Skip to main content
. 2016 Oct 6;14:371–384. doi: 10.1016/j.csbj.2016.10.001

Table 7.

Algorithms for the detection of exudates.

Authors Method Database(s) used No. of images Performance measure
Ravishankar et al. [22] Mathematical morphology Non-public dataset, DIARETDB0, DRIVE, STARE 516 SE 0.957, SP 0.942
Walter et al. [100] Mathematical morphology Non-public dataset 30 SE 0.928, PPV 0.924
Sopharak et al. [101] Optimally adjusted morphological operators Non-public dataset 60 SE 0.80, SP 0.995
Welfer et al. [102] Mathematical morphology DIARETDB1 89 SE 0.7048, SP 0.9884
Sopharak et al. [103] Fuzzy c-means clustering, morphological operators Non-public dataset 40 SE 0.8728, SP 0.9924
Sopharak et al. [104] Naive Bayes and SVM classification Non-pubic dataset 39 SE 0.9228, SP 0.9852
Sánchez et al. [105] Linear discriminant classification Non-public dataset 58 SE 0.88 (FPI 4.83)
Niemeijer et al. [106] kNN and linear discriminant classification Non-public dataset 300 SE 0.95, SP 0.86
García et al. [107] 1:MLP, 2:RBF, and 3:SVM classification Non-public dataset 67 1:SE 0.8814, PPV 0.8072; 2:SE 0.8849, PPV 0.7741; 3:SE 0.8761, PPV 0.8351
Harangi et al. [108] Active contour fusion, region-wise classification 1:DIARETDB1; 2:HEI-MED 258 1:SE 0.86, PPV 0.84 (lesion level); 1:SE 0.92, SP 0.68 (image level); 2:SE 0.87, SP 0.86 (image level)
Nagy et al. [114] Majority voting-based ensemble DIARETDB1 89 SE 0.72, PPV 0.77