Skip to main content
. 2016 Oct 20;11(10):e0164847. doi: 10.1371/journal.pone.0164847

Table 1. JIP-test parameters.

Formulae and terms Illustrations
Fluorescence parameters
Fo = F50μs Fluorescence intensity at 50 μs
F300μs Fluorescence intensity at 300 μs
FJ Fluorescence intensity at 2 ms
FI Fluorescence intensity at 30 ms
FM Maximal fluorescence intensity
Wk The ratio of K phase of J phase. Wk = Fk/FJ
VJ Relative variable fluorescence at 2 ms. VJ = (FJ-Fo)/(FM-Fo)
Mo Approximated initial slope of the fluorescence transient. Mo = 4(F300μs–Fo) /(FM-Fo)
Ψo Probability that a trapped exciton moves an electron into the electron transport chain beyond QA-. ψo = ETo/TR = 1-VJ
Quantum efficiency/flux ratios
φEo Quantum yield for electron transport. ETo /ABS = (1-Fo /FM)·ψo
φDo Expresses the probability that the energy of an absorbed photon is dissipated as heat. φDo = 1-φPo = Fo /FM
φPo Maximum quantum yield for primary photochemistry. TRo /ABS = 1-Fo /FM
Phenomenological energy fluxes [per excited cross-section (CS)]
ABS/CSm Absorption flux per CS. ABS/CSm≈ FM
TRo/CSm Trapped energy flux per CS. TRo /CSm = φPo·(ABS/CSm)
ETo/CSm Electron transport flux per CS. ETo/CSm = φEo·(ABS/CSm)
DIo/CSm Dissipated energy flux per CS. DIo/CSm = (ABS/CSm)-(TRo/CSm)
RC/CSm Relative number of active PS II reaction centers per excited cross-section. RC/CSm = φPo·(VJ/Mo)·(ABS/CSm)
Specific energy fluxes [per Q A-reducing PSII reaction center (RC)]
ABS/RC Absorption flux per RC. ABS/RC = Mo·(1/VJ) ·(1/φPo)
TRo/ RC Trapped energy flux per RC. TRo/RC = Mo·(1/VJ)
ETo/ RC Electron transport flux per RC. ETo/RC = Mo·(1/VJ)·ψo
DIo/ RC Dissipated energy flux per RC. DIo/ RC = ABS/RC-TRo/RC
Performance Index
PIABS Performance Index on absorption basis. RC/ABS·[φPo/(1-φPo)]·[ψo/(1- ψo)]
DFABS Proton motive force on absorption basis. DFABS = log(PIABS)