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Abstract

Filensin (BFSP1) and CP49 (BFSP2) represent two members of the IF protein superfamily that are 

thus far exclusively expressed in the eye lens. Mutations in both proteins cause lens cataract and 

careful consideration of the detail of these cataract phenotypes alerts us to several interesting 

features concerning the function of filensin (BFSP1) and CP49 (BFSP2) in the lens. With the first 

filensin (BFSP1) mutation now having been reported to cause a recessive cataract phenotype, there 

is the suggestion that the mutation could predispose heterozygote carriers to the early onset of age-

related nuclear cataract. In the case of CP49 (BFSP2), there are now three unrelated families who 

have been identified with a common E233Δ mutation. Very interestingly this is linked to myopia 

in one family. Despite the apparent phenotypic differences of the filensin (BFSP1) and CP49 

(BFSP2) mutations, the data are still consistent with the beaded filament proteins being essential 

for lens function and specifically contributing to the optical properties of the lens. The fact that 

none of the mutations thus far reported affect either the conserved LNDR or TYRKLLEGE motifs 

that flank the central rod domain supports the view that this pair of IF proteins have unusual 

structural features and a distinctive assembly mechanism. The multiple sequence divergences 

suggest these proteins have been adapted to the specific functional requirements of lens fibre cells, 

a function that can be traced from squid to man.

Introduction

The eye lens is a transparent tissue comprising highly elongated lens fibre cells, which are 

derived from the differentiation of a single layer of polarised epithelial cells that underlie the 

anterior surface of the lens (Fig. 1). The process of differentiation is accompanied by 

characteristic changes in the intracellular architecture of lens fibre cells. These include 

cellular elongation, the synthesis of certain crystallins [1, 2] and the loss of all the 

membrane-bound organelles including nuclei [3]. Despite these alterations, the differentiated 

lens fibre cells maintain a well-organised lenticular cytoskeleton comprising actin-

containing microfilaments, microtubules and at least two different IF networks, one based on 

vimentin and the other based on a copolymer of lens-specific IF proteins [4].
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The lenticular IF cytoskeleton

The first identified IF protein in the eye lens is vimentin, a type III IF protein found in both 

the undifferentiated lens epithelium as well as the differentiated lens fibre cells [5, 6]. The 

other IF proteins found exclusively in the lens fibre cells [4, 7] comprise a unique 

cytoskeletal structure called the beaded filament [8]. Based on SDS-PAGE of the beaded 

filament fraction enriched from the chicken lens, the two structural proteins of the beaded 

filament were called cytoskeletal protein 49 (CP49) and cytoskeletal protein 95 (CP95) [9, 

10]. The CP95 orthologues in the cow and rat lenses were called CP115 [11] and CP94 [12] 

respectively. To avoid confusion due to these different apparent molecular weights in the 

different species, this protein was renamed filensin [13, 14] or beaded filament structural 

protein 1 (BFSP1). CP49 has also been called phakinin [15] or beaded filament structural 

protein 2 (BFSP2), but it does not exhibit as much electrophoretic mobility variability 

between species. Unlike vimentin that is expressed in many cell types, filensin (BFSP1) and 

CP49 (BFSP2) are exclusively expressed in the fibre cells of the eye lens [4, 7].

Unique structural details of lens-specific IF proteins

Analysis of primary and secondary sequence of filensin (BFSP1) and CP49 (BFSP2) from 

several species confirmed that both proteins are members of IF protein family [14-19]. These 

two proteins, however, revealed several unique sequence characteristics, which do not fit 

easily into any of the currently established classes of IF proteins [20, 21].

Filensin (BFSP1) has a number of distinguishing features, such as a shortened rod domain 

resulting from a truncation of 29 amino acids within the helix 2 immediate after the fourth 

heptad repeat [14, 18]. This truncation means that filensin has the shortest rod domain of all 

cytoplasmic IF proteins. Filensin (BFSP1) also exhibits sequence divergence in both the 

highly conserved motifs at ends of the rod domain. Whilst the TYRKLLEGEE motif at the 

end of the rod domain has the modified sequence RYHRIIE(I/N)EG, the LNDR motif at the 

beginning of the rod domain is altered to LGER in mammalian filensin (BFSP1) [22].

CP49 (BFSP2) is usually a tailless IF protein with a stop codon located immediately after 

the final amino acid residue of helix 2B of the rod domain [15, 16]. The fish provide an 

exception to this rule. For example Zebra Fish, stickleback and both the Japanese and 

spotted-green puffer fish all have predicted tail domains [22], as observed for another fish, 

the trout [20]. The highly conserved TYRKLLEGE sequence at the end of the rod domain is 

characteristically conserved amongst the mammalian CP49 (BFSP2), with the sequence 

SYHALLDREE [22]. In contrast, CP49 (BFSP2) showed exceptional sequence divergence 

at the highly conserved helix initiation LNDR motif, resulting in the consistent substitution 

of arginine for cysteine [22]. The LNDR motif is usually critical for IF assembly [23, 24]. In 

other IF proteins, this very substitution is the genetic basis of many inherited human 

diseases, compromising IF assembly and its function [25]. There is a splice variant called 

CP49ins, containing an insertion of 49 amino acids within helix 1B of the rod domain [17, 

26]. An extended rod domain is one of the hallmarks of ancestral IF proteins [25, 27], from 

which vertebrate cytoplasmic IFs are evolved. Indeed the IF proteins present in Squid and 

Octopus lenses bear such familiar hallmarks [28].
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Both filensin (BFSP1) and CP49 (BFSP2) have a number of quite distinctive sequence 

features that distinguish them from the other cytoplasmic IFs. Interestingly, this sequence 

divergence continues between orthologues. Although one might expect a high degree of 

sequence homology (>85%) between orthologues from different species [29], this is neither 

the case for filensin (BFSP1) nor CP49 (BFSP2) [22]. For instance, the tail domain of 

filensin (BFSP1) is amongst the most variable regions between orthologues for all IF 

proteins [22]. The radical sequence changes observed for the filensin (BFSP1) and CP49 

(BFSP2) sequences may reflect different functional requirements of the different lenses. For 

instance, eye accommodation differs between species requiring lens distortion in some 

species, but not in others [30]. It remains to be seen whether specific functions can be 

attributed to individual features in the sequences of these two proteins.

The assembly properties of the filensin (BFSP1) and CP49 (BFSP2)

With such distinctive sequence characteristics, it is perhaps not surprising that filensin 

(BFSP1) and CP49 (BFSP2) are also distinct in their assembly behaviour and the polymers 

that form, at least in vivo. In vitro assembly studies with purified filensin (BFSP1) and CP49 

(BFSP2) have shown that each individual protein is incapable of forming conventional 10-

nm filaments [31]. CP49 (BFSP2) can self-assemble into thin filament-like structure that 

associates laterally to form thicker bundles. Such thicker filamentous structures can also 

form from a variety of tail-truncated or tail-mutagenised IF proteins [32-36], suggesting that 

the tail domain is indeed important in controlling lateral associations between IFs [25] and 

highlighting the need for coassembly of CP49 (BFSP2) with filensin (BFSP1). On its own, 

filensin (BFSP1) can only form short, kinked fibrils [37, 38], which are reminiscent of those 

formed by NF-M and NF-H [39, 40]. When co-assembled in vitro, filensin (BFSP1) and 

CP49 (BFSP2) readily form heteropolymeric filaments with 10-nm morphology [31, 41].

This clearly demonstrates that filensin (BFSP1) and CP49 (BFSP2) require each other for 

filament assembly in vitro. The coassembly between filensin (BFSP1) and CP49 (BFSP2) is 

specific as neither filensin (BFSP1) nor CP49 (BFSP2) is able to co-assemble with vimentin 

in vitro, although recent studies suggested that filensin (BFSP1), or its proteolytic 

fragment(s), can interact with vimentin both in vitro [13] and in vivo [42]. In addition, CP49 

(BFSP2) is unable to co-assemble with keratin, despite its relatedness to type I keratins [16]. 

The optimal molar stoichiometric of filensin (BFSP1) and CP49 (BFSP2) required for 

filament formation is reported to vary between 2:1 [31] and 3:1 [15], which is reminiscent of 

those formed by the neurofilament proteins.

Although filensin (BFSP1) and CP49 (BFSP2) coassemble into 10 nm IFs in vitro, they 

form a unique cytoskeletal structure called the beaded filament (Fig. 2A) in all vertebrate 

lenses as well as in squid [43]. The beaded filament has two distinct morphological features: 

a 6-8 nm filament backbone and a 12-15 nm bead that decorates the filaments at regular 

intervals. Some have reported that beaded filaments can be reconstituted from filensin 

(BFSP1) and CP49 (BFSP2) alone in vitro [38]. It is proposed that there is a core comprising 

four homotypic CP49 protofilaments that is then surrounded by the peripheral association of 

up to four heterotypic filensin/CP49 protofilaments [44]. It is thought that the long C-

terminal tail projections of filensin (BFSP1) contribute to the regularly spaced beads [44]. 
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The fact, however, that α-crystallins are a major component of the beaded filament fraction 

(Fig. 2B) and they associate very readily with filensin/CP49 filaments with similar bead 

spacing and dimensions of native beaded filaments [21] suggests that a complex with these 

protein chaperones is also very likely as previously proposed [45].

Functional studies of filensin (BFSP1) and CP49 (BFSP2)

Mouse knockout studies have shown that beaded filaments are essential for the optical 

properties of the lens by maintaining the three dimensional architecture of lens fibre cells 

[42]. Given the unusual sequence characteristics and their selective co-assembly properties, 

it has been suggested that filensin (BFSP1) and CP49 (BFSP2) play a functional role that is 

unique to the lens fibre cell biology. This hypothesis is tested by generating knockout 

animals with targeted deletion of the lens-specific IF gene BFSP1 and BFSP2 encoding 

filensin and CP49. Knockout of filensin (BFSP1) [46] and CP49 (BFSP2) [47, 48] each 

destabilised the other coassembly partner, resulting in the loss of beaded filaments. Although 

lenses from both knockouts show increased light scatter that progressively worsened with 

age, there appeared to be subtle differences between filensin (BFSP1) and CP49 (BFSP2) 

knockouts. The degree of light scatter in the filensin (BFSP1) knockout appeared to be 

greater, and at an earlier age [46], than CP49 (BFSP2) knockouts. In addition, the filensin 

heterozygotes also showed a slight increase in light scatter. The most important discovery, 

however, was the loss of optical function for the lenses of the BFSP2 knockout mice [48]. 

Ultrastructural studies of the CP49 (BFSP2) lens revealed substantial changes in the fibre 

cell shape and plasma membrane organisation [48] as well as the loss of the beaded filament. 

Interestingly, the remaining filensin (BFSP1) in the CP49 (BFSP2) knockout appeared to 

associate with the vimentin filaments, dramatically altering the morphology of these 

filaments [42]. Table 1 summarises the phenotypes of filensin (BFSP1) and CP49 (BFSP2) 

knockout mice. These observations from BFSP1 and BFSP2 knockouts suggest that the 

filensin/CP49 filament network is required to maintain cell morphology and correct three-

dimensional membrane architecture. Several studies have demonstrated the localisation of 

filensin (BFSP1) and CP49 (BFSP2) at the fibre cell membranes [4, 13, 49] and recent 

studies suggested that an aspect of this localisation is the association with the lens plasma 

membrane proteins, such as tropomodulin [50] and aquaporin 0 (AQP0) [51]. Of course such 

protein interactions have important functional implications, especially for such a major 

plasma membrane protein such as AQP0 and relates perhaps to the very tight association and 

specific binding of filensin (BFSP1) to lens plasma membranes [52].

A splice site mutation in BFSP2 mimics CP49 (BFSP2) knockouts

A natural mutation in BFSP2 that mimics CP49 (BFSP2) knockouts has been reported in a 

wide range of mouse species, including CBA, 101, several 129 strains of mice [42, 53] and 

the FBV/N strain [54], which are popular for transgenesis. This mutation introduces a 

premature stop codon and will result in a severely truncated CP49 (BFSP2) protein if the 

mRNA is not destroyed by nonsense-mediated decay. Detailed analysis of the lens from 129 

strains of mice has demonstrated that these mice lack CP49 (BFSP2). Filensin (BFSP1) 

levels were greatly reduced as seen in the knockout, but vimentin levels were unaffected. 

Ultrastructural analyses of the lens fibre cell cytoskeleton revealed the loss of beaded 
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filaments, which were replaced by poorly defined filament-like materials where vimentin 

was confirmed as one of the major components [42]. Indeed, this deletion mutation 

generates a natural CP49 (BFSP2) knockout because of the many features in common with 

the targeted deletion of BFSP2 [47, 48].

Mutations in filensin (BFSP1) and CP49 (BFSP2) cause inherited cataract

There have now been two different mutations reported for CP49 (BFSP2), one in exon 3 

(E233Δ; [55-57]) and the other in exon 4 (R287W; [58]). It is interesting to note that both 

residues are well conserved (Table 2), albeit the R287 residue is absolutely preserved in all 

animal sequences determined to date. Clearly a tryptophan substitution for arginine would 

be expected to have quite considerable impact given that the position of tryptophans is 

usually highly conserved in coiled coil proteins (eg [59]). The fact that the mutation 

introduces a second tryptophan just 8 residues away from the first (Table 2; W279) would be 

expected to compound the deleterious effects upon the coiled coil and the assembly of 

beaded filament. The mutation, however, appeared to be not fully penetrant as one carrier 

(IV:5; see [58]) certainly had good vision (corrected visual acuity 20:40 and 20:25) and no 

cataract. The age of cataract surgery for the other affected family members varied from 6-50 

years and it was proposed that allelic heterogeneity might explain the variation.

The E233Δ mutation is the more interesting considering the fact that this has now occurred 

in three unrelated families across two continents [55-57]. Deletion of the residue E233 

would be expected to completely alter the heptad repeat for CP49 (BFSP2) and be equally 

disruptive for beaded filament assembly. Given such a prediction, it is therefore perhaps a 

little surprising to find differences in the cataract phenotypes reported for the different 

families.

In the first family [55], there were phenotypic variations, but the light scattering properties 

of these cataracts meant that all affected individuals had surgery early in their life and the 

mutation appeared fully penetrant. The range of cataract phenotypes varied from nuclear to 

stellate or spoke-like cortical cataracts and also, sutural cataract, but this was the only eye 

phenotype reported. Subsequently there have been two Chinese family pedigrees reported. In 

one family from northern China, the E233Δ mutation caused a characteristic Y-shaped 

cataract at the lens sutures [56]. Loss in visual acuity required surgery for the affected 

individuals usually at an early age. Some phenotypic variability was noted, as one of the 

E233Δ carriers has not yet required surgery, but this is likely due in part to restricted location 

of the cataract.

In the other unrelated family from Southern China, the distinctive Y-shaped cataract at the 

lens sutures was again reported (Fig. 3), but this time it coincided with myopia [57]. The 

cataract usually started later in life after the first decade and progressed slowly resulting in 

the further development of punctuated cortical opacities that increased light scatter to the 

point that required surgery. Cataract developed more slowly in this family than the others 

that have been reported. One family member was found to have the E233Δ mutation (patient 

31; [57]) but no loss in acuity despite presenting with a mild form of the Y-sutural cataract. 

Although three of the families examined here share the same E233 deletion mutation, there 
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are differences in terms of age of onset and severity and corresponding loss of visual acuity. 

It is clear that as with mutations in other IF proteins, some phenotypic variation will occur as 

seen in other IF-based diseases [60]. For instance, the same R94C mutation in keratin 17 

causes typical Pachyonychia Congenita type-2 (PC-2) nail dystrophy in one family, but 

steatocystoma multiplex is the only phenotype in affected members of another family [61]. 

The I451M mutation in desmin provides another example, where this mutation was 

identified in two families with different phenotypes. Patients in the family reported by Li et 

al. [62] had cardiomyopathy with no sign of skeletal myopathy, whereas patients reported in 

another family [63] had progressive skeletal myopathy without cardiac involvement. These 

observations suggest that both the environment and epigenetic factors will likely contribute 

to the phenotypes observed and disease progression [24].

The first mutation in filensin (BFSP1) has now been reported and it is a recessive mutation 

caused by the deletion of exon 6 [64]. This introduces a premature stop codon after the 

addition of a novel hexapeptide sequence, but the introduction of this stop codon is expected 

to trigger nonsense-mediated decay of the mRNA, therefore effectively creating a filensin 

(BFSP1) knockout. In this family, homozygotes indeed presented with cortical cataracts in 

the first decade of life, but two heterozygote carriers (10, 16; [64]) presented with nuclear 

cataract at the age of 50. Whilst IF-related diseases caused by recessive mutation is 

considered to be rare, there have been a few cases of recessive keratin disease caused by 

homozygous mutations in keratin14 gene [65]. In one case, a homozygous deletion mutation 

led to a premature termination codon and complete loss of keratin14 expression presumably 

as a result of nonsense-mediated mRNA decay.

When these data are interpreted in conjunction with the mouse knockout studies, several 

observations emerge. The first is that filensin (BFSP1) and CP49 (BFSP2) are essential for 

lens function as described above. The second is that mutations in both genes can predispose 

individuals to cataract or other eye problems [58] such as age related (nuclear) cataract or 

even myopia. For instance, the E233 deletion mutation induced myopia in one family [57] 

concurs with the conclusion from one of the mouse CP49 (BFSP2) knockout studies [48]. 

Measurements of the back focal length of eyes from the CP49 (BFSP2) knockout animals 

indicated significant variation across the lens, which will likely distort the retinal image. The 

blurring of the image is not necessarily important; rather it is the relative spatial frequency 

composition of the image signal that reaches the retina that triggers myopia [66]. Cataract 

has more effect upon the shorter wavelength, higher energy light ([67] and discussion 

therein) and therefore mutations in either filensin (BFSP1) and CP49 (BFSP2) that interfere 

with the transmission of the visual signal through the lens by the deterioration of its optical 

properties, could potentially lead to myopia.

Filensin (BFSP1) and CP49 (BFSP2) mutations may also predispose individuals to nuclear 

cataract. For instance, two heterozygotic carriers of the filensin (BFSP1) exon 6 deletion 

presented with nuclear cataract later in life [64]. It is clearly worth following the other 

heterozygotes in this family to see if there is increased incidence of nuclear cataract in these 

individuals. Although there is a higher incidence (~3%) of nuclear cataract recorded for this 

part of India [68], it is still significant that two of the 19 family members presented with this 

type of cataract at a relatively early age [64]. By analogy, the lenses of the heterozygote 
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filensin (BFSP1) knockout mice had more light scatter than lenses from wild type litter 

mates [46], indicating a deterioration in lens function for these heterozygotes. A similar 

observation was not made for the heterozygote CP49 (BFSP2) knockout mice, suggesting 

that the influence of filensin (BFSP1) and CP49 (BFSP2) is not equivalent in the lens. What 

accounts for this difference is unclear, but could be related to the levels of unpartnered 

filensin (BFSP1) and CP49 (BFSP2). Studies on the keratin pair 8 and 18 demonstrate how 

disparity in protein levels of one IF protein (e.g. K8) in a partnership can cause pathology 

[69-71], and perhaps the same is true for filensin (BFSP1).

Previous studies using mouse models of cataractogenesis suggest the level of IF expression 

plays an important role in normal lens development and differentiation. For instance, over-

expression of vimentin in the lens of transgenic mice results in abnormal fibre cell 

elongation and extensive fibre cell degeneration, eventually leading to lens cataract [72, 73]. 

The level of expressed vimentin is proportional to the severity of the lens opacity and the age 

of onset. These observations raise the possibility that vimentin could be a candidate gene for 

lens cataract. Indeed, it has been reported that expression of mutant vimentin in mice 

induces cataract formation [74]. Other IF proteins such as keratins [75], nestin [76] and 

synemin [77] are also present during lens development. They are, therefore, also potential 

candidate genes for new cases of inherited cataract.

Then another feature of both the human [55-58, 64] and the murine [78] studies is that the 

lens phenotypes for both point mutations, the deletion mutation and the targeted knockouts 

in mice, were progressive. This illustrates that ageing of the lens is a contributory factor in 

the phenotype attributed to the filensin (BFSP1) and CP49 (BFSP2) mutations and gene 

knockouts and is an important feature.

Inherited human cataract caused by IF-associated proteins

Cataract is not only caused by mutations in the lens IF proteins filensin (BFSP1) and CP49 

(BFSP2), but it is also caused by mutations in genes encoding IF-associated proteins (Table 

3). For instance, mutations in the small heat shock protein chaperones, αA-and αB-

crystallin also cause inherited human cataract. As molecular chaperones, they can prevent 

stress-induced protein aggregation [79] and in the lens, both proteins are intimately 

associated with the IF cytoskeleton [80, 81] in the form of α-crystallin, a natural complex of 

both αA- and αB-crystallin. These chaperones help maintain the individuality of IFs by 

controlling filament-filament interactions [82] and assist in the formation of IF networks in 

cells [83]. The functional importance of αB-crystallin in the lens has been demonstrated by 

the discovery of a number of mutations causing inherited human cataract (Table 3). The 

R120G mutation alters αB-crystallin-IF interactions, promoting inter-filament interactions 

[83], but it should be noted that not all mutations in αB-crystallin cause cataract. Outside the 

lens, αB-crystallin mutations also cause human muscular disorders, including myofibrillary 

myopathies [84], desmin-related myopathies [85] and dilated cardiomyopathy [86]. It 

remains to be shown that αA- and αB-crystallin mutations cause human cataract by 

inducing beaded filament aggregation and a loss of function in the lens.
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Conclusions and perspectives

The two lens-specific IF proteins filensin (BFSP1) and CP49 (BFSP2) have acquired a string 

of unique structural features that coincide with distinct assembly characteristics. Recent 

studies confirmed that filensin (BFSP1) and CP49 (BFSP2 are two key structural elements 

required for lens function (transparency, optical properties). The future elucidation of the 

precise functional roles that these proteins may play in the lens and the identification of 

interacting partners in the cytoplasm and at the plasma membrane are of fundamental 

importance to the understanding of lens fibre cell differentiation and the potential role that 

filensin (BFSP1) and CP49 (BFSP2) play in eye development and in cataractogenesis.
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Abbreviations

IF intermediate filament

BFSP1 and 2 beaded filament structural protein 1 and 2

CP49 cytoskeletal protein 49

CP115 cytoskeletal protein 115
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Figure 1. 
Schematic view of the eye lens showing the main features and regions. The lens of the eye is 

enclosed by lens capsule (A) and the anterior surface of the lens is covered with a single 

layer of epithelial cells (B). The lens fibre cells are formed from epithelial cells at the lens 

equator (C) as part of their differentiation pathway. The epithelial elongate until their ends 

reach the two lens poles and are joined at the lens sutures. One of the striking features of the 

lens differentiation process at this stage is the removal of membrane-bound organelles (D) 

including nuclei, as indicated here as black dots. A cross section of the lens reveals the 

elongated fibre cells with characteristic hexagonal shape (E). The bulk of the lens thus 

consists of long, ribbon-like fibre cells arranged as concentric layer with the primary fibres 

cells at the centre of the lens (F).
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Figure 2. 
(A) Transmission electron micrograph of native intermediate filament and beaded filament 

isolated from bovine lens. Samples were visualized by negative staining with uranyl acetate 

and a representative field is shown. The arrows denote intermediate filament (IF) with10-nm 

morphology and the typical beaded filament (BF) consisting of a filament backbone 

decorated with beads. Bar, 200 nm. (B) SDS-PAGE analysis of the cytoskeletal components 

prepare from the bovine lens cortex. The sample of final lens membrane pellet was analysed 

by 12% polyacrylamide gel and proteins were visualized by Coomassie blue staining. The 

proteins of interest include filensin (BFSP1), vimentin, 53 kDa filensin proteolytic fragment 

(53 kDa), CP49 (BFSP2) and α-crystallin are indicated by arrows. Molecular weight 

markers (Mr × 10−3) are shown and labeled on the left.
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Figure 3. 
Photograph showing the cataract found in a family with the E233Δ mutation. The 

photograph shows the typical Y appearance of the cataract that corresponds to the lens 

sutures – those places where the ends of individual lens fibre cells meet at the anterior and 

posterior parts of the lens (see [87] for an extensive review). This figure is reprinted from 

[57].
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Table 1

Summary of the phenotypes of BFSP1 (filensin) and BFSP2 (CP49) knockouts

Knockouts BFSP1 (filensin) BFSP2 (CP49)

Lens phenotypes No obvious change in lens
morphology. Normal lens
development and fibre cell
differentiation

No obvious change in lens
morphology. Substantial
change in fibre cell
membrane architecture

Optical property Light scatter starts at 2
months, worsened with age

Loss of optical function that
worsened with age

Cataract No No

Levels of assembly partner Reduced Reduced

Beaded filament Lost Lost, but vimentin filaments
now have modified
morphology

Heterozygous mice Exhibited intermediate
phenotype

Similar to WT litter mates
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Table 2

Comparison of the amino acid sequences of residues 225-234 and 279-289 in the CP49 (BFSP2) from various 

species

ANIMAL E233 R287

Mouse EHQIESLKEE WERDVEKNRAE

Rat EHQIESLKEE WERDVEKNRAE

Rabbit WERDVEKNRVE

Cow ESQIESLKEE WERDVEKNRLQ

Elephant WERDVEKSRVE

Dog ESQIESLKEE WERDVEKNRAE

Man ESQIESLKEE WERDVEKNRVE

Chimp ESQIESLKEE WERNVEKNRVE

Macaque* ESQIESLKEE WEEEEEKLREE

Hedgehog ESQIEGLKEE WERDVEKKRME

Opossum ESQIESMKEE WEKDIEKNRAE

Platypus ESQIESMKEE

Chick ESQIESMKEE WERDIEKNRAE

Puffer-SpottedGreen EEHMEDLRAE WEKVSEKNRAE

Puffer-Japanese EEQMEDLRAE WEKVTEKNRAE

Trout ESQMEDLRAE WERVIEKNRAE

Zebrafish* ESMKTENVEQ WERVVEKNRAE

Stickleback EEQMENMRAD WEKVMERNRAE

Medaka EEQMEMMRQE WEKVTEKNRVE

The identified mutations (E233 and R287) are highlighted. Sequences were extracted from the ENSEMBL database release 42 using the human 
gene BFSP2 (ENSG00000170819) for reference and using the orthologue prediction section to trace sequences in the other animals. The asterisk 
indicates sequences that have been deduced from ESTs and database mining to address obvious database errors. For example the entry 
ENSBTAP00000024638 for the bovine Bfsp2 contains an error in exon assignment and translation when compared to the NCBI entry NM_174248 
which affects the sequence around E233.
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Table 3

Inherited human cataract caused by mutations in IF-associated proteins

Disease Mutation Ref.

Autosomal dominant cataract αA-Cry (R49C) [88]

Congenital cataract αA-Cry (G98R) [89]

Autosomal dominant congenital cataract αA-Cry (R116C) [90]

Autosomal dominant posterior polar cataract αB-Cry (P20S) [91]

Cataract and desmin-related myopathy αB-Cry (R120G) [92]

Autosomal dominant congenital lamellar cataract αB-Cry (D140N) [93]

Dominant congenital posterior polar cataract αB-Cry (450ΔA) [94]

Dominant congenital cataract Aquaporin 0 (missense) [95]

Autosomal dominant congenital cataract Aquaporin 0 (deletion) [96]
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