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Abstract

Fluorophenylalanines bearing 2–5 fluorine atoms at the phenyl ring have been genetically encoded 

by amber codon. Replacement of F59, a phenylalanine residue that is directly involved in 

interactions with trimethylated K9 of histone H3, in the Mpp8 chromodomain recombinantly with 

fluorophenylalanines significantly impairs the binding to a K9-trimethylated H3 peptide.

Due to the size similarity between hydrogen and fluorine atoms, most fluorinated amino 

acids closely resemble their canonical counterparts. When provided in nutrients, they are 

usually mistaken as canonical amino acids by the cellular translation system and integrated 

into proteins at corresponding amino acid sites, therefore leading to mild to severe cellular 

toxicities.1 Biochemists have long been exploiting this promiscuity of the cellular translation 

system to generate fluorinated proteins.2 Owing to its high NMR signal that is sensitive 

toward surrounding environments, fluorine in proteins provides a unique probe to study 

protein structure and dynamics.3 Fluorine also has a more hydrophobic nature than 

hydrogen, which endows fluorinated proteins with unique features such as high resistance to 

denaturants.4 Although convenient in making fluorinated proteins, this residue-specific 

noncanonical amino acid (ncAA) mutagenesis approach typically leads to partial 

replacement of a native amino acid as a fluorinated amino acid at multiple sites in a protein 

and generates a highly heterogeneous final product that leads to complexity in subsequent 

studies. Consequently, methods for the synthesis of proteins bearing fluorinated amino acids 
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at user-defined sites are of high interest. A successful strategy at this front is the use of 

amber suppression that in the context of fluorinated amino acids was pioneered by Furter 

and later expanded by others.5

We previously reported two rationally designed, polyspecific mutants of Methanosarcina 
mazei pyrrolysyl-tRNA synthetase (PylRS) that enable the effective aminoacylation of 

tRNAPyl with a large variety of phenylalanine-derived ncAA for their incorporation into 

proteins by amber suppression. Of these, mutant N346A/C348A/Y306A/Y384F (PylRS-

AAAF) accepted phenylalanine derivatives with large substiutents at the para position as 

substrates,6 whereas N346A/C348A (PylRS-AA) accepted small phenylalanine derivatives,7 

including the NMR probe m-trifluoromethyl-phenylalanine.

To get insights into the origin of polyspecificity of PylRS-AA and into its lack of 

phenylalanine recognition, we determined the crystal structure of the C-terminal catalytic 

fragment (amino acids 188–454)8 in complex with the ATP analog adenosine-5′-(β,γ-

imido)triphosphate (AMPPNP) at a resolution of 1.5Å (the structure of PylRS-AAAF was 

also solved, for data collection and refinement statistics, see the SI).9 In wild type PylRS 

(PylRS_wt), N346 of the amino acid binding pocket serves as gate-keeper residue that is 

engaged in a variety of direct and water-mediated hydrogen bonds (Figure 1A). This 

includes donation of one bond to the Nε-carbonyl group of pyrrolysine adenylate, which is 

believed to be critical for pyrrolysine recognition.10 C348 forms part of the pocket bottom 

(Figure 1A). In the structure of PylRS-AA, the mutation of both residues to alanine results in 

an inability of hydrogen bonding, combined with an enlargement of the pocket, in particular 

at position 346 (Figure 1B). A related observation has been made in the context of a 

different mutant that accepts O-methyl-tyrosine as substrate.11

PylRS belongs to the aminoacyl-tRNA-synthetase subclass IIc that also includes PheRS 

from that PylRS has directly evolved, and both show similarity in their overall fold and in 

the organization of the core domain (Figure 1C).9 Our structure of PylRS-AA reveals 

similarities with PheRS in the front pocket dimension and polarity, despite marked 

differences in the type and orientation of the involved residues (Figure 1D, E). However, the 

overall pocket dimensions of PylRS-AA (in particular in the rear part) are larger, and in 

superimposed structures, both the Phe ligand and the pocket surface of PheRS can easily be 

accommodated in the pocket of PylRS-AA (Figure 1E). Specifically, in PheRS, residues 

including E210, F248, F250 and A294 form a very compact binding pocket for 

phenylalanine (Figure 1D). Consequently, though PheRS tolerates o, m, and p-

fluorophenylalanines as substrates, larger derivatives are usually expelled.12 Residues in 

PylRS-AA that correspond with E210 and A294 of PheRS are A346 and G41913 that bear 

no or shorter side chains. L305 in PylRS-AA is a homologous site of E174 in PheRS, but its 

side chain diverts from the pocket (not shown). Finally, F248 of PheRS has no homologous 

residue in PylRS-AA although Y384 of PylRS-AA partially occupies its space (Figure 1D, 

E). Taken together, the arrangement of active site residues of PylRS-AA leads to an enlarged 

amino acid binding pocket, and the differential availability of hydrophobic contacts for 

larger, substituted Phe-derivatives versus unsubstituted Phe may account for the observed 

selectivity of PylRS_AA (SI Figure 5).
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This structural comparison intrigued us to test the recognition of pentafluoro-phenylalanine 

(F5F, Figure 2A) by PylRS-AA. As expected, PylRS-AA does recognize F5F. E. coli BL21 

cells coding PylRS-AA, tRNAPyl, and sfGFP2TAG (superfolder green fluorescent protein 

(sfGFP) with an amber mutation at its S2 position) expressed full-length sfGFP when F5F 

was provided in the GMML medium, albeit with a low level (Supplementary Figure 1). In 

order to identify a PylRS mutant that in coordination with tRNAPyl shows an enhanced 

amber suppression rate in E. coli for more efficient incorporation of F5F into proteins, we 

constructed a small PylRS-AA-based mutant library by randomizing A348. A348 is spatially 

close to E174 in PheRS that locks phenylalanine restrictedly at the PheRS active site. By 

randomizing A348, we deemed that a better mutant with tighter binding of F5F could be 

identified. Screening all mutants led to the final identification of the mutant with S348 

(coined as PylRS-AS) that in coordination with tRNAPyl provided a higher efficiency of 

amber suppression in E. coli in the presence of F5F (Supplementary Figures 2 and 3).

To test the fidelity of PylRS-AS for the genetic incorporation of F5F in response to the 

amber codon, E. coli BL21 cells coding for PylRS-AS, tRNAPyl and sfGFP2TAG were 

grown in GMML medium with or without supplementing F5F. Cells grown in the presence 

of F5F produced full-length sfGFP (sfGFP-F5F) with an expression level of 10 mg/L, 

markedly contrasting to a negligible expression of full-length sfGFP in the absence of F5F 

(Figure 2B). This demonstrated that PylRS-AS accepts F5F as substrate but discriminates 

against canonical amino acids including Phe. Electrospray ionization mass spectrometry 

(ESI-MS) analysis of the purified sfGFP-F5F displayed a molecular weight of 27817 Da that 

agreed well with the theoretical mass at 27819 Da. The single dominant ESI-MS peak also 

indicated that F5F was not recognized by E. coli PheRS, which would lead to replacement of 

12 Phe residues in sfGFP during translation. Therefore the genetic encoding of F5F by 

amber codon is orthogonal to the endogenous translation system.

We next tested the ability of PylRS-AS for the acceptance of other fluorophenylalanines 

including 2,3,4,5-tetrafluorophenylalaine (F4F),14 3,4,5-trifluorophenylalanine (F3F), 3,5-

difluorophenylalanine (F2F), and 3,4-difluorophenylalanine (F2F’). When these 

fluorophenylalanines were present in the growth medium, E. coli BL21 cells coding for 

PylRS-AS, tRNAPyl and sfGFP2TAG expressed full-length sfGFP (Figure 2B). Expression 

levels under these conditions were similar to the condition with F5F. Molecular weights of 

purified full-length sfGFP proteins expressed in presence of F4F, F3F, and F2F (sfGFP-F4F, 

sfGFP-F3F, and sfGFP-F2F, respectively) determined by ESI-MS agreed well with 

theoretical molecular weights of these proteins (Figure 2C and Table 1). All three proteins 

exhibited a single dominant ESI-MS peak, establishing the orthogonality of genetic ncAA 

incorporation in respect to the endogenous translation system. However, the full-length 

sfGFP with F2F’ incorporated (sfGFP-F2F’) displayed multiple peaks in its ESI-MS 

spectrum. The smallest peak at 27765 Da matched the theoretic mass at 27763 Da. However, 

other peaks were all about multiples of 36 Da addition to the theoretical mass, clearly 

indicating that F2F’ displaced regular phenylalanine residues in sfGFP. This result 

demonstrated that the genetic encoding of F2F’ by amber codon is not orthogonal to the 

endogenous translation system, although PylRS-AS does recognize it as a substrate.
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In addition to being used as a NMR probe and to improve protein folding, genetically 

encoded fluorophenylalanines in proteins could potentially be for the investigation of cation-

pi interactions such as in the recognition of lysine methylation in histones by epigenetic 

readers. Being part of epigenetic regulation of chromatin function, histone lysine 

methylation induces interactions with effector proteins and subsequently regulates DNA 

replication, repair, and transcription.15 The recognition of methylated lysine typically 

involves an aromatic cage that has been found in the chromodomain (Figure 3A), the PHD 

finger, and the Tudor domain, and appears to be mediated by cation-pi interactions between 

the methylammonium moiety and aromatic residues in the cage.16 The cation-pi interaction 

is predominantly electrostatic, occuring between a cation and the quadruple moment of an 

aromatic π system (Figure 3B).17 As the quadruple moment places partial negative charge 

above each face of the aromatic ring, favorable interactions with a cation occur 

perpendicular to the aromatic plane within a typical van der Waals distance. Although a 

number of theoretical and experimental studies have been carried out to address the 

importance of the cation-pi interaction in the recognition of lysine methylation,18 it is not 

clear to what degree the cation-pi interaction contributes to the recognition specificity. A 

particularly interesting target protein to address this question is the Mpp8 chromodomain 

(Mpp8C). Mpp8 is a heterochromatin component that specifically recognizes and binds 

trimethylated K9 of histone H3 and promotes recruitment of proteins that mediate epigenetic 

repression.19 In Mpp8C, F59 is part of the aromatic cage that directly binds to trimethylated 

K9 of H3. Replacing this residue with fluorophenylalanines (in particular with F5F that has a 

strongly reduced partial negative charge above each face of the aromatic side chain) is 

expected to significantly reduce the binding of Mpp8C to trimethylated K9 of H3 in the case 

that the cation-pi interaction plays a dominant role. Otherwise, binding would not be 

strongly affected or might increase due to the more hydrophobic nature of 

fluorophenylalanines than phenylalanine.

Using our currently developed approach, Mpp8C with F59 replaced by the three derivatives 

F5F, F3F, and F2F were expressed. The incorporation of F5F in Mpp8C was independently 

confirmed with the detection of three19F NMR singals in the finally purified protein (SI 

Figure 6). Together with wild type Mpp8C, interactions of these proteins with a fluorescein-

conjugated N-terminal histone H3 peptide with trimethylation at the K9 position (FAM-

H3(1–15)K9me3) were studied using fluorescent polarization changes. As shown in Figure 

3C and Table 2, wild type Mpp8C interacts with FAM-H3(1–15)K9me3 strongly, with a 

determined Kd value around 0.8 µM that agrees with previously reported values.20 This 

binding was decreased 15-fold when F59 was replaced with F2F and continued to drop when 

F59 was replaced with F3F and F5F (Figures 3D–F and Table 2). Due to the low binding of 

FAM-H3(1–15)K9me3 to both F59F3F and F59F5F mutants of Mpp8C, no sufficient data 

could be collected to determine accurate Kd values between these two proteins and FAM-

H3(1–15)K9me3. This continuous decrease of binding of Mpp8C to FAM-H3(1–15)K9me3 

when a growing number of fluorine substituents are added to F59 strongly suggests that the 

cation-pi interaction plays a dominant role in the binding of trimethylated K9 of H3 to 

Mpp8C. Though hydrophobic interactions may contribute to the binding, they appear to be 

not significant, since adding hydrophobicity to F59 does not improve binding.
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In summary, a method for the genetic incorporation of fluorophenylalanines with fluorine 

substituents at the side chain phenyl ring ranging from 2 to 5 has been developed. This was 

based on a polyspecific PylRS mutant, its crystal structural analysis, and its further 

reengineering. The engineered PylRS mutants display recognition of fluorophenylalanines 

and discriminate against canonical amino acids including phenylalanine, assuring their 

specific incorporation in response to the amber codon. Using this method, we synthesized 

Mpp8C, a chromodomain with fluorophenylalanines replacing the critical active site residue 

F59 that directly interacts with trimethylated K9 of H3 for its binding to Mpp8C. We 

showed that replacing F59 with fluorophenylalanines significantly weakens the binding of 

Mpp8C to trimethylated K9 of H3. This result strongly supports a critical involvement of the 

cation-pi interaction in the recognition of lysine trimethylation by a chromodomain.
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Figure 1. Crystallographic analysis of PylRS-AA
(A) Amino acid binding pocket of PylRS-wt in complex with a pyrrolysyl-adenylate in a 

previously reported crystal structure (PDB entry: 2Q7H). Hydrogen bonds are shown as 

dotted yellow lines, water molecule as red sphere. Pocket surface is drawn transparent and 

colored according to atoms that form the surface. (B) Amino acid binding pocket of PylRS-

AA in complex with AMPPNP (PDB entry: 5KIP). Surface color code as in Fig. 1A. (C) 

Overview of superimposed crystal structures of E. coli PheRS (light blue) in complex with 

phenylalanine (Phe) and AMP (pdb entry 3PCO) and PylRS_AA (grey) in complex with 
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AMPPNP. The Phe ligand of PheRS is shown as sticks. (D) Amino acid binding pocket of 

PheRS with pocket-forming residues and Phe ligand shown as sticks. (E) Amino acid 

binding pocket of PylRS-AA with pocket-forming residues shown as sticks. PheRS structure 

was superimposed and Phe ligand (white sticks) and PheRS pocket surface (transparent light 

blue) are shown.
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Figure 2. The genetic incorporation of fluorophenylalanines
(A) Structures of five fluorophenylalanines. (B) The expression of sfGFP with 

fluorophenylalanines incorporated at its S2 position. To express full-length sfGFP, E. coli 
BL21 cells were transformed with two plasmids coding PylRS-AS, tRNAPyl, and 

sfGFP2TAG and the transformed cells were grown in the GMML medium supplemented 

with or without a fluorophenylalanine at 3 mM. (C) Deconvulated ESI-MS spectra of 

purified full-length sfGFP proteins. Theoretical molecular weights are 27819, 27801, 27783, 
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27765, and 27765 Da for sfGFP-F5F, sfGFP-F4F, sfGFP-F3F, sfGFP-F2F, and sfGFP-F2F’, 

respectively.
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Figure 3. 
(A) The structure of the MPP8 chromodomain (MPP8C) complexed with the H3(1–

15)K9me3 peptide (PDB: 3R93). (B) The cataion-quadrupole interaction. (C)–(F) 

Fluorescent polarization based binding assays of FAM-H3(1–15)K9me3 interactions with 

wild type MPP8C, MPP8C-F59F2F, MPP8C-F59F3F, and MPP8C-F5F. Data were fit to the 

equation: P=Pf+(Pb-Pf)*[protein]/(Kd+[protein]) where Pf and Pb are anisotropies of free 

and bond ligands.
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Table 1

Theoretical and detected molecular weights of different full-length sfGFP proteins.

Theoretical mass (Da) Detected mass (Da)

sfGFP-F5F 27819 27817

sfGFP-F4F 27801 27799

sfGFP-F3F 27783 27783

sfGFP-F2F 27765 27763

sfGFP-F2F’ 27765 27763, 27800, 27835, 27871,
27907
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Table 2

Determined dissociation constants between MPP8C proteins and FAM-H3(1–15)K9me3.

Kd (µM)

Wild type MPP8C 0.8 ± 0.1

MPP8C-F59F2F 12 ± 5

MPP8C-F59F3F > 100

MPP8C-F59F5F > 200
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