Skip to main content
. 2016 Oct 6;14:371–384. doi: 10.1016/j.csbj.2016.10.001

Table 1.

Algorithms for the localization and segmentation of the OD.

Authors Method Database(s) used No. of images Performance measure
Lalonde et al. [27] Pyramidal decomposition, template matching Non-public dataset 40 ACC 1.00
Lu and Lim [28] Line operator DIARETDB0, DIARETDB1, DRIVE, STARE 340 ACC 0.9735
Hoover and Goldbaum [29] Fuzzy convergence of the retinal vessels STARE 81 ACC 0.89
Foracchia et al. [31] Modeling the direction of the retinal vessels STARE 81 ACC 0.9753
Youssif et al. [32] 2D Gaussian matched filtering, morphological operations DRIVE; STARE 121 ACC 1.00; ACC 0.9877
Abràmoff and Niemeijer [33] kNN location regression Non-public dataset 1000 ACC 0.9990
Sekhar et al. [34] Morphological operations, Hough transform DRIVE; STARE 55 ACC 0.947; ACC 0.823
Zhu and Rangayyan [35] Edge detection, Hough transform DRIVE 40 ACC 0.9250
Lu [36] Circular transformation ARIA, Messidor, STARE 1401 ACC 0.9950
Qureshi et al. [112] Majority voting-based ensemble DIARETDB1; DIARETDB1; DRIVE 259 ACC 0.9679; ACC 0.9402; ACC 1.00
Harangi and Hajdu [113] Weighted majority voting-based ensemble DIARETDB0; DIARETDB1 219 PPV 0.9846; PPV 0.9887
Hajdu et al. [39] Spatially constrained majority voting-based ensemble Non-public dataset; Messidor 1527 ACC 0.921; ACC 0.981
Tomán et al. [40] Spatially constrained weighted majority voting-based ensemble Messidor 1200 ACC 0.98
Yu et al. [37] Template matching, hybrid level-set model Messidor 1200 ACC 0.9908
Cheng et al. [38] Superpixel classification Non-public dataset 650 ACC 0.915