix (Applied Biosystems) with custom primers (Fluidigm).

Illumina transcriptome library preparation and sequencing

Construction of single-cell mRNA-seq libraries was typically performed with 0.25 ng of 

input cDNA using the Nextera XT DNA sample prep kit (Illumina) with modified protocol. 

Briefly, cDNA was tagmented for 5 min at 55°C in a 5-µl reaction containing 2.5 µl of 

Tagment DNA Buffer and 1.25 µl of Amplicon Tagment Mix; tagmentation was neutralized 

with 1.25 µl of Neutralize Tagment Buffer for 5 min. Tagmented DNA was then subjected to 

12-cycle PCR amplification using 3.75 µl of Nextera PCR Master Mix and 1.25 µl each of 

index 1 (i7) and index 2 (i5) library-identifying (barcoded) sequencing primers. The 

constructed libraries were run on a 1.5% agarose gel in Tris-borate/EDTA buffer, stained 

with SYBR Gold (Invitrogen), and size selected for ~300–400 or ~300–650 bp (insert size of 

~165–265 or ~165–515 bp, respectively). Gel-excised library fragments were purified with 

the Wizard SV Gel and PCR Clean-Up System (Promega), eluted in 40 µl of nuclease-free 

water, and concentrated by speedvacuum centrifugation. Each library was then quantified 

(Qubit dsDNA High Sensitivity Assay Kit; Invitrogen) and examined for correct size 

(Agilent 2200 TapeStation High Sensitivity D1K ScreenTape Assay; Agilent), after which 

equimolar amounts of uniquely barcoded libraries were pooled together and used for cluster 

generation and 100-bp paired-end sequencing on a HiSeq 2000 or 2500 sequencer 

(Illumina).

Bioinformatic analysis of single cell transcriptomes

Single cell mRNA sequencing data from n=56 patched human neurons, which passed a 

series of QC, allowed us to correlate electrophysiological profiles with gene expression 

profiles. For each of n=56 neurons, raw sequencing reads were mapped to the human 

reference transcriptome (Gencode v19) using gapped-alignment strategies. Alignment was 

performed by STAR (version 2.3.0) followed by gene-level quantification with HTseq 

(version 0.6.1). Per-gene expression outputs were scaled to transcripts per million (tpm) 

units.

Data transformation and dimensionality reduction for transcriptome PCA

Whole-gene expression tpm counts were log-transformed: log(tpm+1) to normalize their 

distribution. PCA was performed on the log-transformed expression matrix E (cells=rows, 

genes=columns). Prior to PCA dimensionality reduction, the expression of each gene 

(column) was standardized by subtracting the mean expression of that gene across all 56 

cells and dividing by its standard deviation. All 56 cells were scatter-plotted against the first 

two principal components of the expression matrix E. While the PCA of the transcriptomes 

was unsupervised, each cell was later colored on the plot by its respective AP type, allowing 

us to visually assess any functionally significant clustering. To formalize this, we also 
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performed hierarchical agglomerative clustering (Euclidean distance, average linkage) of the 

cell-cell covariance matrix (E*E’).

Differential expression between intermediate and functional neuron states

The five AP types of differentiated neurons were stratified into immature (Types 1–3), 

transitional (Type 4) and highly functional (Type 5) neurons. To identify differentially 

expressed genes in these neuron groups, two non-parametric statistical tests were used: 

Mann-Whitney U (MWU) and Kolmogorov-Smirnoff 2-sided (KS2). The reported p-values 

are presented, but the threshold for significance is Bonferroni-corrected from p<0.05 to 

p<3.1e-6.

Extremely Randomized Trees classifier

The algorithm learned to classify the functional states of neurons solely based on their 

molecular phenotypes (gene expression). We stratified the cells into two classes based on 

electrophysiological states. The classifier randomly selected 90% of the cells in our sample 

for training. The testing was performed on the remaining 10%. To obtain a predictive value 

for each cell, we reiterated the learning phase 10 times. Using the extremely randomized 

trees classifier21 with 10-fold cross-validation, we achieved good validation performance 

with >85% generalization accuracy, as shown by a high area under the Receiver Operating 

Characteristic (ROC) curve (AUC=0.93). The maximum number of features was 200 and we 

used 900 estimators.

Construction of GDAP1L1-EGFP lentiviral reporter vector

A transcriptional reporter lentivector encoding EGFP was designed to track human cells 

expressing gene GDAP1L1 (ganglioside-induced differentiation associated protein 1-like 1). 

A 1350 bp 5’ gene region - chr20:44,245,985–44,247,334 - UCSC Human Genome Browser 

Dec. 2013 (GRCh38/hg38) Assembly, located precisely upstream to the gene’s translation 

start codon and including a 77 bp 5’UTR, was used as a promoter. The sequence was 

amplified from male genomic DNA (Promega) with Phusion High-Fidelity DNA 

Polymerase (NEB) using the forward primer G220 

(5’CGTTATCGATGTATGCTGAACCAGGGAGGCT), which adds a ClaI site, and the 

reverse primer G221 (5’attactcgaggacagcccggaatcagaggca), which adds a XhoI site. The 

PCR product was introduced as a promoter into the LV pCSC-Syn-mcs-EGFP, a derivative 

of pCSC-SP-PW-EGFP22. The construct (pCSC-GDAP1L1-EGFP) was verified by DNA 

sequencing.

Immunohistochemistry

Immunohistochemistry experiments were performed on neurons plated on glass coverslips. 

Standard immunohistochemistry protocols were used. Coverslips were stained with DAPI 

and a combination of the following antibodies: mouse-Map2(2a+2b) (1:500, Sigma), mouse-

TUJ1 (1:1000, Covance), Rabbit-GFAP (1:200, Dako), and GDAP1L1 (1:250, Origene).
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FACS analysis

Adherent neuronal cultures were thoroughly washed with DPBS without Mg+ and Ca+ prior 

to dissociating with Accutase containing DNAse (100 U/mL) for 5 minutes at room 

temperature. Cell suspensions were collected with DPBS containing 1% Knockout Serum 

Replacement (KOSR) and spun down at 200 rfc for 5 minutes. The cell pellet was gently 

resuspended in DPBS containing 1% KOSR, 2mM EDTA, and DNase (100 U/mL). Cell 

suspension was passed through a 70-um nylon cell strainer and sorted using a Becton-

Dickinson Influx™ cytometer. Gated samples were collected in 15-ml tubes containing 

BrainPhys-based neuronal differentiation medium containing Rho kinase (ROCK) inhibitor 

(StemCell Tech.) and penicillin-streptomycin (Life Tech.). After sorting, we re-plated 

50,000 neurons (GDAP1L1:GFP positive and GFAP:dsRED negative) per well (48-well 

plate) on to poly-ornithine/laminin-coated 8-mm glass coverslips containing established 

human astrocytes-cerebellar (ScienCell) at 70% confluence. The medium was changed 24 

hrs post-sort to BrainPhys differentiation medium without ROCK inhibitor, and the replated 

cells were cultured as previously described13.

Statistics

Unless specified clearly otherwise, throughout the manuscript we present the mean and 

standard error of the mean. Concerned to avoid the assumption of Gaussian distribution in 

our samples, we consistently used non-parametric statistics such as Spearman, Mann-

Whitney and Wilcoxon. Statistics were two-tailed and Bonferroni corrected for multiple 

hypotheses tests. In several plots, to estimate the goodness of fit of the linear regression 

represented graphically, we reported the R2 and the corresponding p-values, which estimates 

how significantly the slope deviates from zero.

Results

Human neuronal circuits were established in vitro from iPSCs and ESCs (H9 line) (Figure 

1A). IPSCs were reprogrammed from the fibroblast cells of four healthy individuals. IPSCs 

and ESCs were differentiated towards midbrain NPCs using an established protocol6. NPCs 

were expanded for 5 to 11 passages and replated in neuronal medium (BrainPhys basal + 

serum free supplements) that enabled differentiation and maturation under conditions 

supporting optimal electrophysiological activity13. Following this protocol, the human NPCs 

differentiated into cultures comprising about 50% astrocytes (GFAP+) and 50% neurons 

(TUJ1+/MAP2+). We did not use additional feeder layers of astrocytes for initial neuronal 

maturation. Based on immunostainings, we estimated that the neural circuits were formed 

with a majority of glutamatergic neurons (~62%) and smaller percentages of GABAergic 

neurons (~27%, GABA+) and dopaminergic neurons (~11%, TH+)13. Based on patch-

clamping data, we also found that neurons in highly functional states received 2.3 times 

more spontaneously active AMPA-mediated synaptic inputs than GABAergic synaptic 

inputs. The neurons were analyzed after ~30 days on average in neuronal medium (the full 

range tested throughout the entire study was 0 to 30 weeks). Each cell was tested with a 

consistent electrophysiological patch-clamping protocol measuring voltage-gated Na+/K+ 

currents, evoked and spontaneous APs, membrane resistance, resting potential, capacitance 

and synaptic activity (AMPA/GABA) (Figure S1) and was filled with a dye (rhodamine) to 
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allow morphological reconstruction. The same live cells were also collected for RNA-seq 

analysis.

Electrophysiological traits of human neurons in vitro reveal a continuum of functional 
states

We used unbiased statistical analyses to identify the broad range of functional states of 

differentiated neurons in vitro. To define the functional properties of each neuron, we 

performed a series of patch-clamping tests (Figure S1). Then, we applied a principal 

component analysis (PCA) on 25 electrophysiological measurements mostly reflecting the 

functional intrinsic properties of 246 patch-clamped neurons (Figure 1B; ePhys PCA 

features and corresponding loadings listed in Figure 1C). Such analysis aimed to describe 

objectively the inherent variation in the basic electrophysiological profiles of human iPSC-

derived neurons that is routinely observed in vitro by many independent laboratories. The 

first principal component, ePhys PC1, explained 42% of the variation in the dataset (Figure 

S2A), and revealed a continuum of functional neuronal states that we separated into three 

broad groups: “immature states,” “transition states” and “highly functional states.” These 

neuronal states appeared to reflect increasing stages of electrophysiological maturation. In 

support, we found significant correlations with several properties that are associated with 

neurophysiological development. The strongest correlation was obtained with AP firing 

properties. Indeed, the amplitude (“AP peak”) and the firing rate (“AP frequency above −10 

mV”) of evoked APs stand out as two of the most influential loadings in PC1 (Figure 1C). 

We combined these two AP metrics to further categorize the neurons into five “AP types” 

(Figure 1D, Figure S2B), which significantly aligned with ePhys PC1 (Figure 1, E, P<0.01). 

Our analysis suggests that either metrics – “ePhys PC1” or “AP types” – can be used 

objectively to determine the functional states of human neurons in vitro. Importantly, we 

demonstrated that these metrics largely reflect stages of neurophysiological maturation. For 

instance, we found significant correlations of AP type classification with several other 

electrophysiological properties that typically associate with neuronal maturation, such as the 

cell membrane resistance, which is typically lower in more mature neurons (Figure 1F, 

Figure S2D). Naturally, neurodevelopment also correlates with time spent in culture, and 

indeed we found a smaller fraction of AP Type 4 or 5 neurons in the first three weeks in 

neuronal medium than at later time points (Figure 1G). We also found a significant 

correlation of the PC1 variance with the time the cells spent in neuronal medium. However, 

the correlation between time in culture and the functional state of the neurons was rather 

weak (Figure 1H), which may be a consequence of the fact that single human neurons 

differentiate at variable rate in vitro. In addition, different tissue culture practice may 

influence the efficiency and speed of maturation. For example, we found that simply 

increasing the passage number of NPCs before neuronal differentiation significantly reduced 

the proportion of Type 5 neurons within subsequent cultures (Figure 1I). Similarly, various 

cell lines may generate variable proportions of AP Type 5 neurons. We propose that, to 

identify accurate neuronal phenotypes between cell lines (e.g., patients vs. healthy subjects), 

it is important to compare neurons of equivalent functional states, rather than relying 

exclusively on the time the cells have spent maturing in vitro.
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Synaptic activity correlates with AP types

Synaptic activity is the essence of neuronal communication and its disruption is often the 

cause of behavioral defects in neurological disorders. Therefore, many recent studies have 

focused on measuring possible synaptic abnormalities in IPSC-derived neurons in the 

modeling of neural diseases in vitro23–26. As synaptic activity is associated with the 

functional maturity of neuronal circuits27, we examined the relationship between 

spontaneous synaptic activity and our AP type categories (Figure 2A). Our culture protocol 

generated roughly two times more glutamatergic neurons than GABAergic neurons. This 

bias was strongly reflected in a higher likelihood to record spontaneous active excitatory 

inputs than GABAergic synaptic inputs. Despite those differences, we found that both 

AMPA and GABA activity significantly increased along the continuum of AP types (Figure 

2B, C). In our conditions, 95% of AP Type 5 neurons received active pre-synaptic inputs, 

whereas only ~10% of Type 2 neurons did. This result is particularly important to consider 

in iPSC disease models, which compare synaptic functions between patients. Overall, our 

analysis highlights the point that, if neural cell lines do not have similar proportions of AP 

types, such variability will influence differences in the measured synaptic activity.

Neuromorphological features of AP types

To further investigate how our classification of AP types reflects neurodevelopmental stages, 

we filled 256 patched neurons with an inert red dye (rhodamine) and reconstructed their 

morphology (Figure 3A). We analyzed 20 morphological features (listed in Figure 3B, 

Figure S3C) and found that the size of the soma and the complexity of neurite arborization 

increased in higher AP types (Figure 3C, D). The arborizations of Type 4 and 5 neurons 

were significantly more complex than those of Types 1, 2 or 3. Furthermore, the increase in 

soma size and distant arborization complexity were consistent with larger intracellular 

volume, which was estimated with the cell capacitance. Despite high cell-to-cell variabilities 

even within functional states, the most highly functional neurons (e.g. AP Type 5) tended to 

have overall significantly larger intra-cellular volume (Figure 3E). This multimodal analysis 

demonstrates that the electrophysiological states correlate with morphological 

neurodevelopmental phenotypes.

Single cell transcriptome analysis of patch-clamped neurons

To examine the relationship between gene expression and electrophysiology, we generated 

single cell transcriptome data from the same neurons that were analyzed for 

electrophysiology and morphology. At the end of the patch-clamping and imaging protocol, 

which lasted about 30 min, each cell was isolated with negative pressure applied to the same 

pipette that was used for the whole-cell recordings. Images acquired before and after single-

cell collection confirmed that only the targeted single cells were taken out, leaving 

surrounding cells in place (Figure 4A). Importantly, we collected the entire neuron, 

including the soma, nucleus and neurites (Figure 4A, right panel). Poly-A selected mRNA 

molecules were reverse transcribed to cDNA and amplified immediately after patching and 

isolation to avoid RNA degradation. Before RNA-seq library preparation, we subjected the 

cDNA from each cell to a set of QC criteria to exclude potentially low-quality captures and 

amplifications (Figure 4B). We then generated RNA-seq libraries from amplified cDNA. 
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Highly expressed housekeeping genes such as ACTB and GAPDH were readily measured, 

and quantitative real-time PCR measurements significantly correlated with sequencing read 

counts (Figure 4C–D, Figure S4A–B). The transcript abundances of artificial RNA spike-ins 

mixed in with the single cell RNA (ERCCs and ArrayControl spike-in RNA standards) were 

also highly correlated with the normalized sequencing counts (FPKM) (Figure S4C). These 

observations support the quality of our single-cell transcriptomics data. To minimize 

erroneous conclusions that arise from lowly expressed, highly varying genes, we excluded 

reads that were detected below 1 tpm (transcripts per million). Additionally, a small number 

of cells (n=3) with fewer than 2,000 genes detected above 5 tpm were excluded. Without 

these outliers, an average of ~3,000 genes per cell was detected above >5 tpm (Figure 4E). 

Interestingly, the number of genes detected was significantly higher in Type 5 neurons and 

astrocytes than in less active AP types (Figure 4E). However, we found no significant 

correlation between the number of detected genes (>5 tpm) and the size of the cells (Figure 

4F).

Molecular signatures distinguish neuronal functional states in vitro

To examine variation in the single-cell gene expression, we excluded the outliers with trace 

of DNA contamination, abnormal expression level of housekeeping genes, damaged axons 

and dendrites from the collection, unstable physiological recordings before collection, 

abnormal cDNA quantity, low number of uniquely mapped reads and low number of 

detected genes. We then performed a hierarchical clustering analysis and PCA with the 

transcriptomes of 56 single cells (50 differentiated neurons, and 6 astrocytes) that passed all 

QC (Figure 5A, B). This unsupervised and unbiased single-cell RNA-seq analysis revealed a 

distinct transcriptome cluster of neurons corresponding to highly functional states (83% AP 

Type 5 neurons – 17% AP Type 4 neurons). This highly functional cluster separated from 

astrocytes and a mixed group of neurons that represents “transitory” neuronal states (Figure 

5B, Figure S5A). Furthermore, the molecular profiles of cells in distinct functional states 

grouped together, independently of individual genetic background (cell lines from different 

subjects) and the time spent in culture (Figure 5A, B).

To better recapitulate the transcriptional dynamics of functional states, we also demonstrated 

the molecular trajectory of the electrophysiological maturation by applying monocle 

analysis28. Interestingly, AP Types 1 and 2 clustered at the beginning of the pseudotime and 

branched out towards astrocytes (GFAP+) or towards AP Type 3 and 4 neurons, and highly 

functional AP Type 5 neurons clustered at the end of the pseudotime (Figure 5C). Together, 

these results indicate that mRNA expression correlates strongly with neurophysiological 

states.

To obtain physiologically relevant neuronal circuits, we generated mixed cultures of 

neurotransmitter classes and astrocytes. The patch clamping was not targeting a specific 

subpopulation of neurons, and most patched cells were tagged with Synapsin:GFP lenti 

vector. Therefore, to better characterize our sample, we isolated the AP Type 5 neurons that 

were sequenced (n = 22) and determined the nature of their neurotransmitter classes. Based 

on the normalized expression of five known genes, most Type 5 neurons segregated into 

different neurotransmitter classes (36% glutamatergic VGLUT3, 27% GABAergic GAD1, 
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14% dopaminergic VMAT2 or COMT, 9% serotonergic TPH2, and 14% undefined neurons) 

(Figure 5D). These results demonstrate that our functional classification is sufficiently broad 

to incorporate more detailed subcategories of various neurotransmitter classes.

To further characterize the molecular profiles of differentiated neurons in various functional 

states, we compared the single-cell mRNA expression of 45 genes typically known for their 

importance to neuronal functions (Figure 5E, Figure S5B). Not surprisingly, most well-

known neuronal genes (e.g., pan neuronal, synaptic, APs, ion channels genes) were 

expressed in all the differentiated neurons in our sample. Typical astrocytic/glial genes (e.g., 

AQP4, GFAP, S100B, GJA1, SLC1A3, EFNB1) were expressed in astrocytes, which were 

identified based on LV marker GFAP:dsRED, distinctive morphology and electrophysiology. 

Genes typical of early neuronal development (e.g. SOX2, NES) were expressed mostly in 

immature AP types and some astrocytes. A few neuronal genes appeared expressed in all AP 

types and even in astrocytes/glia (e.g. MAP2, TUBB3, TUBB). Interestingly though, many 

neuronal genes that were exclusive to neurons expressed at similar levels in all AP Types 

(e.g. MAPT, NCAM1, ANK3, SYN1, SYP). Therefore, we asked whether some genes may 

specifically express in highly functional AP types of neurons. We first assessed the 

Spearman’s correlation between gene expression and AP type classification, which revealed 

45 genes that most significantly correlated (Figure 5F). Some of these genes have known 

neuronal functions such as synaptic plasticity (e.g., RAB3B29,30, PCLO/Piccolo) or voltage-

gated sodium channels (e.g., SCN9A/Nav1.7). However, interestingly, a majority of these 

genes have not been investigated before for specific neuronal functions and may be used as 

new potential biomarkers to identify functional human neurons in vitro. This finding then 

led us to propose that single-cell gene expression data has utility in the prediction of the 

electrophysiology of human neurons.

Machine-learning classifiers integrate transcriptome features to predict functional states

To identify the single-cell transcriptomics signature important to predict functional states, 

we trained an Extremely Randomized Trees classifier using 56 single cells (Figure 6A). We 

used a randomized 10-fold cross validation to evaluate the performance of the algorithm in 

classifying cells in different functional state categories (Figure 6). In Figure 6, we illustrated 

the results of 3 classifiers: the first one isolates AP Types 4–5 neurons with 92% accuracy in 

a mixed population including astrocytes (Figure 6B); the second isolates AP Type 5 neurons 

with 83% accuracy in a population of differentiated neurons only (Figure 6C); and the third 

isolates highly functional neuronal states (based on Transcriptome PCA clustering in Figure 

5B) with 86% accuracy in a population of differentiated neurons only (Figure 6D, Figure 

S6A). For higher accuracy (more true positive), the classifiers can be trained differently by 

adjusting the ‘classifier score split,’ but the algorithm may also generate more false 

negatives, resulting in lower sensitivity. The area under the curve (AUC) of the receiver-

operating characteristic, which is a measure of the trade-off between sensitivity and 

specificity, was 0.93, clearly above random prediction (0.50) (Figure S6B). The unbiased 

training algorithms selected and weighted the optimal genes to predict functional types 

(Figure 6).
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Identification and isolation of functional neurons with a GDAP1L1 promoter-driven GFP 
viral vector

In addition to the machine-learning classifier, we performed an in-depth differential 

expression analysis to reveal a complementary set of genes specifically expressed in Type 5 

neurons (Figure 7A). Altogether, we performed three independent unbiased analyses to 

identify a total of 165 genes (Table S1) related to specific electrophysiological functional 

states (Spearman correlation in Figure 5F; machine learning in Figure 6B, C, D, differential 

expression in Figure 7A). Among the most highly ranked genes, 29 genes appeared in more 

than one analysis (Table S1). Only one gene appeared in all of those independent analyses – 

GDAP1L1. GDAP1L1, which is the human paralog of the ganglioside GDAP1, had been 

previously suspected to have an important function in neuronal cells because of its high 

abundance in brain tissues31. Interestingly, GDAP1L1 mRNA is expressed exclusively in 

brain tissues in human (Figure S7A). We confirmed with immunostaining that GDAP1L1 

protein was present in human iPSC-derived neurons but not in astrocytes (Figure 7B). Our 

immunohistochemistry staining also suggested that GDAP1L1 was only present in a subset 

of TUJ1+ neurons (Figure 7C), presumably highly functional neurons (Type 5). To confirm 

this hypothesis, we constructed a lentiviral vector expressing GFP under the control of the 

GDAP1L1 promoter. We infected three different cell lines of human neurons with the vector 

(Figure 7D, see also Figure S6 for additional IHC of vector). While GDAP1L1 mRNA and 

protein were not found in astrocytes, the GFP under the control of GDAP1L1 gene promoter 

was occasionally found in astrocytes (GFAP+). Nevertheless, we patched the neurons with 

the brightest GFP and clear neuronal morphology and found that all of them were highly 

functional neurons (n=10/12 were Type 5, n=2/12 were Type 4, and n= 11/12 neurons had 

clear spontaneous AMPA synaptic activity) (Figure 7E–F). Next, we asked whether this 

strategy could be used to isolate mature functional human neurons by a higher-throughput 

technique. With that aim, we derived NPCs from three different cell lines and differentiated 

them into neurons for ~4 weeks in neuronal maturation medium. Then, we infected the 

neuronal cultures with two lentiviral vectors (LV), GDAP1L1-GFP (to identify functional 

neurons) and GFAP-tdTomato (to identify astrocytes). A few days later we processed the 

cells with FACS. After exclusion of dead cells and GFAP+ cells, we isolated a population of 

neurons with high GDAP1L1-GFP expression (Figure 7A). This subset of neurons with high 

GADAP1L1-GFP also showed particularly high abundance of TRAPPC6B protein 

(measured with primary antibody) (Figure 7A). TRAPPC6B is another top gene candidate 

that appeared from our transcriptome analysis to be predictive of highly functional neurons. 

This finding further supported our premise that this subpopulation of high GDAP1L1-GFP 

neurons represents the electrophysiologically active states. Therefore, we repeated the FACs 

experiment with live cells differentiated for ~4 weeks and sorted out three subsets of live 

cells: 1) presumably highly functional neurons (GDAP1L1:GFP-highly positive and 

GFAP:tdTomato-negative), 2) astrocytes (GFAP:tdTomato-positive and GDAP1L1:GFP-

negative) and 3) the rest of the cells, including less functional neurons (Figure S8). We then 

replated 50,000 neurons with high GDAP1L1-GFP per well (48-well plate) onto a glass 

coverslip coated with a layer of human cerebellum astrocytes. Four days after re-plating, we 

patch clamped the GDAP1L1:GFP-positive sorted cells and confirmed that they were highly 

functional Type 5 neurons (Figure 7B, n= 5/5). Altogether, these findings demonstrate a first 

proof of concept that the genes identified in our multimodal analysis may be used as 
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biomarkers to help identify, enrich or isolate highly functional states of iPSC-derived human 

neurons in vitro.

Discussion

Studies of post-mortem human brain tissues have revealed some molecular and anatomical 

features in neurodevelopment and in the adult brain32. However, studying the 

neurophysiological properties of live single neurons in the human brain is technically 

challenging and so far has been mostly restricted to animal models, occasionally to brain 

slices of aborted human fetus33,34, and more recently to human neuron cultures 

reprogrammed from fibroblasts13,16,25,26,35,36. In this study, we have bridged human 

neurophysiology and gene expression by integrating single-cell electrophysiology, 

morphology and transcriptomics analysis of live human neural cells.

Single-cell PatchSeq: multimodal analysis of electrophysiology, morphology and 
transcriptomics profiles

Recent breakthroughs in single-cell transcriptomics methods have emphasized the 

importance of identifying different biological types of cells37–47. To resolve the diversity of 

cellular states, the use of single-cell analysis yields important insights that are masked or 

misrepresented in bulk RNA preparation from mixed cell populations39,48,49. For many 

years, only a few studies succeeded in applying gene expression analysis to patch-clamped 

neurons50–56. Here we demonstrate the possibility of performing whole-transcriptome 

analysis on patch-clamped single human neurons derived from iPSCs or ESCs. Interestingly, 

many neuronal mRNA are transported to the synapses and spines for rapid on-demand local 

translation57,58. Unlike most single-cell methods relying on tissue dissociation and flow 

cytometry, the method developed in this study processes the entire neuron and therefore 

includes mRNA from the nucleus, the soma and distant axons/dendrites, which may provide 

a more accurate representation of the transcriptome58. This approach may also be relevant 

for specific neurological disorders that may affect mRNA dendritic/axonal trafficking or the 

function of mRNA at synaptic sites59,60. Most importantly, in addition to the transcriptome 

profile, our method provides unique physiological and morphological information about the 

cells. Our results reveal the strong correlation between functional and molecular profiles, 

validate the biological relevance of our methods merging patch-clamping analysis and single 

cell RNA-seq, and demonstrate that transcriptome analysis can be used to predict the 

physiology of a cell. This approach can be applied to any kind of electrophysiological type 

of cell and may help to better define the cellular diversity in the brain61–64. Beyond the 

usefulness of such multimodal analysis in cellular neuroscience, this framework may also 

branch out to other fields of cell biology to correlate human cell physiology and molecular 

signatures.

Functional neuronal states and neurodevelopmental timeline in vitro

Typically, neurodevelopmental processes are described over a specific timeline. For 

example, newly born mouse neurons mature in pre-existing adult brain circuits by following 

a timed sequence of physiological events65,66. However, at the single-cell level, intrinsic and 

extrinsic programs can dynamically influence the rate and speed at which different human 
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neurons reach functional states in vitro. The prediction of this maturation process is 

sometimes challenging as it may vary between cell types, individuals and species15–17. For 

example, the human brain matures over a longer period of time than most other species 

studied in laboratories. Similarly, human neurons in vitro usually take a longer time than 

rodent neurons to reach the equivalent maturity67. In addition, the technical variability of 

tissue culture protocols between independent labs makes “time in vitro” an unreliable metric 

to objectively assess the functional maturity of neurons. As an alternative, we propose a 

method to efficiently quantify and isolate defined neurophysiological profiles in vitro based 

on data-driven features that do not require the measure of time in vitro. In this classification, 

we define the AP type 5 neurons as a highly functional state of maturity; we define this stage 

as a broad minimal requirement to study functional human neurons in vitro. However, it is 

important to note that this stage is not necessarily terminal. For example, we have recorded 

the electrophysiological properties of neurons that were matured and kept in BrainPhys with 

supplements for more than 20 weeks and, while the broad properties used to define Type 5 

neurons were indistinguishable from those of neurons maturing in the same medium for 6 

weeks, we found that the membrane resistance significantly decreased over the longer time 

periods (e.g., Type 5 neurons Rm was 1612+208 MOhm after 45 days in BrainPhys (n=17) 

and 224+26 MOhm after 150 days in BrainPhys (n= 11), see also35). Furthermore, we based 

our functional state classification on a PCA that only integrated cell-intrinsic 

electrophysiological properties (25 features). Following this reasoning, we excluded synaptic 

input properties from that PCA because they most strongly depend on extrinsic neuronal 

network properties. This approach also allows us to use our classification model to compare 

synaptic function in cells of equivalent AP types with less bias. Nevertheless, adding healthy 

synaptic activity to the PCA expands mostly PC2 and does not affect PC1 or our functional 

state classification.

Neuronal diversity

In the present study, we present an unbiased profiling of the electrophysiological states of 

human neurons in vitro. The framework that we propose here is sufficiently broad to include 

a wide heterogeneity of neuronal neurotransmitter classes (e.g. Glutamatergic, Gabaergic, 

dopaminergic, serotonergic, motorneurons). Similarly, we found that each of our defined AP 

types could be obtained from neurons categorized in various morphological classes (e.g., 

bipolar, fusiform, pyramidal, multipolar; see Figure S3A–B). Finally, the framework is also 

sufficiently broad to avoid masking relevant differences in disease modeling studies. While 

the present study points out the importance of resolving broad neurophysiological states in 
vitro, several other important studies have also highlighted the unique nature of cellular and 

brain region identities of neurons in rodents55,56,62,63,68–71 and human brain72,73. The 

complex, precise, heterogeneous and dynamic assembly of 100 billion cells in the human 

brain. is the best living illustration of cellular diversity in functional tissues. Interestingly, 

each neuron has the potential to be unique even at the genomic level74. The depth of the 

classification one should reach remains arbitrary62. Further work will be needed to deepen 

our broad functional states classification to more precise sub-classification. For example, it 

is possible that within AP Type 5 neuron categories, different neurotransmitter classes have 

subtle different physiological properties that they may acquire over various period in vitro. 
Regardless, our results point out the importance of stratifying neurons into equivalent 
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functional states before investigating the differences among patients in disease models in 
vitro.

Models of neurological disorders in vitro will benefit from better characterization and 
quantification of electrophysiologically active human neurons

Advances in human cellular reprogramming have propelled a new wave of in vitro 
experiments to identify differences between healthy subjects and patients with neurological 

and psychiatric diseases24,75–78.

Studies of iPSC models in vitro have found that neurons obtained from patients affected by 

autism have significantly smaller soma, reduced dendritic complexity and less synaptic 

activity79. We found the same set of phenotypes when comparing less functional AP types 

(Types 1–2–3) with more functional AP types (Types 4–5). Together, these findings support 

the hypothesis that autistic neurons suffer from a general lack of functional maturity, which 

may cause an indirect defect in synapses. Being able to examine many cellular phenotypes 

simultaneously in the same single neurons may help to discern the causes of a disease from 

subsequent pathophysiological cascades and may be critical to the discovery of effective 

treatments.

Despite the huge promises for translational research, the inherent technical and biological 

variability of iPSC technologies remain a significant hurdle16,24. Disorders that reveal 

symptoms relatively late in adulthood, such as Parkinson’s or Alzheimer’s, are less likely to 

reveal early neurodevelopmental features. Therefore, it is important, at least in these latter 

models, to compare neurons of equivalent functional maturity, and efficient ways to identify 

electrophysiologically active neurons are needed. By revealing the molecular signature of 

highly functional states of differentiated neurons (AP Type 5), we have shown the possibility 

to predict functional profiles without the need of electrophysiological measurements. The 

ability to efficiently identify neurons in a specific functional state compensates for the 

heterogeneous proportion of highly functional neurons among cell lines and will strengthen 

comparative analysis in stem cell models of brain disorders. Ultimately, strategies to provide 

electrophysiologically homogeneous human neurons will assist large-scale drug screening, 

which can lead to the discovery of efficient treatments for neurological and psychiatric 

disorders.
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Figure 1. Electrophysiological states heterogeneity of human neurons in culture
A. Human ESCs (H9) or iPSCs from healthy subjects were converted to neuronal progenitor 

cells (NPCs). Neurons and astrocytes derived from the same progenitors were then cultured 

in neuronal medium (BrainPhys basal medium with supplements). See methods for more 

details.

B. Principal component analysis (PCA) of 25 electrophysiological properties (listed in panel 

C) measured with patch clamping of human neurons (n=246). This PCA integrates basic 

cell-intrinsic electrophysiological properties such as passive membrane properties, voltage-
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dependent sodium and potassium currents and APs firing. Each dot represents a neuron. 

Astrocytes or any cells that did not express at least small voltage-dependent sodium currents 

were not included in the PCA. Cells that did not have unambiguous analysis of all the 

chosen 25 properties were also excluded from this PCA.

C. The dot graph represents the relative values of the loadings onto the first principal 

component (PC1) for each of the 25 properties used in the above PCA. The loadings 

highlighted in red correspond to the two measures that were used subsequently to define a 

continuum of five functional states.

D. Representation of the typical heterogeneous neuronal responses to optimal depolarizing 

current steps for 500 ms (Vm rest clamped around −70mV). We classified those 

heterogeneous states of differentiated neurons into a continuum of five AP Types based on 

the combination of key electrophysiological properties identified with unbiased PCA: 1) the 

maximal peak of AP (Vm measured at the top of the best evoked AP), and 2) the frequencies 

of APs overshooting −10mV. The same neuronal color key throughout the figure 

corresponds to this AP Types classification (see also Figure S2B).

E. The graphs show the PC1 value for each neuron (n = 246) against the key AP properties 

and the corresponding AP Type classification. EPhys PC1 values highly correlate with the 

maximum peak and frequencies of APs (evoked APs freq were counted only if overshooting 

−10 mV in response to a square pulse of current of 500 ms from resting −70mV). Linear 

regression fits ± 95% confidence intervals are shown.

F. Most measurements listed on each row significantly correlate with the AP Types 

classification (columns 1–5 of heat map). The values in the central heat map represent the 

median for the neurons in respective AP Type categories. To illustrate the direction of the 

measurement variations between AP Types, we color coded the heat map (values normalized 

by row with mean = 0 and variance = 1) from low to high values (blue, to white, to red). The 

last two columns show the Spearman’s correlation coefficient (R) and its significance (P-val) 

between the measurements (row) vs. the numerical class (1–5) of AP types. The properties 

were sorted by decreasing correlation coefficient obtained. The p-values were corrected for 

multiple hypothesis testing [Bonferroni correction: P<0.05 (2E-03), P<0.01 (3E-04), 

P<0.001 (3E-05)].

G. The differentiated neurons were patch clamped after different periods in neuronal 

medium. Days were counted from the switch of neuronal progenitor medium to neuronal 

medium (BrainPhys basal + supplements from 0 to up to 7 months). The proportion of more 

functional neurons (Type 4 and 5) significantly increased the first 3 weeks in neuronal 

medium, implying that an early maturation phase corresponds with the development of 

electrophysiological types; however, the proportions of Type 4 and 5 appeared to plateau 

after that period. The significance of this relationship in single neurons was measured with 

Spearman correlation between days in neuronal medium (x-axis) and the numerical class (1–

5) of AP types.

H. We found a significant but poor correlation of the time spent in neuronal medium and 

functional states (measured by ePhys PC1 or AP types).

I. After expansion (six passages) and storage at −80°C, NPCs derived from the same cell 

line (H9) were thawed and cultured for another two to five passages before re-plating in 

neuronal medium. The neurons (n=89) were patch clamped after 4–6 weeks in neuronal 

medium and categorized into AP types. The proportion of Type 5 neurons significantly 
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decreased with high NPC passage numbers. The significance of this relationship in single 

neurons was measured with Spearman correlation between passage numbers (x-axis) and the 

numerical class (1–5) of AP types.
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Figure 2. Synaptic input activity highly correlates with AP states
A. Frequency distribution of AP Types and differentiated neurons with active synaptic inputs 

against the ePhys PC1 measure in Figure 1B.

B. The trace represents typical spontaneous (Spont) AMPA events (NBQX-sensitive). 

Patched neurons were classified as synaptically active (active synaptic inputs) in the left 

histogram if more than three clear glutamatergic spontaneous events were detected (with 

typical AMPA kinetics and amplitude above noise levels) within 5-min recordings in voltage 

clamp close to the reversal potential of Cl− channels (−70 mV).

C. The trace represents typical spontaneous GABA events (Gabazine-sensitive). Patched 

neurons were classified as pre-synaptically active in the left histogram if more than three 

clear GABAergic spontaneous events were detected (with typical GABA kinetics and 

amplitude above noise levels) within 5-min recordings in voltage clamp close to the reversal 

potential of Na+ channels (0 mV).

B, C. Mean±SEM shown. For the spontaneous events amplitudes, the medians were 13% 

lower than mean but strongly correlated (R2 = 0.90, P<0.0001). For each graph a linear 
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regression was fitted and the significant p-values were noted in brackets with R2 and n. Non-

significant regression fit p-values >0.05 were noted as ‘(ns)’. Additional statistics between 

individual types were performed with Mann Whitney two-tailed test, and only the significant 

p-values from these tests were noted in the graphs above each compared group.
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Figure 3. Morphological features that correlate with AP states
A. Stitched photos of a live patched neuron, which was filled with rhodamine (left) and 

morphogically reconstructed with Neurolucida (right).

B. Correlation of morphological measurements (rows) with AP Types (columns 1–5). The 

values in the central heat map represent the median for the neurons in respective AP Type 

categories. To illustrate the direction of the measurement variations between AP Types, we 

color coded the heat map (values normalized by row with mean = 0 and variance = 1) from 

low to high values (blue, to white, to red). The last two columns show the Spearman 
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correlation coefficient (R) and significance (P-val) of Spearman’s rank correlation between 

the electrophysiological measures (row) and the numerical class (1–5) of ePhys Type. The 

properties were sorted by decreasing correlation coefficient.

C. Mean soma diameter significantly increased in more functional AP Types.

D. Sholl analysis revealed that more functional AP Types had significantly more complex 

dendritic/axonal arborization. Mann-Whitney U two-tailed tests were performed at 20, 50 

and 100 um between different types. The dendritic complexities of Type 4 and 5 neurons 

were not significantly different, and the complexity between Types 1, 2, 3 was not either. 

However, Types 4 and 5 were significantly more complex than Types 1, 2, 3. Mean± SEM 

shown.

E. The capacitance significantly increased in more functional AP Types of neurons. 

Significance threshold was P<0.05. Mann-Whitney U two-tailed p-values are shown in D, E 

and F.
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Figure 4. Whole single-cell RNA-seq of patch-clamped neurons (PatchSeq)
A. The photos show an example of neuronal culture stained with GFP before and after a 

single neuron was patched and collected for transcriptome analysis. For every cell included 

in the analysis, the entire neuron was collected, including the soma/nucleus and neurites. 

The photos permitted us to confirm that only the patched neuron filled with rhodamine was 

collected, leaving the surrounding tissue intact.

B. Following electrophysiological and morphological analyses of live neurons, the single 

cells were collected and their transcriptome processed for deep sequencing, bioinformatics 

processing and statistical analysis. QC, quality control.

C, D. Housekeeping genes such as ACTB and GAPDH were detected in every cell. Their 

expression levels were not significantly different between types of neurons and astrocytes.

E. Significantly more genes were expressed in astrocytes and Type 5 neurons compared to 

the other neuronal types. Asterisks represent Mann Whitney p-values <0.05.
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F. The number of detected genes above 5 tpm did not significantly correlate with the size of 

the neurons, estimated here by capacitance. The AP Types are color coded in the graph (red 

T5, orange T4, green T3, blue T2, gray T1).
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Figure 5. Single-cell transcriptomes segregate functional states of differentiated neurons
Unbiased and unsupervised analysis was performed on the transcriptome (17,757 genes 

detected >5 tpm in at least one cell) on a sample of 56 whole single-cells (including nucleus, 

soma and distant neurites), which passed all QC. This sample comprised 50 differentiated 

neurons displaying Nav currents and 6 astrocytes expressing GFAP:GFP.

A. Unsupervised clustered heatmap of cell-to-cell transcriptome correlations (Euclidean 

distances). The linkage distances of the hierarchical clustering represent an estimate of the 

quality of the unbiased/unsupervised clusters.
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B. Unsupervised principal component analysis on the entire single-cell transcriptomes. Cell 

transcriptome profiles (symbols) are represented in a two-dimensional principal component 

space. These unsupervised analyses reveal molecular segregation between groups of neurons 

in highly functional states (almost all AP Type 5 – 85%), less functional neurons in 

‘transition states’ (mix of different AP types with significantly less Type 5 – 15%) and 

astrocytes. Furthermore, the functional molecular clusters surpassed transcriptional 

differences between iPSC lines from different subjects and even an ESC line.

C. Monocle analysis illustrates the progress through functional states by pseudotemporal 

ordering of single-cell mRNA expression profiles. Cell expression profiles (points) are 

represented in a two-dimensional independent component space. Lines connecting points 

represent edges of the minimum spanning tree constructed by monocle. Solid black line 

indicates the main diameter path of the minimum spanning tree and provides the backbone 

of monocle’s pseudotime ordering of the cells based on molecular profiles.

D. The expression of five key genes in 20 sequenced Type 5 neurons was normalized and 

compared to determine their neurotransmitter identity. Most cells could be classified as 

either glutamatergic, GABAergic, dopaminergic, orserotonergic and a few cells remained 

undefined.

E. Heatmap of single-cell gene expression levels. The genes were selected and grouped 

based on known neuronal functions. For comparison, AP Type 5 genes identified in the 

present study are in red/bold. See also Figure S5B.

F. Genes significantly correlating with numerical AP Types classification by Spearman’s 

rank correlation coefficient (P<0.001).
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Figure 6. Machine-learning tree classifiers predict functional states of neurons based on single-
cell transcriptome and reveal potential biomarkers
A. Extremely Randomized Trees (ERT) classifier built with the transcriptome of 56 single 

cells and trained with electrophysiological data. Actual classes were attributed by 

electrophysiological measurements. Predicted classes were attributed by the machine-

learning algorithm based on single-cell transcriptomes.

B–D. Each ERT classifier was trained to categorize the cells in two functional classes. 

Classifier B was trained to predict AP Types 4–5 in a mixed group of cells including 

differentiated neurons and astrocytes. Classifier C was trained to predict Type 5 neurons 
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from other differentiated neurons. Classifier D was trained to predict highly functional (HF) 

neurons from other differentiated neurons in transitional states determined by the PCA 

clusters. The lists show the top 45 genes selected by the ERT classifier with the highest gini 

scores. The green heatmap columns represent the normalized importance of each gene 

attributed by the classifier (Gini score). The blue-red heatmap matrices represent the mean 

expression normalized (mean 0 and variance 1) of each gene from high (red) to low (blue) in 

actual cell types. The genes were ordered by Euclidean clustering of the gene expression by 

actual functional states.

Confusion matrices are displayed below the heatmaps. The confusion matrices values 

represent the numbers of cells in each category. Predictions were annotated with a green 

checkmark if correct and a red cross if false.

The test-fold score for each cell was recorded and a score histogram was computed for each 

cell group (blue and red bars). Classes were predicted with a determined classifier score 

split, indicated by a gray dashed line in the histograms. See also Figure S6.
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Figure 7. Biomarkers to isolate highly functional Type 5 neurons
A. The top 16 genes expressed mostly in Type 5 neurons. The genes were selected based on 

the combination of several criteria: OFF (<10 tpm) in all astrocytes, OFF in >70% of Types 

1–2–3 neurons, OFF in >50% of Type 4 neurons, ON (>10 tpm) in >50% Type 5 neurons 

and then by the genes significantly more expressed in Type 5 versus all other cell types (p-

values from a Mann Whitney test). The selected genes were then ordered by p-values and 

the most significant 16 genes are shown (P<0.001). Significance was tested with two-tailed 

Mann-Whitney U test between Type 5 neurons and all the other cells. The expression of the 
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top two genes was plotted. Each gray point represents a single neuron. The red curve is the 

mean±SEM. In the bottom charts black bars represent the proportion of cells in each cell 

type group with ON expression (>10 tpm).

B, C. Immunostainings of fixed human neuronal cultures confirm the translation of 

GDAP1L1 at the protein level in some neurons (MAP2+, TUJ1+) but not in astrocytes 

(GFAP+).

D. Example of a live human neuron expressing GFP under GDAP1L1 promoter and filled 

with rhodamine with the patch-clamping pipette.

E. Whole-cell patch-clamp recordings from GDAP1L1-GFP neurons. The brightest GFP 

cells with neuronal morphology were selected for patch clamping after ~4 weeks in 

BrainPhys neuronal medium. The neurons expressed strong Nav/Kv currents (top left). The 

evoked APs were measured by slightly hyperpolarizing the cells to reduce spontaneous 

activity (top right). Spontaneous APs were recorded at resting membrane potential with zero 

current injected (middle). Spontaneous AMPA-mediated excitatory synaptic activity was 

recorded in voltage clamp at −70 mV (bottom).

F. The electrophysiological properties of the patched GDAP1L1-GFP neurons (n=12) were 

mature and functional. Means±SEM shown. The properties of single neurons are represented 

by each dot in the graphs. APs were counted only if amplitude was above −10 mV. 

Spontaneous AP frequencies were measured at resting membrane potential.

G. Three human neuronal cell lines, which matured for 5 weeks in BrainPhys basal + 

supplements, were infected with LV GDAP1L1:EGFP for 5 days before being dissociated, 

fixed and stained. Healthy cells not expressing GFAP (GFAP-neg; top graphs) were analyzed 

for their expression of TRAPPC6B protein and LV GDAP1L1:GFP expression (bottom 

graphs). The green rectangles highlight the cells expressing high levels of GFP under 

GDAP1L1 promoter and high levels of TRAPPC6B protein. The proportion of presumably 

mature ePhys types of neurons varied highly between the three cell lines.

H. Using two lentiviral vectors we sorted live astrocytes and live neurons from IPSC#1 after 

5 weeks in BrainPhys and replated them on glass coverslips for 4 days before 

electrophysiological evaluation. The population of neurons expressing high levels of GFP 

under GDAP1L1 promoter (and no GFAP:tdTomato) were patched and all the cells were 

classified as highly functional neurons (n=5) with on average high evoked firing frequencies 

(16±2Hz), low resting potentials (−58±2 mV), and large AP amplitude (91±4 mV).
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