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A new timepiece: an epigenetic mitotic
clock
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Abstract

A new mitotic clock and mathematical approach
that incorporates DNA methylation biology common
among human cell types provides a new tool for
cancer epigenetics research.
with disease risk from effects that are common across
Introduction
The ability to accurately and efficiently detect the accel-
eration in the stem cell mitotic “tick rate”—a so-called
mitotic clock—could be a useful tool for predicting can-
cer risk. It has long been recognized that mitosis itself is
highly mutagenic [1, 2] and enhanced mitosis in a stem
cell may be an important factor in cancer risk. To date,
mitotic clock models that use genetic approaches such
as telomere length have not consistently predicted risk,
potentially in part because of differences in functional
programming among cell types. Previous epigenetic
mitotic clock models included ones that used random
replication errors at CpG sites as signals of mitotic
activity, allowing stem cells to be followed retrospect-
ively [3]. Although these epigenetic mitotic clocks were
ingenious in design, their practical application in hu-
man tissues has been limited by the need to sample
stem cells from multiple tissues directly. Hence, while
it is clear that a quantitative estimate of mitotic activity
in stem cells is likely to be strongly associated with can-
cer risk, knowledge of biomarkers specific to stem cells
that signal mitotic activity has been lacking. A new,
biologically based approach presented in the current
issue of Genome Biology [4], called epiTOC, uses an
integrative methodology that makes use of previous
work on estimation of tissue-specific stem cell division
rates and devises a model for an epigenetic mitotic
clock that overcomes these challenges.
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In formulating the new epiTOC tool, Yang and col-
leagues [4] take on the task of identifying putative
phenotypically important variation in DNA methylation
that is related to both stem cell alterations and disease
risk. It can be extremely challenging to differentiate
cell- or tissue type-specific events that are associated

cell types because differences in patterns of DNA
methylation among normal cells and tissue types are in-
completely characterized. Epigenetic events that occur
at loci related to “stemness”, lineage-specific differenti-
ation events, or cell-specific responses to transcription
factors can depend on cell or tissue type, whereas
events that occur at loci associated with metabolic and
genetic regulation may be shared among cell types. At
the same time, much progress has been made in the
search for epigenetically important cancer disease risk loci.
While early candidate gene studies comparing tumors
with normal cells identified gene-specific hypermethyla-
tion (primarily in promoter regions) and DNA nucleotide
repeat element hypomethylation (genome-wide hypome-
thylation), recent high-resolution approaches [5] have
shown promise for assessing epigenetic variation in mul-
tiple normal and abnormal cells and tissues. Subsequent
work from experimental studies has given us better maps
relating the genomic context of CpG DNA methylation to
functional gene regulation. This sets the stage for accel-
erated development and testing of potentially useful
non-genetic, DNA-based biomarker tools in healthy
and diseased cells. More specifically, we are becoming
better positioned to recognize signals that are inform-
ative for specific types of questions. The integration of
cell type data and an epigenetic approach to “telling
time” has improved the coordinated universal model of
keeping mitotic time by adding guidelines for adjusting
to the right “time zone”. Indeed, here Yang and col-
leagues [4] apply knowledge of the stem cell functional
phenotype of polycomb-related genes and integrate this
with variation over calendar time to discover loci that
are putatively related to mitosis.
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The epigenetic clock as a tool for cancer risk
prediction
In this work, Yang and colleagues [4] select specific
Polycomb target loci that are both unmethylated in
multiple fetal tissues and show age-associated hyperme-
thylation and hypothesize that methylation at these
sites reflects relative mitotic activity. They then con-
struct a model that shows that cancer and pre-cancer
tissues have increased DNA methylation relative to rele-
vant normal tissues. This, they posit, reflects enhanced
stem cell activity and increased cancer risk.

Modeling assumptions are limited by current
knowledge
Yang and colleagues [4] are to be congratulated for com-
bining cutting-edge biological knowledge with state-of-
the-art bioinformatics in building a cancer prediction
model. Scrutiny of this provocative model is certain to
result in modifications and refinements to it as the
underlying assumptions (of both the model and past
experiments) are challenged and the understanding of
the underlying biology improves. At the outset, we note
that there are a few important assumptions and limita-
tions in this work.
First, the stem cell division rates applied in this work

are derived from those presented in Tomasetti and
Vogelstein [6]. While this is reasonable, as Tomasetti
and Vogelstein indicate in their work [6] there is room
for improvement in the estimates they present. In
addition, the current model is tested in cancer tissues
and shows universal increases, but the authors have not
yet shown evidence of prediction of risk in a prospect-
ive setting, where availability of data is still very limited.
The current model does not include or apply estimates
of the contribution that somatic alterations in non-
stem cells (in any tissue or tissue environment) may
make to tick rate. Altered somatic cells, particularly in
tissues with higher levels of carcinogen exposure, may
have non-stem cells that propagate alterations and in-
crease the estimated tick rate of the mitotic clock. We also
note here that the potential contribution of immunity and
inflammation, which are particularly important in many
solid tumors, is not yet specifically included in the model.
The current model is also built, appropriately, using data
from just one tissue source, and additional methylation
data from normal tissues in healthy subjects are needed to
expand and further examine the predictions of the
model. Finally, reference-free and reference-based ap-
proaches would have to be properly applied to adjust
for cellular heterogeneity in the setting of various other
normal tissue types.
We also highlight that, as the authors note, this model

necessarily assumes that methylation at the informative
loci occurs only in stem cells. This is novel biology for
which there is little to no experimental evidence. If true,
it would imply that locus specificity in methylation is
differentially determined in numerous distinct cellular
and tissue-specific compartments.

Implications of epiTOC
An important aspect of the work presented by Yang and
colleagues [4] is that it highlights the differences be-
tween genome-wide association studies (GWAS) and
epigenome-wide association studies (EWAS). In their
work on this issue, the authors define additional building
blocks of the DNA methylome, adding loci that puta-
tively act in coordination and display a novel “mitotic
clock” phenotype. These loci, as well as others that have
been previously defined (e.g., the Horvath “aging” loci),
represent the beginning of our ability to organize the
methylome into distinct loci-driven phenotypic units [7].
Importantly, future discovery-based interrogation seek-
ing to define the nature of differences in tissues or of
tissues within population groups can now begin to group
loci for testing rather than treating them independently.
These groups can be compared for differences in the
locus-associated phenotype, offering potential for better
interpretation of some of the results of these studies.
This is not unlike applying the now-standard techniques
for delineating cell types within tissues [8–10], which
represented the initial attempts to arrange epigenetic
data into organizational, phenotypically defined units.
Adding these new building blocks allows us to imagine

new approaches to future studies, including examination
of the dynamic changes to the epigenome over the life
course. For example, does epiTOC provide a window
into variation in the extent to which chronological age
contributes to cancer risk? The ability to estimate mi-
totic tick-rate acceleration has value for researchers
collecting DNA methylation data, as it provides a
directed approach to investigating age-correlated can-
cer risk and may inform on the biology of cancer risk
factors studied across the life course.

Conclusions
Tests of epiTOC’s association with increased cancer risk
require case control approaches or, ideally, prospective
studies. Initially, such work will be limited to cell types
from the type of biological specimens that are more rou-
tinely collected in these studies, such as peripheral
blood, and as epiTOC was developed using peripheral
blood as the model tissue it may show initial success in
that setting. In the future, other relatively accessible
biospecimens could be collected in medical and research
settings with a prospective design, so that cancer risk for
the relevant organ could be tested. These tissues may in-
clude epithelial cells from colorectal tissue, the bladder,
sputum, the cervix, and the oral cavity or ductal
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epithelial cells from the breast. Thus, epiTOC is a new
tool of the best kind—one that immediately brings new
questions to the fore while also providing the potential
means to find answers to pressing old ones. It is an excel-
lent demonstration of the power of incorporating biology
into a computationally sophisticated analytic framework.
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