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Abstract

Observational studies are an important source of evidence to evaluate treatment benefits and harms
in older adults, but lack of comparability in the outcome risk factors between the treatment groups
leads to confounding. Propensity score (PS) analysis is widely used in aging research to reduce
confounding. Understanding the assumptions and pitfalls of common PS analysis methods is
fundamental to apply and interpret PS analysis. This review was developed based on a symposium
of the American Geriatrics Society Annual Meeting on the use and interpretation of PS analysis in
May 2014. PS analysis involves 2 steps: estimation of PS and estimation of the treatment effect
using PS. Typically estimated from a logistic model, PS reflects the probability of receiving a
treatment given observed characteristics possessed by an individual. PS can be viewed as a
summary score that contains information on multiple confounders, and this score is used in
matching, weighting, or stratification to achieve confounder balance between the treatment groups
to estimate the treatment effect. Among these methods, matching and weighting generally reduce
confounding more effectively than stratification. Although PS is often included as a covariate in
the outcome regression model, this is no longer a best practice due to its sensitivity to modeling
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assumption. None of these methods reduce confounding by unmeasured variables. In this review,
we explain the rationale, best practices, and caveats in conducting PS analysis using a case study
that examined the effectiveness of angiotensin-converting enzyme inhibitors on mortality and
hospitalization in older adults with heart failure.

1. Introduction to Propensity Score Analysis

Observational studies are an important source of evidence to evaluate treatment effects in a
more generalizable, routine practice population that includes a large number of older adults
who are underrepresented in randomized controlled trials (RCTs). Unlike RCTs in which
risk factors between the treatment groups are likely to be balanced by randomization,
treatments in observational studies are chosen based on several factors, such as disease
status, severity, or prognosis. As a result, the difference in the outcome between the
treatment groups may not reflect true treatment effect but the difference in risk factors that
pre-existed treatment.

Case study. In a retrospective study, Mujib et al. examined the benefit of
angiotensin-converting enzyme inhibitors (ACEISs) in older adults with heart failure
with preserved ejection fraction (see the summary in Table 1).1 Patients who were
prescribed an ACEI had 16% lower mortality or heart failure hospitalizations than
untreated patients. Since ACEIs were more likely to be given to lower-risk patients,
this 16% reduction cannot be interpreted as the true effect of ACElIs.

The discrepancy between the estimated and true treatment effects is called bias; a particular
bias caused by lack of comparability in the outcome risk factors between the treatment
groups is confounding. A confounder refers to a variable that satisfies the following 3
conditions: 1) it is associated with the treatment (i.e., unbalanced between the treatment
groups); 2) it is associated with the outcome in the absence of treatment (i.e., a risk factor of
the outcome); and 3) it is not affected by the treatment (Figure 1).2

Case study. Certain comorbidities (e.g., chronic obstructive pulmonary disease and
chronic kidney disease) and diuretic use were less prevalent in the treated patients,
and they are known risk factors of the outcome in the absence of ACEI treatment
(Table 1).1 Since they were present before ACEI initiation, they could not be
affected by the treatment. Therefore, these variables are confounders.

Estimating treatment effects in observational studies requires careful adjustment for
confounding. Investigators should think about all potential confounders and measure them
accurately; any measurement error or lack of measurement on confounders can lead to
residual or unmeasured confounding. Once it is assumed that all confounders are accurately
measured (i.e., no measurement error and no unmeasured confounding), statistical
techniques can be employed to reduce confounding. A popular technique is regression
modeling in which investigators specify a mathematical relationship of how the treatment
and confounders relate to the outcome. If this relationship is correctly specified, the model
can estimate the unbiased treatment effect.

Case study. The investigators identified 114 patient-level and hospital-level
characteristics as potential confounders.! To reduce confounding using regression
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modeling, the investigators would have to specify how each of the 114 covariates is
related to the outcome, which could lead to model misspecification and overfitting.
Furthermore, the treatment effect estimate can change depending on how covariates
are modeled; one may explore multiple models to obtain more satisfactory results.

Propensity score (PS) analysis is another useful technique for confounding adjustment. It
involves 2 steps: estimation of PS and estimation of treatment effects using PS. Typically
estimated from a regression model that relates confounders to the treatment, PS reflects the
probability of receiving a treatment given the observed characteristics (confounders)
possessed by an individual. PS can be viewed as a “confounder summary score”’ that
contains information on multiple confounders.3-> In theory, if no unmeasured confounders
exist and treated and untreated patients have similar PS, all confounders included in the PS
model will be balanced within this sample and the unbiased treatment effect can be
estimated. In contrast to regression modeling that handles individual confounders, PS
analysis uses this single score in design (matching) or analysis (weighting or stratification)
to reduce confounding.

Case study. Instead of modeling the relationship between the 114 covariates and the
outcome in a regression model, the investigators first modeled how the 114
covariates are related to the treatment to estimate a PS. The estimated PS from this
model was then used to estimate the treatment effect. This 2-step process generally
offers several advantages to regression modeling, including robustness to model
misspecification, handling a large number of confounders, and transparent analysis
by limiting data exploration.

There have been several tutorials on PS analysis,® 7 but less emphasis has been placed on
explaining the assumptions and pitfalls of common PS analysis methods for clinical
researchers. In particular, while PS analysis assumes no unmeasured confounding, it is not
often discussed what can be done to minimize unmeasured confounding and to explore the
influence of such confounding on study results. This review is developed based on a
research method symposium of the American Geriatrics Society Annual Meeting on the use
and interpretation of PS analysis that took place in Orlando, Florida, on May 15, 2014. It is
intended to guide clinical researchers who want to apply PS analysis as well as clinician
readers who want to critically appraise research papers that employed PS analysis. In the
sections that follow, we 1) outline the steps to estimate PS; 2) explain PS analysis methods
(matching, weighting, stratification, and covariate adjustment) to estimate the treatment
effect; 3) review advantages of PS analysis to regression modeling; 4) list strategies to
address unmeasured confounding; and 5) conclude with best practices of PS analysis. We
explain the rationale, best practices, and caveats, using a case study (Table 1).1 Although PS
analysis can be applied to any exposure with =2 groups,® we only consider a binary
treatment in this review.

2. Estimation of PS

PS is estimated most commonly using logistic regression, although semi-parametric models
(e.g., generalized method of moments) and data mining techniques can be used.210 A
logistic regression model can be developed using the treatment indicator as dependent
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variable, and baseline covariates and their interaction terms as independent variables (see
Appendix for equation).’ Since patients with the same characteristics at different time
periods may not have the same chance of receiving a treatment, it is important to consider
the impact of time and the possible interaction between time and baseline covariates.

2.1. What variables should be included in the PS model?

PS models should include confounders. Some variables may only be associated with the
treatment, not with the outcome or confounders (Figure 1); these variables are called
instrumental variables (1\Vs). Including IVs may help predicting the treatment, but it
decreases the precision of treatment effect estimates (i.e., a wider 95% confidence interval
[CI])™ or may increase bias when unmeasured confounders are present.12:13 Variables that
mediate the effect of the treatment in the causal pathway are called intermediate variables
(Figure 1). Including such variables will bias the results by obscuring a part of treatment
effect mediated by intermediate variables.

Best practices and caveats—The distinction among confounders, 1Vs, and intermediate
variables is important in variable selection for PS models. Subject-matter knowledge should
be the basis of evaluating whether or not a variable is a confounder; it cannot be determined
based on statistical criteria alone (e.g., p-value or 10% change in coefficient).1* This
principle applies to any observational study, regardless of the use of PS analysis. Perfect
predictors of the treatment should not be included in PS models. To avoid adjusting for 1Vs,
one should only include the outcome risk factors, regardless of their association with the
treatment.1215 Even if risk factors may not be associated with the treatment, including them
in a PS model can improve the precision of treatment effect estimates.1! To prevent
including intermediate variables, one can compare patients who are newly prescribed
treatments (i.e., incident users) rather than those who are already receiving treatments (i.e.,
prevalent users), and measure confounders before treatment initiation. This is called “new-
user design”.16

Case study. Based on clinical knowledge, the authors identified 114 patient-level
and hospital-level characteristics as potential confounders.! From a logistic model
that included 114 variables, the PS (i.e., probability of receiving an ACEI) was
estimated for all individuals in the dataset. Because the included variables were risk
factors of mortality and heart failure hospitalizations and measured before
treatment initiation, 1Vs and intermediate variables were unlikely to be included in
the PS model.

2.2. How can we evaluate the PS model?

PS models should be evaluated based on the balance in potential confounders between
treated and untreated groups with similar PS levels. If imbalance persists, PS model may be
misspecified; one can include additional variables, interaction terms, and non-linear terms of
continuous variables. This process is repeated until an acceptable level of balance (see
below) is achieved. In addition, a graphical presentation of PS distribution has important
implications in interpreting the results of PS analysis (Figure 2). The treatment effect can be
reliably estimated for treated and untreated patients in the overlapping range of PS

JAm Geriatr Soc. Author manuscript; available in PMC 2017 October 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Kim et al.

Page 5

(“common support”), because confounders are balanced within the sample of similar PS.
Little overlap in the PS distribution indicates that the difference between the treatment
groups cannot be reduced, and the estimated treatment effect may remain confounded.’
More details on assessment of PS models are available elsewhere.18

Best practices and caveats—In assessing balance, one should use a metric that is
specific to the sample and not affected by sample size, such as standardized difference (<0.1
is considered acceptable).19:20 Significance testing (e.g., p-value) that is influenced by
sample size should be avoided.2! Because the main purpose of PS analysis is not the best
prediction of treatment status, metrics to evaluate prediction models (e.g., goodness-of-fit
statistic and C statistic) do not inform whether PS models are correctly specified or include
important confounders.22 High C statistics indicate a wide separation of PS distribution
between the treatment groups (Figure 2A), which may result from consistent clinical
practice or inclusion of IVs. In contrast, low C statistics (Figure 2B) may reflect a situation
in which clinical uncertainty exists or omission of important confounders. Thus, C statistics
cannot be relied upon to evaluate PS models.

Case study. The authors used standardized differences to assess balance in potential
confounders before and after PS matching. After PS matching, standardized
differences for all covariates were <0.1, suggesting adequate balance (Table 1).1

3. Use of PS to Estimate Treatment Effects

Having developed a PS, there are 4 methods that are commonly employed to estimate the
treatment effect: matching, weighting, stratification, and covariate adjustment. Depending on
the method used, the treatment effect can be estimated for all treated and untreated patients
(average treatment effect [ATE]) or for treated patients (average treatment effect for the
treated [ATT]). These quantities may not be the same when treatment effects vary within
study population. This section describes all 4 methods and their advantages and
disadvantages (Table 2). Refer to tutorial papers for implementation of these methods.%’

3.1. Matching

For each treated patient, =1 untreated patients with similar PS can be selected to form a PS-
matched cohort. Typically, there are more untreated patients than treated patients; the
matched cohort resembles the treated patients in the original population. Thus, the treatment
effect estimated from the matched cohort represents ATT. In the matched cohort, treated and
untreated patients have similar distribution of variables included in the PS model; treatment
effects can be estimated by directly comparing the outcome risks in the PS-matched cohort.
A major advantage of matching is that it removes covariate imbalance more effectively than
PS stratification or covariate adjustment?3.24 and offers transparency by giving an intuitive
look similar to that of a RCT. Typically, in the PS-matched cohort, the nature of baseline
covariates relating to the outcome need not be specified in the outcome model. However, it
has been shown that specifying the covariate-outcome relationship in the outcome regression
model after PS matching can generate results less prone to model misspecification.2>
Because matching excludes patients in the tails of PS distribution and untreated patients who
do not have a match (depending on the size of untreated group and matching algorithm), the
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treatment effect is estimated only for patients who are in the common support range of PS
distribution (shaded area in Figure 2). If matching is overdone beyond the point of
approximating a RCT, it can paradoxically exacerbate covariate imbalance and
confounding.2® Other disadvantages include limited generalizability and decreased statistical
power due to exclusion of patients. However, this loss of power is counterbalanced by
increased precision of comparing the matched pair of treated and untreated patients.

Best practices and caveats—The choice of matching algorithm (optimal or greedy),
use of caliper (maximum difference in PS allowed within a matched pair), matching ratio of
treated-to-untreated patients, and matching with or without replacement can affect matching
samples and treatment effect estimates.2”-28 Refer to a review paper for further explanation
of matching analysis.2? The emphasis is placed on finding the approach that achieves the
best covariate balance. Using a smaller caliper achieves better covariate balance and less
bias, but it reduces the number of matched pairs. Statistical methods appropriate for matched
data may be used (e.g., paired t-test, McNemar test, or regression adjustment for the
matching variable).3%:31 However, when one is interested in estimating the treatment effect at
the population level instead of individual matched-pair level, simply analyzing data without
consideration of matching process is also acceptable.?? Standard bootstrap-based standard
errors of treatment effect may not provide valid inference in the matched sample.32

Case study. Of the 1706 treated and 2483 untreated patients, 1337 untreated
patients were matched to the treated patients using a 1:1 nearest neighbor matching
without caliper (Table 1).1 Note the matched cohort had characteristics (e.g.,
chronic obstructive pulmonary disease, 28%) that were more comparable to those
of treated patients (27%) than untreated patients (32%). After PS matching, ACEI
use was associated with a modest reduction of the composite endpoint (hazard ratio
[HR]: 0.91; 95% CI: 0.84-0.99), as opposed to the larger unadjusted HR 0.84 (95%
Cl: 0.78-0.90). This estimated HR in the PS-matched sample reflects ATT.

3.2. Weighting

PS weighting adjusts for confounding by weighting treated and untreated patients using PS-
based weights to make the treatment groups similar, rather than creating individual matches
as in PS matching. This procedure is analogous to a survey sampling in which each
participant is given a specific weight to represent the population from which the participant
was sampled. Treatment effects are estimated using a weighted regression. A commonly
used weight is the inverse of the probability of receiving the treatment that they actually
received: this probability equals PS for treated patients, whereas it equals 1-PS for untreated

1
patients. Thus, the weight () to estimate ATE is w=5g for treated patients and Y=T""pg
for untreated patients. Alternatively, the weight to estimate ATT is w= 1 for treated patients

and w= 11— for untreated patients; this kind of weighting is also sometimes called
weighting by the odds or standardized mortality/morbidity ratio weighting. Advantages of
PS weighting are that more patients are analyzed (as opposed to matching that excludes
unmatched patients) and the method can be extended to account for censoring and time-
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dependent confounding.33:34 A disadvantage is that the results can be sensitive to the
influence of extreme weights.

Best practice and caveats—A small number of patients who had very low probability
of receiving the treatment they actually received (i.e., treated patients with very low PS and
untreated patients with very high PS) may dominate the weighted analysis and result in
biased or imprecise estimates of treatment effect. Because extreme weights may result from
PS model misspecification, one should attempt to improve the PS model by including
interaction or non-linear terms3® or using machine learning methods.10:36 Weights that are
above or below certain thresholds are often replaced with the threshold values (“weight
trimming or truncation”),3” but such practice is no longer considered a best practice.3®
Stabilized weights have been proposed to improve precision of treatment effect estimates.33

3.3. Stratification

Patients are ranked based on their PS and stratified into mutually exclusive, equal-size
subsets. Within each stratum, treated and untreated patients have similar PS and, therefore,
the distribution of confounders is likely to be similar. Assuming that treatment effects
remain constant across strata, stratum-specific treatment effects can be pooled into a
weighted average.* When strata are weighted based on the number of patients in each
stratum, ATE is estimated; when strata are weighted based on the number of treated patients
in each stratum, ATT is estimated. Advantages include transparency in presentation (i.e.,
confounder balance can be explicitly shown for each stratum) and straightforward analysis.
A disadvantage is that stratification may not be as effective in achieving covariate balance as
matching or weighting.24 If stratum-specific treatment effects are not constant, they cannot
be pooled. Furthermore, it is not possible to determine whether stratum-specific treatment
effects reflect true variation or different amount of residual confounding due to imbalance in
covariates within strata,22:38

Best practices and caveats—An increased number of strata (e.g., 5-10 strata) generally
result in better covariate balance within strata and larger bias reduction. If imbalance persists
for some covariates within each stratum, those variables can be included in the regression
model to estimate stratum-specific treatment effects. Before pooling stratum-specific effects,
one should examine whether the treatment effect across PS strata remains constant.

3.4. Covariate adjustment in regression models

PS or its function (e.g., splines) can be included in the outcome regression model as a
covariate; this method estimates ATE. The risk of this approach is that misspecification of
the PS-outcome association in the regression model can lead to biased results. It is difficult
to predict this association from prior knowledge, as the PS contains information from
multiple confounders. Compared with other PS methods, this method does not allow
evaluation of confounder balance and often includes individuals outside the range of PS
overlap in whom treatment effect cannot be estimated. Due to these limitations, covariate
adjustment is not considered a best practice.
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4. PS Analysis vs. Regression Modeling for Confounding Adjustment

PS analysis and regression modeling generally give comparable results,39-41 but PS analysis
offers advantages in certain situations.174142 First, it is often easier to specify how
confounders are related to the treatment (PS analysis) than how confounders are related to
the outcome (regression modeling). Misspecified PS model tends to cause less bias than
misspecified outcome model.*3 Second, PS analysis seems to perform better than regression
modeling when the number of confounders is large relative to the number of outcome
events.*445 Third, the examination of PS distribution between the treatment groups allows
one to explicitly identify the population in whom treatment effect is estimated. In regression
modeling that does not allow such examination, the results may be based on extrapolation
beyond what data can support.2? Finally, PS matching and weighting separates the “design”
(i.e., creating a balanced cohort) from the “analysis” (i.e., estimating the treatment effect),
which allows more transparent analysis and limits data exploration.46:47

5. Strategies to Address Unmeasured Confounding

Because PS analysis can only adjust for measured confounders, it is critical to discuss the
likely direction and magnitude of unmeasured confounders in interpreting the results from
PS analysis. An overview of strategies to address unmeasured confounding is available
elsewhere.#8:49 This section introduces 2 methods that are easy to implement in conjunction
with PS analysis: active comparator design and sensitivity analysis for unmeasured
confounding.

5.1. Active comparator design

Patients who initiate and adhere to a treatment may have different health-seeking behaviors
from those who are untreated.>° Therefore, a non-randomized comparison of treated vs.
untreated patients is likely to be confounded by such characteristics that are not readily
measured. Instead of untreated patients, the use of patients who receive an alternative active
treatment as a comparison group can effectively minimize the difference in such
characteristics. Ideally, the comparison treatment should have similar indications to the
treatment of interest (e.g., typical vs. atypical antipsychotics).>1 Active comparator design is
a form of restriction that is generally more effective in minimizing confounding than
statistical adjustment.>2 Limitations include decreased sample size, limited generalizability,
and difficulty in finding an appropriate comparison treatment.

5.2. Sensitivity analysis for unmeasured confounding

The impact of a binary confounder depends on its prevalence in the treated group and
untreated group and the confounder-outcome association. One can estimate what the true
treatment effect would be by assigning the prevalence of an unmeasured binary confounder
and its association with the outcome in a mathematical equation.#8 One can also show how
much confounding can fully explain the observed treatment effect, and discuss how likely
such an unmeasured confounder exists. If there is another dataset that contains data on the
treatment and unmeasured confounders in the main dataset, the prevalence of unmeasured
confounder in the treated and untreated groups can be directly estimated from this dataset
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(see published examples®3-56). A similar approach can be applied to continuous
confounders.>’ However, these methods do not account for joint distribution among
measured and unmeasured confounders.*8 Alternatively, one can estimate the effect of
treatment on an outcome that is known to be unaffected by the treatment: if the estimated
effect is null, unmeasured confounding is unlikely.

Case study. The investigators showed that the observed HR could be explained by
an unmeasured strong risk factor that would increase the odds of receiving ACEI by
1%. It suggests that the results are somewhat sensitive to unmeasured
confounding.t

6. Conclusions

PS analysis is a useful technique to reduce confounding in observational studies and offers
several advantages over regression modeling in certain situations. Although confounding is a
major threat to validity of observational studies, minimizing other types of bias, such as
measurement error and selection bias, is also important. In this paper, we explained the
concepts, assumptions, pitfalls, and current best practices in PS analysis (Table 3). Since PS
analysis methods are evolving, best practices may change in the future. Nonetheless, the
concepts discussed in this review can help clinical researchers broaden their understanding
about PS analysis.
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APPENDIX. An Example of Propensity Score Model

A logistic model can be developed using the treatment indicator as outcome and baseline
covariates and their interaction terms as predictors (see the equation below).”

Pr(A=1)

) X 4By Xt - 4B, Xt - - - X, X
" Pr (A=) Po+P1Xa+G2 Xot - +0k X+ - - + 01 Xm X
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where A = treatment (1: yes, 0: no); Xg to X, = k covariates at baseline; XX}, = interaction
terms between X, (1 < m< k) and X(1 < n< K); and By to Bk ;= coefficients for A main-
effect terms and /interaction terms estimated from the dataset.
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Figure 1. Causal Diagram Representing Confounder, Instrumental Variable, and Intermediate
Variable

In this causal diagram, a variable is called a confounder if 1) it is associated with the
treatment (confounder — treatment); 2) it is associated with the outcome, independently of
the treatment (confounder — outcome without its effect through treatment); and 3) it is not
affected by the treatment (not treatment—confounder). A variable is called an instrumental
variable if it is only associated with the treatment (instrumental variable — treatment) and
not with confounder or outcome. A variable that mediates the effect of the treatment on the
outcome (treatment — intermediate variable — outcome) is called an intermediate variable.
To reduce confounding, propensity score analysis focuses on the confounder-treatment
relationship, while regression modeling focuses on the confounder-outcome relationship.
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A. Situation in which there is little overlap between treated and untreated patients,
which would be reflected by a high C-statistic.

Never treated Either treated or untreated Always treated

v

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

B. Situation in which there is high overlap between treated and untreated patients,

which would be reflected by a low C-statistic.

Never treated Either treated or untreated Always treated

A

Density

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
PS

Figure 2. Hypothetical Distribution of Propensity Scores Between Treated and Untreated
Patients

Abbreviation: PS, propensity score.

Page 14

ol

@ — Treated

S Untreated
[a]

— Treated
Untreated

Figure 2A depicts a situation with high C statistic, in which the propensity score clearly

distinguishes treated patients from untreated patients and there is a small overlap in

propensity score. This may reflect a consistent clinical practice regarding treatment use or
inclusion of strong predictors of the treatment, such as instrumental variables. Figure 2B
depicts a situation with low C statistic, in which the propensity score modestly distinguishes
treated patients from untreated patients and there is a large overlap in propensity score. This

JAm Geriatr Soc. Author manuscript; available in PMC 2017 October 01.
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may indicate that a majority of patients have a chance of being treated or untreated, or that
important confounders may have been omitted.
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