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Abstract

PURPOSE—The high-dimensional propensity score algorithm attempts to improve control of 

confounding in typical treatment effect studies in pharmacoepidemiology and is increasingly being 

used for the analysis of large administrative databases. Within this multi-step variable selection 

algorithm, the marginal prevalence of non-zero covariate values is considered to be an indicator 

for a count variable's potential confounding impact. We investigate the role of the marginal 

prevalence of confounder variables on potentially caused bias magnitudes when estimating risk 

ratios in point exposure studies with binary outcomes.

METHODS—We apply the law of total probability in conjunction with an established bias 

formula to derive and illustrate relative bias boundaries with respect to marginal confounder 

prevalence.

RESULTS—We show that maximum possible bias magnitudes can occur at any marginal 

prevalence level of a binary confounder variable. In particular, we demonstrate that, in case of rare 

or very common exposures, low and high prevalent confounder variables can still have large 

confounding impact on estimated risk ratios.

CONCLUSIONS—Covariate pre-selection by prevalence may lead to sub-optimal confounder 

sampling within the high-dimensional propensity score algorithm. While we believe that the high-

dimensional propensity score has important benefits in large-scale pharmacoepidemiologic 

studies, we recommend omitting the prevalence-based empirical identification of candidate 

covariates.
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1. INTRODUCTION

The high-dimensional propensity score (hd-PS) algorithm introduced and established by 

Schneeweiss and colleagues1–6 attempts to reduce residual confounding in typical treatment 

effect studies in pharmacoepidemiology and is increasingly being used by large, 

collaborative drug safety networks such as the U.S. Mini-Sentinel7 and the Canadian 

Network for Observational Drug Effect Studies8.

It is assumed that adjustment for large numbers of covariates, as commonly available in 

administrative databases, may serve as sufficient proxy for unobserved confounders which, 

if not considered, would yield biased estimates of treatment effects. In general an ideal hd-

PS algorithm will either select all relevant confounders in a given data set or, due to the 

latent correlation structure of all potential confounder variables, will select enough 

confounder-associated variables so that unobserved or non-selected confounders are 

sufficiently mirrored in the final propensity score model. In order to achieve confounder-

adjusted treatment or exposure effect estimates, the fitted propensity score usually serves as 

a balancing score in a multivariable outcome model, as matching criterion or is used to 

define inverse probability weights for the estimation of marginal treatment or exposure 

effects.

The hd-PS variable selection algorithm considers the marginal prevalence of non-zero values 

of a covariate (either binary or count variable) as an indicator for its potential confounding 

magnitude. Accordingly, candidate covariates to be included in the final propensity score 

model are empirically identified. The idea of assessing the potential confounding impact of 

extraneous variables is not entirely new and has received broad attention in the 

epidemiological literature9–14. However, so far, the proposed formulas and illustrations focus 

mainly on the conditional prevalence of confounder variables, i.e. dissimilarities in 

confounder prevalence between the exposure groups. In this article we investigate the 

theoretical justification for assessing potential bias impact based on the marginal prevalence 

of confounder variables as implied by the hd-PS algorithm.

The article is structured as follows: Section 2 provides a brief review of the high-

dimensional propensity score covariate selection procedure. Section 3 gives formal insights 

in confounding mechanisms and the role of marginal confounder prevalence. Section 4 

provides a comprehensible data example and illustrates the formally determined boundaries 

for bias magnitudes in dependency on marginal confounder prevalence and confounder-

outcome association. Section 5 closes with discussion and conclusion.

2. THE HD-PS COVARIATE SELECTION PROCEDURE

The hd-PS confounder selection algorithm is essentially comprised of three steps: First, 

among all count variables (codes from the claims database), candidate empirical covariates 

are selected according to their marginal prevalence (proportion of subjects with a count 

value of at least one). Here, variables with marginal prevalence values closer to 0.5 is given 

higher priority. Second, the selected count variables are recoded into three binary variables 

indicating i) if a subject has at least one count, ii) if a subject has a count value greater or 
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equal to the median of all non-zero counts in this variable and iii) if a subject has a count 

value greater or equal to the 75th percentile of all non-zero counts. Third, after 

dichotomization, ranking and selection of potential confounder variables according to a 

multiplicative bias term which reflects the relative magnitude of bias potentially caused by 

each of the created dummy variables. This calculation is performed using a formula based 

on an earlier work of Bross9:

(1)

Here, ARRED refers to the apparent (unconditional) relative risk on a binary outcome 

variable D associated with a binary point-exposure or treatment E. The relative risk between 

exposed and unexposed individuals conditional on the binary confounding variable C is 

given by RRED. Furthermore, RRCD depicts the relative risk between subjects with and 

without the confounder attribute and PC1 = P(C = 1|E = 1) and PC 0 = P(C = 1|E = 0) the 

prevalence of the confounder in exposed and unexposed individuals respectively.

3. CONFOUNDING AND THE ROLE OF MARGINAL CONFOUNDER 

PREVALENCE

The maximum possible magnitude of the multiplicative bias term of a confounder variable is 

a clearly defined function of P(C), P(E), and RRCD. According to the law of total 

probability, the marginal prevalence of C is given by the weighted sum of the respective 

conditional prevalences:

(2)

As indicated by equation (1), and as universally known as the key point in confounding 

mechanism, the magnitude of confounder-induced bias is strictly increasing with increased 

imbalance of the confounder distribution in the exposure groups. Accordingly, at fixed 

values of P(E) and RRCD, the highest magnitude of bias potentially caused by a confounder 

variable appears in the most extreme cases of pure imbalance either if P(C = 1|E = 1) = 1 

and P(C = 1|E = 0) = 0 or if P(C = 1|E = 1) = 0 and P(C = 1|E = 0) = 1. In these cases the 

effect of the confounder variable cannot be differentiated from the effect of the exposure so 

that RRCD immediately bonds with RRED and the apparent relative risk becomes simply the 

product of these two effect measures. Therefore, the maximum reachable magnitude of the 

multiplicative bias term corresponds to the value of RRCD or 1/RRCD in the worst two 

possible confounder distribution scenarios among the exposure groups. Equation 2 illustrates 

the crucial implications P(C) = P(E) or P(C) = 1 − P(E) induced by such extreme 

confounding situations. However, since neither P(C) nor P(E) are restricted to a value of 0.5 

and the bias magnitude is a monotone decreasing function with increasing confounder 

balance among the exposure groups, the rationale to pre-select potential confounders 
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according to marginal prevalence values close to 0.5 may lead to an inappropriate choice of 

propensity score variables.

4. EXAMPLE DATA AND ILLUSTRATION

The following example provides a simple hypothetical data scenario in which the marginal 

prevalence of a confounder variable is low but the magnitude of bias caused is still 

substantial.

Panel A of Table 1 displays the unconditional exposure-outcome association indicating an 

about 1.5 fold higher risk for exposed individuals. Exposure (E) is high prevalent (96%) in 

the study population. Panel B shows for the same study sample the distribution of a low 

prevalent (3%) binary confounding variable (C). A strong imbalance of the confounder 

between the exposure groups is present, as P(C = 1|E = 1) = 0.02 and P(C = 1|E = 0) = 0.41. 

Panels C and D indicate, in contrast to Panel A, no exposure-outcome association 

conditional on the confounder variable. Thus, despite the given low marginal confounder 

prevalence, the confounder-associated multiplicative bias still yields a magnitude of 1.5 in 

this example scenario. This is because the confounder distribution is strongly imbalanced 

between the exposure groups, a fact which cannot be deduced from the marginal confounder 

prevalence.

Figure 1 provides a comprehensive illustration of the described multivariable impact of P(C), 

P(E), and RRCD on the confounding magnitude potentially caused by C. We simply plotted 

the multiplicative bias term from equation 1 for all possible values resulting from a grid { PC 

0, PC 1} ∈ {(0, 0.1,.., 0.9, 1)×(0, 0.1,..,0.9, 1)} conditional on the respective marginal 

confounder prevalence P(C). We considered nine exemplary configurations by setting 

RRCD={1, 1.5, 2} and P(E) ={0.1, 0.5, 0.75}. In the resulting graphs we added horizontal 

dashed lines on angle of the respective value of RRCD and 1/RRCD as well as vertical dashed 

lines for values of P(C) and 1 − P(C). As can be seen from the figure, the maximum 

multiplicative bias magnitude for a given scenario corresponds to the value of RRCD (or 

1/RRCD) and is achieved at the respective value of P(C) = P(E) (or 1− P(E)). Therefore, only 

in case of P(E) =0.5 a pre-selection of confounders according to their marginal prevalence 

value would be appropriate. However, since the multiplicative bias term already reflects the 

impact of the marginal prevalence on the confounding magnitude, such pre-selection would 

be superfluous.

The R code15 to reproduce Figure 1 is provided as supplementary material.

5. DISCUSSION AND CONCLUSION

We formally explained and illustrated the definite role of the marginal prevalence of an 

uncontrolled binary variable on its confounding impact when estimating risk ratios in point-

exposure studies with a binary outcome. We showed that low prevalent confounder variables 

can become highly influential in scenarios where the prevalence of at least one exposure 

category is low.
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Propensity score methods such as the hd-PS are commonly not used in situations where the 

exposure prevalence is low. However, in the analysis of large pharmacoepidemiological data 

sets, low relative frequencies of exposed individuals often translate to sufficient absolute 

numbers that allow for reliable effect estimation using propensity score methods.

In light of the presented results, while we believe that the high-dimensional propensity score 

has important benefits in large-scale pharmacoepidemiologic studies in administrative data, 

we recommend the deletion of the prevalence-targeted pre-selection step within the hd-PS 

confounder selection procedure.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Multiplicative bias term depending on P(C), RRCD and P(E).
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