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Abstract Accurate measurement of the marginal health-

care costs associated with different diseases and health

conditions is important, especially for increasingly preva-

lent conditions such as obesity. However, existing obser-

vational study designs cannot identify the causal impact of

disease on healthcare costs. This paper explores the pos-

sibilities for causal inference offered by Mendelian ran-

domization, a form of instrumental variable analysis that

uses genetic variation as a proxy for modifiable risk

exposures, to estimate the effect of health conditions on

cost. Well-conducted genome-wide association studies

provide robust evidence of the associations of genetic

variants with health conditions or disease risk factors. The

subsequent causal effects of these health conditions on cost

can be estimated using genetic variants as instruments for

the health conditions. This is because the approximately

random allocation of genotypes at conception means that

many genetic variants are orthogonal to observable and

unobservable confounders. Datasets with linked genotypic

and resource use information obtained from electronic

medical records or from routinely collected administrative

data are now becoming available and will facilitate this

form of analysis. We describe some of the methodological

issues that arise in this type of analysis, which we illustrate

by considering how Mendelian randomization could be

used to estimate the causal impact of obesity, a complex

trait, on healthcare costs. We describe some of the data

sources that could be used for this type of analysis. We

conclude by considering the challenges and opportunities

offered by Mendelian randomization for economic

evaluation.

Key Points for Decision Makers

The causal effects of health conditions on cost can be

estimated using genetic variants as instruments for

health conditions.

This form of analysis—Mendelian randomization—

can identify causal effects because genetic variants

that influence health status may be unrelated to

known and unknown confounders.

Datasets with linked genotypic and resource use

information are now becoming available and will

facilitate this form of analysis.

1 Introduction

Accurate estimates of the marginal medical healthcare

costs that are incurred as a consequence of specific health

conditions are important. Estimates of cost are fundamental

to the economic evaluation of healthcare technologies,

whether undertaken alongside randomized controlled trials
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(RCTs) [1] or as an element of decision-analytic modelling

[2, 3]. Health system sustainability depends on an under-

standing of changes in population health and associated

healthcare costs [4–6].

Neither observational studies nor RCTs offer a wholly

satisfactory means of estimating the impact of different

health conditions on cost. Observational studies can esti-

mate the correlations between healthcare costs and health

conditions but generally cannot identify causal relation-

ships [7]. It is particularly difficult to infer causal effects of

specific conditions on healthcare costs because of prevalent

comorbidities and common causes of health outcomes and

healthcare costs such as socioeconomic status (confound-

ing), complicated natural histories (reverse causality) and

self-reported health status (measurement error).

Many of these problems cannot be resolved in RCTs.

Trials are rarely powered to detect differences in cost-re-

lated outcomes [8]. It may be neither feasible nor ethical to

expose patients to the risks of an intervention solely to

collect information on cost associated with different health

conditions [9]. Patients recruited to RCTs may not be

representative of the populations concerned. Cost data

collected in RCTs may have limited generalizability, may

not relate to the costs that would arise in routine practice,

may be related to intermediate rather than final outcomes

and may not be collected for the full period over which a

health condition affects cost [10].

We describe recent developments in genetic epidemi-

ology that offer a new way of estimating the causal impact

of health conditions on healthcare cost. The methodology

of Mendelian randomization, which uses genetic variants

as instrumental variables, offers a means of addressing the

limitations of existing study designs. In particular, the

ethical and feasibility issues that would prohibit the con-

duct of an RCT are avoided, but some of the advantages of

interventional studies in relation to causal inference are

retained.

We illustrate how robust estimates of causal effects of

health conditions on costs could contribute to economic

evaluation, and health economics more generally, by con-

sidering the relationship between obesity and cost as a

motivating example throughout the paper. Obesity is an

increasingly prevalent condition [11] that is associated with

a range of adverse health [11] and economic [12]

outcomes.

Improved estimates of the causal relation between health

conditions (such as obesity) and healthcare cost could offer

important new evidence to at least three important areas of

health economics. The first area is decision-analytic mod-

elling. Decision-analytic models, which synthesise infor-

mation from a variety of sources, including observational

studies and RCTs, are increasingly recommended as the

most appropriate vehicle for cost-effectiveness analysis

[13]. For example, simulation of the lifetime consequences

of obesity requires information on the cost consequences of

different health states that are defined by body mass index

(BMI). The conclusions of these studies are likely to be

more secure if they are informed by robust causal evidence.

The second area is health system management. For

example, in the absence of accurate information on the cost

consequences of obesity, how should healthcare funders

react to information that indicates the prevalence of obesity

is expected to continue to increase?

The third area relates to targets for intervention. For

example, if an apparent association of BMI with cost is

actually confounded by an association of obesity with

mental health status, then an intervention targeted solely at

reducing adiposity is likely to be neither effective nor cost

effective. Improved knowledge of causal relationships will

help avoid wasteful research effort and facilitate the setting

of research priorities [14].

The objective of this paper is to provide an overview

of the potential role of Mendelian randomization in esti-

mating the causal effect of health conditions on healthcare

cost. We begin by briefly describing the need for

improved methods for causal inference when analysing

observational data, then set out the genetic basis for

Mendelian randomization and its relationship to instru-

mental variables analysis. We describe the key conditions

that must be met for this form of instrumental variable

analysis to produce valid causal estimates of effect, with

particular regard to the specific issues and biological

contexts that arise when analysing genetic variants as

instrumental variables.

To make this concrete, we describe the methodological

issues that would arise when attempting to use Mendelian

randomization to estimate the causal effects of obesity on

healthcare cost. We use this example throughout the paper

to link together the methodological issues. We then con-

sider the data sources that could facilitate this type of

analysis, which would represent a novel use of the large

linked genomic cohort datasets that are now being devel-

oped and made available to researchers.

We conclude by summarising some the challenges and

opportunities offered by Mendelian randomization for the

causal analysis of cost.

2 Genetic Variants and Instrumental Variables
Analysis

2.1 Rationale

The rationale for undertaking causal analysis of the form

described below is that the relationship of some exposure

(such as BMI) to an outcome (such as healthcare costs) is
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known or suspected to be confounded. Figure 1 illustrates

this situation using a directed acyclic graph [15].

Figure 1 shows that BMI is related to healthcare costs,

but a third variable (or variables) influences both BMI and

costs. For example, mental health may be unobserved, but

if individuals with worse mental health are more likely to

have higher BMI and (independently) have higher health-

care costs, the relationship between BMI and costs is

confounded. However, in general, these confounding

variables may be unknown, known but measured with

error, or known but not quantifiable. A simple linear

regression of outcome on exposure would not identify the

causal influence of exposure in the presence

of confounding.

In the next section, we describe how instrumental vari-

able analysis using genetic variants can offer a means of

identifying the causal effect of an exposure (such as obesity

or BMI) on an outcome (such as healthcare costs). We

begin by providing some biological context.

2.2 Genetics and the Basis for Mendelian

Randomization

The human genome is made up of 23 pairs of chromosomes

located in the nucleus of almost every cell in the human

body. Chromosomes are made up of molecules of

deoxyribonucleic acid (DNA), which is constituted (in

part) by nucleotides, themselves comprising nucleobases:

cytosine (C), guanine (G), adenine (A) and thymine

(T) [16].

The region of the chromosome at which a specific

genetic variant in a DNA sequence is located is called

its locus [17]. Each locus in the human genome contains

two alleles; an allele is the particular form of a gene. Single

nucleotide polymorphisms (SNPs) refer to an individual

locus that varies across people in a population. SNPs may

occur during cell division (meiosis). Other forms of vari-

ation are possible, but most commonly researched genetic

variants are SNPs [18].

Individual SNPs can affect different observable traits

such as disease status or health condition. This introduces

the distinction between heredity (the genotype) and the

consequences of that heredity (the phenotype). The phe-

notype can be thought of as an ‘outward’ characteristic or

trait that can be observed and/or measured, while the

genotype is the underlying genetic structure associated

with a specific phenotype [16].

Mendelian randomization is founded on Mendel’s first

and second laws. The first law—the principle of segrega-

tion—states that, during the formation of sex cells (ga-

metes), there is random segregation of alleles from parent

to child. The second law is the independent assortment of

genetic variation at conception. This ‘allocation’ of genetic

variation at the time of conception is approximately ran-

dom, conditional on parental genotype. Genetic variants

that do not affect an outcome of interest other than through

the (phenotypic) risk exposure/health condition with which

they are known to be associated can serve as instruments to

allow researchers to infer the causal effects of health

conditions on outcomes of interest, such as healthcare cost

[19]. Individual genetic variants may therefore be valid

instrumental variables.

In the language of econometrics, the effects of the

endogenous variable (health condition) can be identified by

the exogenous variation induced by the genetic variants.

The genetic variants are assumed to be orthogonal to a

regression error term because of the approximately random

allocation (no confounding or endogeneity) at the time of

conception (no reverse causality) and the absence of

measurement error in the (more precisely measured)

genetic variant instruments. Genome-wide association

studies (GWAS) increasingly provide robust evidence

concerning the association of individual genetic variants

and phenotypes. Thousands of such associations have now

been identified [20], and research continues [21].

An analogy may be drawn with an RCT. In Mendelian

randomization, allocation to ‘treatment’ is indicated by the

genotype, which is known to be associated with the health

condition of interest. Differences in outcomes in people

with different genotypes may then be investigated in a

manner equivalent to an intention-to-treat (ITT) analysis in

an RCT, in which participants are analysed irrespective of

their compliance with the intervention [22].

An important difference between Mendelian random-

ization and RCT analysis is that the genotype of interest

represents a lifelong difference in the health condition or

risk factor concerned, rather than the effects of a short-term

administered intervention. Mendelian randomization can

BMI

Health system 
costs

Mental health 
status

Fig. 1 A relationship between an exposure (body mass index [BMI])

and an outcome (healthcare costs) that is subject to confounding (e.g.

by mental health status)
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potentially estimate the effects of a health condition when

intervention studies would be unethical or impractical, e.g.

the assignation of individuals to alcohol dependence or to

obesity.

2.3 Genetic Variants and the Assumptions

of Instrumental Variables Analysis

Many reviews of Mendelian randomization methodologies

are available [14, 18, 22–25]. This section briefly reviews

three fundamental assumptions of instrument variable (IV)

analysis. These are the same whether the instrument is a

genetic variant or any other (non-genetic) variable.

The three core instrumental variable assumptions are (1)

relevance (the instrument must be associated with the

exposure), (2) independence (the instrument is not associ-

ated with confounders) and (3) exclusion (the instrument

does not directly affect the outcome).1 Further ‘point

identifying’ assumptions, such as monotonicity and ‘no

effect modification’, may also be required and are dis-

cussed elsewhere [18, 24, 26–28].

Figure 2 illustrates a situation where the three IV

assumptions described above are fulfilled by an instru-

mental variable. A Mendelian randomization analysis

could use variants of the FTO gene [29, 30], which are

known to be associated with obesity, as an instrument to

estimate the causal effects of BMI on costs.

In Fig. 2, the instrumental variable (the FTO variant) is

related to the exposure (BMI), indicated by the arrow

pointing from FTO to BMI, and thus the first IV assump-

tion holds. The confounding variable does not influence the

instrument (or vice versa) since there are no arrows

between mental health status and the FTO variant. Thus,

the second assumption is satisfied. Finally, the only arrow

leading from the instrument is to BMI—the instrument

influences costs only via this path and does not otherwise

affect the outcome, as required by the third IV assumption.

2.3.1 The Relevance Assumption

Genetic variants must have a robust association with the

exposure of interest to be valid instrumental variables. This is

known as the relevance assumption [31]. Instrumental vari-

able estimates may be biased when an instrument explains

only a small part of the variation in the exposure [32, 33].

Using genetic variants that have been robustly associatedwith

the exposure in large replicated genome-wide studies can

avoid biases that can arise when choosing genetic variants

whose association with the exposure has been demonstrated

only in a single dataset [34]. Bias can also arise when a

measured exposure is an imperfect proxy for an underlying

exposure. Taylor et al. [34] discuss this possibility with an

example concerning self-reported cigarette consumption as an

imperfect proxy for actual cigarette consumption.

The relevance assumption can be tested by estimating

the association of the variants and the exposure [28]. These

tests could also account for gene–environment interactions.

For example, the relationship between phenotypes and

variants that influence the consumption of food may be

concealed in contexts where little calorific food is available

[14].

2.3.2 Independence Assumption

The independence assumption refers to the independence

of the instrument from all confounders. Intuitively, this can

be understood as the variants being ‘as good as’ randomly

assigned to different individuals.

Population structure can induce associations between

genetic variants and outcomes (e.g. cost) that are not due to

the effect of the exposure of interest (e.g. BMI). This can

occur because of population stratification, by which pop-

ulation subgroups differ in their relationship between the

exposure and outcome. For example, allele frequencies of

FTO are known to vary by ethnic group. If these ethnic

groups also have systematically different healthcare costs

for reasons other than obesity, the independence assump-

tion is violated. This can be accounted for by stratification

of the population according to the subgroup, limiting

analysis to groups with similar ancestral backgrounds or

adjusting for ancestry-informative principal components

[14].

Assortative mating, the preferential mating of like

genotypes (driven by mating of like phenotypes), will also

tend to isolate alleles in certain population subgroups [16].

Assortative mating can violate the independence assump-

tion and introduce bias into Mendelian randomization,

since genetic variants may be confounded by associations

FTO variant

BMI

Health system 
costs

Mental health 
status

Fig. 2 A relationship between an exposure (body mass index [BMI])

and an outcome (costs) that is subject to confounding (by mental

health status) but for which a valid instrumental variable (the FTO

variant) exists

1 The independence and exclusion restrictions are closely related and

are sometimes described as the same assumption, e.g. in Angrist and

Pischke [26].
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with the behavioural or social factors that characterise

these population subgroups.

2.3.3 Exclusion Restriction Assumption

The exclusion restriction is so called because a valid

instrument can be thought of as ‘excluded from’ or ‘ex-

ogenous to’ the causal relationship of interest by virtue of

having no direct effect on the outcome or by being unre-

lated to any other determinant of the outcome [26].

The exclusion restriction can be violated in the presence

of canalization [35], which refers to compensation for the

effects of the variant(s) under investigation. This can cause

estimated effect sizes to be attenuated. Canalization could

reflect changes during gestation or environmental forces

that buffer the consequences to the individual of the health

condition under study.

The interpretation of analysis in this context is similar to

ITT analysis in an RCT, with canalization playing a role

comparable to non-adherence to an intervention. Gene-by-

environment interactions could provide evidence that par-

ticular exposures are affected by canalization. This is

because development will not usually occur in the presence

of a modifiable risk factor; hence, no compensation could

have occurred [36]. However, the availability of datasets to

conduct well-powered studies of these interactions is lim-

ited [37].

Pleiotropy refers to the phenomenon in which a single

locus directly or indirectly affects more than one pheno-

typic trait [14, 22, 38]. Figure 3 provides a simple repre-

sentation [39].

Pleiotropy may violate the exclusion assumption. For

example, assume a hypothetical gene separately influences

both obesity and depression. A Mendelian randomization

analysis using this gene to assess the causal effects of

obesity could be confounded inadvertently by depression if

both traits affect the outcome of interest.

This type of scenario is summarised in Fig. 4 (based on

Lawlor et al. [40]), in which U is a confounding variable

and the pleiotropic effect (PE) creates a pathway for the

variant (Z) to influence the outcome (Y) other than through

the exposure (X).

Note that, even if a variant is pleiotropic, it need not

violate the exclusion restriction, provided that the other

trait does not affect the outcome (i.e. if there is no line from

PE to Y in Fig. 4).

Clear understanding of genetic function is one source of

protection against pleiotropic confounding [37]. Evidence

from multiple IV models that use different combinations of

variants to predict the same causal effect is another

[19, 24, 41]. For example, if many variants (not in linkage

disequilibrium) imply the same causal effect, then pleio-

tropy is unlikely to explain the results. This is because the

same causal effect across different variants could have

been obtained only if the pleiotropy operated in such a way

as to ‘cancel out’ under- and overestimates of effect [37].

Co-inheritance of traits, against Mendel’s second law,

may also violate the exclusion restriction [18, 35]. One

example is linkage disequilibrium, which occurs when

genetic variants tend to be inherited together, so that

variants other than those under study contribute to the trait.

This is illustrated in Fig. 5, which can be compared with

the illustration of pleiotropy in Fig. 4. In Fig. 4, the variant

is connected with a trait that affects the outcome of

interest; in Fig. 5, the variant (denoted G1) is connected

with another variant (denoted G2) that itself affects the

outcome [40]. For example, if FTO tends to be co-inherited

with a variant that predicts a mental health condition,

Gene
Phenotype 1 (e.g. obesity)

Phenotype 2 (e.g. depression)

Fig. 3 Pleiotropy—a gene that affects more than one phenotype

X

Y

U
Z

PE

Fig. 4 A confounded pleiotropic variant. PE pleiotropic effect,

X health condition, U confounding variable(s), Y healthcare cost,

Z instrumental variable

X

Y

U
Z (G1)

G2

Fig. 5 A variant (G1) in linkage disequilibrium with another variant

(G2) that also affects the outcome. X health condition, U confounding

variable(s), Y healthcare cost, Z instrumental variable
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which independently affects healthcare costs, the exclusion

restriction is violated.

The testing of suspected associations and recourse to

evidence on genetic function and known linkages can offer

protection against violations of the exclusion restriction

caused by linkage disequilibrium. For example, ‘maps’ of

the human genome can provide information on linkage

disequilibrium [42]. Linkage disequilibrium need not be

problematic, provided that the second variant (G2 in

Fig. 5) does not affect the outcome (no line from G2 to Y).

The exclusion restriction can be examined indirectly by

establishing whether the proposed genetic variants are

associated with potential confounding factors, or alterna-

tive mediating variables, though one cannot directly test

whether the exclusion restriction is valid. If either or both

of these associations are observed, then the exclusion

restriction is unlikely to hold. However, inference can still

be undertaken even if some instruments are invalid, as

discussed below in Sect 2.5. Pischke and Schwandt [43]

noted that regressing suspected confounders on included

variables can be more informative than regressing the

outcome of interest on suspected confounders if con-

founders are poorly measured.

Genetic variants are generally not related to confounders

that affect observational studies. For example, Davey

Smith et al. [44] found that a variety of behavioural,

socioeconomic and physiological phenotypic variables are

strongly correlated, but genetic variants were not correlated

either with each other or with the phenotypic variables

beyond what would be expected by chance.

However, dynastic effects, in which a genetic trait of a

child is affected by a parental exposure caused by the

parental genotype, can confound variants [45]. For exam-

ple, if a variant carried by a parent causes increased adi-

posity, and this causes a parent to avoid exercise with their

children, then both the variant for adiposity and a beha-

vioural tendency to avoid exercise would be passed on to

the offspring. This could confound the effect of the variant.

Between-sibling (or within-family) Mendelian randomiza-

tion would offer a solution to this.

2.4 Estimating Strategies for Undertaking

Mendelian Randomization Analysis

The Wald estimator, or the ratio method, involves calcu-

lating the ratio of estimated coefficients obtained from a

regression of the outcome on the instrument to the coeffi-

cient obtained from a regression of the exposure on the

instrument. The intuition here is that a unit change in the

outcome for a unit change in the exposure is given by the

ratio of an ‘effect’ of the instrument on the outcome to an

‘effect’ of the instrument on the exposure. The familiar

two-stage least squares (2SLS) estimator will give the same

estimated causal effect as the ratio method when using a

single instrument [28].

Mendelian randomization can be conducted using like-

lihood-based estimators, with Bayesian methods, and semi-

parametric methods such as the generalized method of

moments (GMM) and structural mean models (SMM).

Burgess et al. [28] argued that ‘‘there is no single universal

‘best’ IV estimation method. Instead, the use of different

IV methods provides sensitivity analyses to assess whether

the estimate given by a particular choice of method is

credible.’’

The precision of IV estimates will generally be less than

that of corresponding observational estimators, since the

size of IV standard errors is inversely related to the strength

of the association between instrument and exposure. The

greater consistency of an IV estimator in the presence of

confounding is associated with wider confidence intervals

around estimated effect size.

2.5 Inference with Invalid Instruments

Recent methodological developments offer the possibility

of obtaining unbiased estimates of the causal effect of

exposure, even when some or all of the proposed variants

are invalid.

For example, Bowden et al. [46] proposed a form of

Mendelian randomization analysis that can provide con-

sistent estimates of the treatment effect even if the variants

have pleiotropic effects. Do et al. [47] considered the

detection of causal influences in the presence of pleiotropy

and proposed a two-stage linear regression approach for

summarised data that gives separate estimates for different

risk factors. This type of approach was developed by

Burgess et al. [48, 49], who described a multivariable

approach to Mendelian randomization that allows variants

associated with more than one risk factor to be used in

simultaneous estimation of the causal effect of each risk

individual factor. Kang et al. [50] demonstrated that causal

effects can be identified and estimated using a general-

ization of GMM estimators, even where there is no

knowledge about which specific instruments may be

invalid, provided that less than half of the instruments used

in an analysis are actually invalid.

2.6 Phenotypic Data

Phenotypic data could be drawn from medical records or

other sources such as routinely collected data [51–53].

Phenotypic data can be used as a means of overcoming

some of the challenges of Mendelian randomization, as

an additional source of evidence on which Mendelian

randomization analysis of healthcare costs might be

performed and as an informative body of evidence in its

1080 P. Dixon et al.



own right [54]. Phenome-wide association studies

(PWAS) indicate diseases associated with genetic vari-

ants, whereas GWAS identify variants associated with

disease [53, 55].

Evidence from PWAS can identify associations not

already known from GWAS [56] but can also validate

associations [57] and provide additional evidence on

pleiotropy [57, 58]. The challenges of medical records as a

data source include inconsistencies in coding, coverage and

the diversity of sources and systems [59].

2.7 Instrument Variable Analysis in Mendelian

Randomization

IV analysis in Mendelian randomization needs to reflect

underlying biological relationships and understanding of

gene function. Results need to be interpreted in a manner

that reflects the functional biological context and the

broader population from which data are drawn. Glymour

et al. [60] encouraged ‘aggressive’ evaluation of research

design, encompassing testing of the validity assumptions,

evaluation of biological context and consideration of the

evidence available. Burgess et al. [61] suggested using the

Bradford Hill [62] criteria2 as a basis for judging the

plausibility of the IV assumptions in Mendelian random-

ization analysis.

3 Practical and Methodological Considerations
in Causal Analysis of a Complex Trait

In this section, we illustrate some of the practical and

methodological issues that might affect a Mendelian ran-

domization analysis of the effects of obesity on healthcare

costs.

The prevalence of obesity has increased in recent dec-

ades [11, 63]. It is associated with high healthcare costs

[7], is often comorbid [64], and is known to have a heri-

table component [67]. Furthermore, BMI measurement

error is pervasive [65] and may be substantial [66]. Liter-

ature using Mendelian randomization to examine the

relationship between BMI and health/non-health outcomes

is extensive [24, 68–73].

If obesity is a notable trait on these grounds, it is also a

challenging one. Obesity is a complex trait—many genetic

variants affect BMI [71]. The use of genetic variants might

violate the IV assumptions in a number of ways. We dis-

cuss these in more detail below in Sect 3.1–3.4, outlining

the main methodological issues.

3.1 Weak Instruments

The standard errors of IV estimators are related to the

strength of association between instrument and exposure.

Multiple instruments—such as the many genetic variants

known to be associated with obesity [74]—can improve

statistical power. The intuition for this is that if multiple

instruments are available and orthogonal to regression

errors, then a linear combination will also be orthogonal

[75].

However, multiple weak instruments will bias the IV

estimates toward the observational estimate [18, 76]. Bur-

gess and Thompson [18] suggested this bias can be alle-

viated by using parsimonious models of genetic

association, such as allele scores. Allele scores are

weighted or unweighted variables that combine into a

single variable information from multiple genetic variants,

and this (use of external information) can increase the

power of IV analysis.

All the variants in the score must be valid instruments

for an allele score to meet the IV assumptions; even minor

violations of the exclusion restriction can introduce bias

into approaches using single allele scores. Davies et al. [32]

suggested the use of the continuously updating estimator as

a means of addressing weak instruments. This estimator

can be used in circumstances with multiple risk factors and

many variants in which it would be difficult to create dif-

ferent allele scores for each risk factor.

3.2 Multiple Samples

The data on which estimation is performed need not come

from a single sample [22]. Data on the exposure/outcome

association (such as obesity and healthcare costs) and

variant/exposure relationship (a genetic variant and obe-

sity) could, in principle, be estimated on different samples.

All of the assumptions described concerning validity of

analysis continue to apply, and particular care needs to be

taken to ensure that the populations in each study are

comparable [28]. The absence of individual-level data will

restrict the types of analyses that may be conducted and the

ability to test the IV assumptions may be diminished when

multiple samples are used [77, 78].

3.3 Non-Linearity

Some relationships of interest to health economists, such as

between BMI and healthcare costs, are likely to be non-

2 Briefly, the Bradford Hill criteria (as discussed by Burgess et al.

[61] in relation to Mendelian randomization analysis) are that, for an

exposure to have a causal impact on an outcome, then any association

between the two should (1) be strong, (2) be consistent (i.e. observed

in different places and at different times), (3) be specific, (4) be

temporal, (5) exhibit a biological gradient, (6) be plausible, and (7) be

coherent (i.e. should reflect known facts of the natural history of the

disease and of biology more generally.
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linear [7]. Where exposure–outcome relationships are not

approximately linear, then instrumental variable estimates

using a linear model may not reflect causal effects for large

changes in the exposure [79]. If the exposure–outcome

relationship is both non-linear and non-monotone, even

small changes in values of the exposure will be difficult to

interpret [18].3

If the shape of the exposure–outcome relationship is of

interest, and its association between exposure and genetic

association is the same at different levels of the exposure, then

stratification within different quantiles of the exposure can be

performed to examine the local impacts of the exposure on the

outcome, although stratification should not be directly on the

exposure itself to avoid inducing an association between the

IV and confounders [28, 79]. Silverwood et al. [80] described

a related method for estimating local average treatment

effects for discretized values of the exposure.

3.4 Healthcare Costs as an Outcome in Mendelian

Randomization

Linking healthcare costs to a specific health condition can

be complicated. For example, Lehnert et al. [81] noted that

the physical burden of adiposity itself is not the major

source of economic burden on the individual or on health

systems. Instead, this burden is mostly attributable to

medical conditions that originate from endocrinal and

metabolic changes, such as type 2 diabetes mellitus and

cardiovascular disease.

This gives rise to a conceptual question: should the causal

analysis of the cost consequences of obesity focus on total

healthcare costs or on ‘obesity-related’ costs only? Casting

the net widely to encompass total costs allows for unknown

and unexpected influences on cost causally related to the

variant and exposures of interest to be included in the anal-

ysis. Consider an example of an individual who experiences

a car accident, to which diabetic retinopathy associated with

obesity contributed, and who undergoes an expensive inpa-

tient hospital stay. A focus on ‘obesity-related’ costs that

excluded consideration of this type of emergency admission

could overlook these costs, even though they are caused by

obesity in the scenario described. Both a total cost approach

and an obesity-specific approach could be undertaken if

information on overall resource use and resource use by

diagnostic code is available.

3.5 Data Sources

An ideal data source for the type of analysis proposed in

this paper would contain extensive genotypic information

on as large a group of individuals as possible, linked to

longitudinal medical records and/or routinely collected

administrative claims or reimbursement data. We focus on

the UK Biobank project as an example dataset.

The UK Biobank is a prospective study of approxi-

mately 500,000 participants aged between 40 and 69 years

at recruitment between 2006 and 2010 [82]. Detailed

phenotypic and genotypic data are being collected from

diverse sources, including questionnaires, assays, imaging

and genotyping [82]. As of early 2015, approximately 8500

deaths and 600,000 hospital admissions had also been

recorded via routinely collected data beginning in 1997.

Hospital outpatient episodes from 2003 onwards were

included in 2015, and primary care data will be added in

the future [82].

Part of the UK Biobank’s motivation in recruiting

individuals aged at least 40 years was to ensure a sufficient

number of incident outcomes during the early years of

follow-up. There is likely to be a minor selection effect in

observing the health outcomes of individuals who have

survived to at least 40 years of age.

A more severe issue of selection relates to participation

in the study itself. Participants in the UK Biobank face

lower mortality risks than the general population. This

gives rise to the potential for selection bias (a form of

collider bias) [83], whereby the associations observed

between genetic variants and cost could differ from the

relationship in the general population. This is because the

characteristics that give rise to selection into the study may

affect exposures, and thus exposure–cost relationships. The

incorporation of routine biological sample collection into

population-based databases with wide coverage would help

improve generalisability in other study contexts.

3.6 Textbox 1 Examples of Other Datasets

Studies with wide population coverage include the Age,

Gene/Environment Susceptibility-Reykjavik Study, which

contains linked genetic, phenotypic and medical records

data for a large Icelandic cohort [82]. The Estonian Bio-

bank contains similar information on 5 % (approximately

52,000 individuals) of the Estonian adult population [83].

The UK 100,000 Genome Project plans to sequence

100,000 genomes by 2017. The project has a focus on rare

diseases and on cancer [84, 85]. This will facilitate Men-

delian randomization analysis on these topics, but statisti-

cal power may be limited in some cases. Linkages to

routinely collected data is planned, and issues of general-

isability will again need to be considered.

The eMERGE (electronic MEdical Records and GEno-

mics) network in the USA [84] offers links from over

55,000 participants between DNA repositories and elec-

tronic medical records. Kaiser Permanente is building a

biobank of 500,000 Californian health plan members that3 These considerations apply to IV and non-IV approaches.
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will link medical records and genetic, behavioural and

environmental data [85]. The US Department of Veterans

Affairs is overseeing the Million Veteran Program, which

will create a database of genetic information and medical

care on 1 million volunteers [86].

4 Discussion

There is scepticism that Mendelian randomization can offer

anything to the study of economic outcomes [87] in spite of a

number of studies that have successfully used Mendelian

randomization to address ‘economic’ questions

[24, 41, 50, 88].We have outlined some of the challenges that

would complicate an analysis of the causal effects of BMI/

obesity on healthcare costs. This overview of challenges is

not comprehensive and may vary from experiences involved

in analysing other traits, but it illustrates realistic aspects of

analysis that would likely be encountered.

As with RCTs, the generalizability of a Mendelian

randomization analysis is not secured merely by conduct-

ing a well-designed study. For example, genetic variants

tend to have modest effects on the exposures of interest,

albeit that they influence lifelong exposure and not the

short-term exposures often observed in RCTs, which may

also produce small effect sizes [19].

RCTs and well-designed prospective cohort studies will

continue to be an important source of evidence. However,

there is little or no prospect of obtaining robust causal cost

estimates associated with long-term exposure to many

medical conditions [24]. In circumstances where the con-

sequences of the condition of interest on cost (or some

other outcome) are likely to be material, and considerations

such as measurement error, reverse causality and con-

founding will severely affect observational analyses, then

the case for Mendelian randomization analysis will be

stronger.

5 Conclusion

A comparison is sometimes drawn between the human

genome and a book [89]—the 23 pairs of chromosomes are

chapters, the texts of which are combinations of the

nucleobase ‘letters’: C, G, A and T. Variations between

individuals or chromosomes in single letters of text at

particular parts of these chapters may have consequences

for health. Mendelian randomization is the analysis of this

variation using instrumental variables to make claims about

aetiology and outcomes. We have outlined how Mendelian

randomization could be used to understand the conse-

quences for costs of different health conditions, focusing

on obesity in particular.

Substantial progress has been made in Mendelian ran-

domization-based analyses [23, 37]. This progress has been

driven by new and large data resources, the volume of

evidence emerging from GWAS, and identification and

resolution of methodological challenges.

Mendelian randomization analysis is potentially a

valuable technique for health economists. Contextual rea-

soning, large sample sizes (including multi-sample

designs), a focus on SNPs with material functional conse-

quences, evidence from a variety of sources, information

on biological plausibility, and sensitivity testing could form

elements of a well-designed Mendelian randomization

study. The outputs of these kinds of study could support the

development of more robust evidence for economic eval-

uations and for healthcare priority setting more generally.
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