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Abstract

This paper describes and illustrates the use of ensemble-based docking, i.e., using a collection of 

protein structures in docking calculations for hit discovery, the exploration of biochemical 

pathways and toxicity prediction of drug candidates. We describe the computational engineering 

work necessary to enable large ensemble docking campaigns on supercomputers. We show 

examples where ensemble-based docking has significantly increased the number and the diversity 

of validated drug candidates. Finally, we illustrate how ensemble-based docking can be extended 

beyond hit discovery and toward providing a structural basis for the prediction of metabolism and 

off-target binding relevant to pre-clinical and clinical trials.
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1. Introduction

A popular approach to develop drug candidates that are potent and efficient is to rely on 

structure-based drug discovery, i.e., knowledge of the structure of a protein target, to identify 

small molecules that possess the desired chemical and structural properties needed to bind to 

the protein of interest. Docking belongs to a class of structure-based virtual screening 

approaches and are used to complement and accelerate experimental drug discovery 

screening campaigns.1
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Docking calculations essentially predict how well a given chemical may bind to a given 

protein structure, and involve computer programs that perform the following tasks: (i) 

position a small molecule drug candidate in the (predicted or experimentally known) binding 

site of the target, (ii) evaluate an interaction energy between the small molecule and its 

protein environment—varying from an enthalpy-like interaction energy to more accurate and 

sophisticated binding free energy and (iii) identify those chemicals that are predicted to bind 

the strongest.1

In recent efforts to reduce toxicity of drug candidate, attention has been focused on not only 

predicting binding of drug candidates to the target but also on predicting off-target binding, 

as toxicity is often the result of off-target binding. Understanding drug discovery at this 

system-level terms implies that the ideal hit should bind only to certain proteins (to the 

target, or potentially to other proteins turning a pro-drug into a drug), and to become a solid 

drug candidate, the initial hit should also not bind to other off-target proteins (to avoid 

toxicity issues). This is a applicable problem for docking approaches to be used since they 

are able to sample not only multiple ligands but also multiple protein targets as we will show 

below.

Virtual screening traditionally follows an induced fit mechanism for ligand binding: the 

chemical to be assayed for its binding energy in a protein is inserted in the protein binding 

site, and potential structural modifications of the protein following the binding of the ligand 
are evaluated by allowing some degree of flexibility to the protein side chains around the 

ligand, and sometimes, but more rarely, extending this flexibility to the protein backbone as 

well such as in the case of MM-PBSA of free energy perturbation calculations.2–6 Such a 

protein-flexibility approach, while more realistic than keeping the protein rigid, requires 

long calculations that make this approach seldom used in large screening campaigns and 

reserved to the a detailed binding investigation of a small number of ligands, such as in lead 

optimization approaches. Alternatively, to quickly describe the dynamical flexibility of the 

protein receptor around docked ligands, docking scoring functions have been developed that 

are parametrized to use mostly rigid protein structures and to reproduce experimentally-

known binding energies of ligands in as many proteins as possible. These rigid protein 

approaches usually use soft non-bonded interaction terms that limit steric clashes between a 

ligand and its protein environment and implicitly represent the overall effect of protein 

flexibility upon ligand binding.

With increasing computational power becoming available, there have recently been an 

increasing number of reports that aim at simulating the dynamics of the apo-protein targets, 

and perform docking in conformers thus sampled, as conceptualized by Lin and co-

workers,7 and as recently demonstrated in an integrated computational/experimental 

landscape study.8 This ensemble-based approach aims at reproducing a conformational 
selection mechanism, where the protein-bound structure is sampled prior to ligand binding, 

and specific conformations are selected by the ligand(s) to form a thermodynamically 

favored protein:ligand complex of lower global free energy than that of other potential 

protein:ligand complexes. Technically, this conformational search does not preclude later 

small-scale protein rearrangements in response to ligand binding, but in practice, the latter, 

Evangelista et al. Page 2

Bioorg Med Chem. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



local induced fit is often omitted in ensemble docking and the same soft scoring functions 

used.

We describe here the collaborative contributions of our laboratories in developing 

computational techniques for ensemble-based (multiple proteins and multiple protein 

structures) docking, and in the applications of these techniques for hit discovery and for 

pathway exploration, and we present original results toward predicting the behavior of drug 

candidates in pre-clinical and clinical trials. Our work ranges from relatively small scale 

approaches to large-scale, supercomputing-supported, ensemble-based approaches that 

involve several target protein structures and large chemical databases of drug candidates.

2. Computational methods

2.1. Virtual screening programs

There exists a large number of programs developed for docking, many with well-

documented histories of successful application. These programs originate from both 

academic and commercial laboratories, exemplifying the commercial importance of 

computational approaches to drug discovery in the pharmaceutical industry. A review of 

some of these programs and of their respective strengths and challenges has been given 

elsewhere.9,10

We have used several of these packages with success. However, in this paper we present 

results obtained using the commercial program MOE (Molecular Operating Environment, 

Chemical Computing Group, Inc., Montreal, Canada), and the academic program Autodock 

Vina (A.J. Olson laboratory, The Scripps Research Institute, San Diego, California).11 We 

used Autodock Vina both in its native distribution and in a parallelized version, called 

VinaMPI, developed by our laboratories12 and described below. The MOE program was 

used in the metabolic activation estrogenization pathway project described here, the 

Autodock Vina was used in the hit discovery project on modulatoes of coagulation, and the 

VinaMPI program was used in the toxicity prediction project.

2.2. Computational resources

The computational resources required to perform docking calculations vary with the scope 

of a specific screening campaign. While more computational power is always desirable, 

calculations screening a relatively small number of chemicals, up to a few hundred, on a few 

structures of a protein target can be achieved in a reasonable time on a modern desktop 

computer with a few CPU cores and about 200 Gb of hard drive space. We report below one 

such project that, while ambitious in scope, required relatively low-scale resources to 

provide a proof of concept in docking applied to multi-protein pathways. In larger, or much 

larger, screening campaigns, and in particular in the development of future toxicity/potency 

prediction of drug candidates, considerably more powerful computational resources are 

required to handle

i. the sizes of the databases of chemicals to be screened,

ii. the number of protein structures to be used in ensemble-based docking 

and,

Evangelista et al. Page 3

Bioorg Med Chem. Author manuscript; available in PMC 2017 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



iii. the associated large storage and data processing requirements.

Here, we also present work done in our laboratories that used virtual screening approaches 

on the world’s most powerful supercomputers. Our original parallelization of the 

AutodockVina program was developed on the (now decommissioned) Kraken machine, then 

the world’s most powerful academic supercomputer, and operated by the University of 

Tennessee, Knoxville, Tennessee. The application research projects were performed on the 

(again now decommissioned) Jaguar and currently Titan13 supercomputers. Jaguar and Titan 

were, and are, respectively, the most powerful open-science supercomputers in the USA, 

both operated by the Oak Ridge National Laboratory, Oak Ridge, Tennessee.

2.3. Protein conformer generation

In the results presented below, we have used molecular dynamics (MD) simulations to 

generate protein conformers on which we performed ensemble-based docking. An MD 

trajectory is divided into clusters that span the conformers sampled during the MD. In the 

seminal ensemble-based work of Amaro, McCammon and coworkers, MD simulations of 20 

ns were used to sample protein conformations, and these conformations were used to dock 

~1800 compounds.14 In our larger screening campaigns, we have used MD simulations 

ranging from several hundreds of ns to the microsecond timescale. The MD simulations in 

our project were performed with the NAMD2 program15 for atomistic MD simulations, and 

the Gromacs v.5.0.116,17 and Martini v.2.0 force field18,19 for Coarse Grained (CG) MD 

simulations.

3. Results

3.1. Ensemble-based approaches and computational engineering

In this section we review our work on enabling efficient docking approaches on 

supercomputers. The primary benefit of using supercomputers is, of course, to be able to run 

many more docking and MD calculations than on smaller architectures. The docking enables 

very large, sometimes massive, databases of chemicals to be considered as potential drug 

candidates, increasing the chemical diversity of the chemicals considered as potential 

ligands for the targets of interest.

The second reason why being able to run large docking jobs is desirable is that it enables the 

simulation of the conformational selection mechanism. As illustrated below, using more than 

one single structure of the protein target very significantly increases the quantity and the 

diversity of molecules experimentally verified to bind to the protein, when compared to what 

would be possible using only a single structure of the target. The third reason why using 

more than one protein structure is desirable is to characterize binding of a drug candidate to 

other proteins than the target to determine off-target effects i.e., metabolism and toxicity.

The above goals, i.e., (i) increasing the chemical diversity of drug candidates, (ii) using a 

realistic conformational selection mechanism for docking, and (iii) investigating if chemicals 

may bind to several different proteins, require increasing computational power as the goals 

of a screening campaign become more ambitious in scope. The computational power of 

modern supercomputers in the petaFLOPS (1015 floating point operations per second) range 
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renders possible, in principle, hundreds of thousands to millions of docking calculations per 

day, i.e., enough to dock very large databases of chemicals against several proteins.

However, having very powerful supercomputers is not enough. To leverage the power of 

these machines, efficient software is needed. Docking is, in principle, an ‘embarrassingly 

parallel’ process: docking of a given chemical to a given protein structure is not dependent 

on the result of the docking of another chemical to the same (or another) protein structure. 

There is therefore a perception that existing docking engines are, out of the box, efficient 

enough to be implemented on supercomputers and that ensemble-based docking calculations 

can be handled by a series of docking instructions in batch. However, major issues in data 

handling and I/O, as well as realities of queue management policies, render using 

supercomputers for docking dependent on sophisticated software engineering strategies. 

These programs have to handle

i. the generation of the very large amount of data needed in ensemble 

docking,

ii. the distribution of the data and instructions to the computing cores 

performing the docking calculations (or nodes in the case of threaded 

docking calculations) and retrieval of results, and

iii. the prioritization and management of the many tasks to be performed.

To enable docking on supercomputers we have developed the program VinaMPI,12 an MPI 

parallelization of the AutodockVina program,11 that scales on tens of thousands of 

supercomputer cores. This parallelization addresses several key points needed for efficient 

docking on supercomputers: the handling of an even distribution of work by the computing 

cores, the handling of communication between cores—including handling of failing cores, 

and, importantly, the inclusion of the complexity of a given docking calculation in the 

prioritization and distribution of computing tasks. The complexity of a docking calculation 

is based on the flexibility of the chemical to be docked: large, flexible chemicals with a high 

number of rotatable bounds (typically more than 10), and hence requesting a large number 

of conformers to be generated and docked, are prioritized for docking before smaller, more 

rigid chemicals. This way, computing nodes are always busy, and it is possible to avoid a 

situation where jobs finish quickly on cores handling small chemicals and ending up being 

idle while longer jobs are still running, as illustrated on Figure 1. This load balancing 

approach is central in our parallelization strategy and enables an efficient use of computing 

resources.

Importantly, in order to be able to submit a small number of jobs to queues, the handling of 

several protein structures to be used in ensemble docking is also implemented in VinaMPI. 

This is a key point in developing massive ensemble-based calculations, as including more 

than one protein structure in the docking process can lead to I/O issues that essentially 

prevent the calculations from going forward. The program VinaMPI enables us to perform 

~4 million docking calculations in about two hours wall-clock time on the Titan 

supercomputer, involving several hundreds of thousands of chemicals in several protein 

structures.20 The program VinaMPI is available freely to the community and can be used on 

any computing architecture that has policies for submission and execution of batch jobs.
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3.2. Ensemble-based approaches to hit discovery21 (and references therein)

3.2.1. Based on Kapoor et al., and references therein—In this section we review 

our results on ensemble-based hit discovery. This approach illustrates the most common 

application of docking, in which a protein is used in a structure-based approach to 

computationally identify the molecules from a collection predicted to have the most 

favorable binding energies, and hence to bind more strongly to the target. This is an 

approach used in the initial steps of drug discovery, where new hits/leads are needed. In 

silico screening thus helps to prioritize chemicals for experimental assays, as successfully 

demonstrated by the Jorgensen lab on many projects.22

In one project, we aimed at discovering compounds capable of modulating the interactions 

between the Factor Xa (FXa) and Factor Va (FVa) proteins of the coagulation cascade. 

Pharmaceuticals exist that inhibit the enzymatic functions of FXa, but they have a very 

narrow safety profile, and are difficult to use even in hospital settings. The goal of this 

project was to discover novel molecules that can bind to the surface of FXa and modulate its 

interactions with FVa, without affecting FXa’s enzymatic properties. Our strategy was to 

identify binding pockets on the surface of FXa, in regions that are hypothesized to interact 

with its FVa protein partner. A 300 ns MD simulation trajectory was produced for FXa using 

the NAMD2 engine, and the protein structures in the trajectory were clustered using nearest 

neighbor RMSD clustering to identify 11 snapshots most representative of the 

conformations sampled by the protein during the simulation. Potential binding pockets not 

present on the crystal structure were observed to be formed in some of these structures on 

the surface of the protein.

A total of 281,128 compounds, originating mostly from the ‘clean drug-like’ subset of the 

ZINC database, were used in the docking calculations in 12 FXa protein structures: the 11 

structures obtained from the clustering of the MD trajectory, and the crystal structure of the 

FXa target. On each of these 12 targets, several potential binding sites were investigated 

‘agnostically’ (i.e., without a priori favoring one potential binding site over another), 

resulting in about 3.4 million docking calculations performed using Autodock Vina. The 

results from docking on the FXa-FVa binding interface indicated that compounds can bind in 

different sub-binding sites at this interface in different protein MD snapshots. The FXa-FVa 

interface was divided into ten sub-binding sites based on the clustering of the binding loci 

for these compounds. The results of this large docking campaign are summarized in Figure 

2.

The compounds predicted to bind on the protein:protein interaction surface were ranked 

based on their calculated docking scores/predicted binding free energies, and their ability to 

successfully bind to multiple protein conformations while showing selectivity for the 

binding sites at the FXa-FVa interface. Based on these criteria a total of 535 compounds 

were considered for experimental validation of the docking calculations. After employing 

further filters based on compound availability, cost, chemical similarity and the presence of 

reactive functional groups, 124 compounds (97 compounds originating from the docking 

calculations and 27 compounds chemically similar to docking hits) were ordered for 

experimental validation by our collaborators. Experimental work on these compounds, using 
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a prothrombinase activity assay measuring inhibition of the rate of generation of active 

thrombin and direct FXa inhibition using FXa chromogenic peptide substrate identified 31 

molecules (out of the 124 tested) as non-active site inhibitors, and 10 compounds (out of 

these 31 inhibitors) exhibited the desired properties of achieving dose-independent partial 

inhibition of PTase activity in a non-active site-dependent and self-limiting mechanism. 

Importantly, out of these 10 compounds, 8 would not have been predicted to bind from 

docking calculations using only the crystal structure, i.e., these compounds scored well in 

docking calculations in some of the binding sites that were formed only during the 

molecular dynamics simulation.

The above results illustrate two important aspects of a successful docking campaign for hit 

discovery: the first aspect is a confirmation that successful docking can be a very useful tool 

to prioritize compounds for experimental validation. Here, out of 97 compounds suggested 

from docking to bind to the target protein, 31 were experimentally verified to possess a 

biological activity related to the regulation of the protein, and 10 compounds exhibited other, 

further desired biological properties. This is not a direct validation that the compounds of 

interest do indeed bind to the protein. To do this, target engagement experiments would have 

to be done. Notwithstanding, the correlation between the docking results and the 

experimentally-measured biological activity renders likely that these compounds do bind to 

the protein target with the suggested mechanisms.

The second lesson of this successful docking campaign is that using an ensemble-based 

approach has led to a 400% increase in the number of unique compounds with desired 

properties compared to what would have been discovered using only the crystal structure of 

the protein target. While computationally more expensive than docking to a single target 

structure, ensemble docking can indeed lead to a large improvement in the number and 

diversity of true positives that can be prioritized for experimental validation.

3.3. Ensemble-based approaches to phase-I metabolism23 (and references therein)

In this section we review our results on docking-based characterization of pro-drug 

oxidation by P450 cytochrome oxidases and the effect this metabolic activation has on 

downstream binding to the estrogen receptor. This work is relevant to ensemble docking, 

albeit on the small scale, in that it involves different protein species, rather than different 

conformations of the same target. The goal of the work was to predict possible metabolic 

products of the environmental xenobiotic pollutant PCB-30 (2,4,6-trichlorobiphenyl) after 

exposure to P450s, and the endocrine disruptive potential of the oxidized metabolic 

products. PCB-30 is not a pharmaceutical, but it undergoes the same oxidation process that a 

pharmaceutical would experience in phase-1 metabolism, and the metabolites acquire novel 

biological properties the same way a pro-drug would become bioactive (see Fig. 3).

The parent molecule PCB-30 was first docked to two P450 species: CYP2D6 and CYP3A4, 

that are the most common forms of cytochrome P450 in humans and responsible for 

metabolizing about half of known drugs. Primary docking calculations of PCB-30 in P450 

models containing the heme’s iron-oxo reactive intermediate, as per the P450 model of 

Baudry,24 were performed with the program MOE using flexible side-chain approaches. 

PCB-30 can bind in different orientations in active sites of the two P450s, and hence 
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different carbon atoms can be oxidized. We predicted the most likely metabolites by 

identifying the carbon atoms of PCB-30 positioned closest to the iron-oxo oxygen atom in 

the best scoring docked poses. In addition, the predicted reactivity of each carbon was taken 

into account as per calculated by the SMARTCYP approach as described in 23. For each 

P450, carbon atoms number 4 and, slightly less favorably, number 3 were predicted to bind 

close to the reactive iro-oxo’s oxygen atom. This suggests that both enzymes will preferably 

oxidize the parent molecule at the 4 or 3 locations, leading to the 4-OH and 3-OH PCB-30 

species. In contrast, the binding modes of PCB-30 involving preferred oxidation at the 2 and 

3′ locations were found to be only marginally possible.

In secondary docking calculations, the 4-OH, 3-OH and 3′-OH metabolites of PCB-30 were 

docked to the human alpha estrogen receptor ligand binding domain, again using the MOE 

docking facility. The 4-OH PCB-30 metabolite was predicted to have a docking binding 

energy ~3 kcal/mol more favorable than the 3-OH and 3′-OH species, and 4 kcal/mol more 

favorable than that of the parent molecule, PCB-30.

The above results predict that the 4-OH PCB-30 will be (i) the primary metabolite of 

PCB-30 upon P450-mediated oxidation, and that (ii) the 4-OH metabolite will bind to the 

estrogen receptor and exhibit the most estrogenic activity. A following experimental 

validation was performed by our collaborators as follows: Estrogenic activity of parent 

chemicals and metabolites were assessed using EC50 values from a bioluminescent yeast 

assay expressing the human estrogen receptor with a lux reporter system. Metabolites were 

generated as microsomal reaction mixtures (MRMs) using total and enriched P450 extracts 

for each specific CYP450 (3A4 and 2D6). GC/MS analysis with purified reference 

compounds was used to confirm presence of specific primary metabolites (3-and 4-hydroxy 

species) in each MRM. Experiments confirmed that indeed 4-OH was present as the primary 

metabolite of PCB-30 from the action of the two P450s, with 3-OH-PCB 30 present as 

secondary metabolite in lower quantities, and that 4-OH PCB30 exhibits a clear increase in 

estrogenic action over that of the parent molecule. This case study multi-proteins, ensemble-

based docking illustrates the potential use of docking to explore biochemical pathways, such 

as the bioactivation of the estrogen receptor through phase-I metabolism, and serves as a 

proof of concept of the potential of docking in the age of system biology.

3.4. Ensemble-based toxicity prediction: prediction off-binding and toward virtual clinical 
trials

In this section we present original results on ensemble-based toxicity prediction, a new 

direction of our laboratories. Off-target binding is a major reason behind the concerning 

failure of such a high fraction of drug candidates (up to 90% overall) in pre-clinical and 

clinical trials.25 When a drug candidate is exposed to proteins beyond its intended target, the 

drug candidate may—and often does—bind to other proteins in a promiscuous way, diluting 

its effect to the point of becoming no more active than placebo. This abolishes efficacy. 

Moreover, a drug candidate may bind strongly to another protein, disrupting, for example, a 

biochemical pathway not related to that of the diseased state against which the candidate was 

developed, to the point that that this drug candidate becomes toxic. While binding off target 

may sometimes be desirable, such as in the case of drug repurposing,20 it remains a major 
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concern and a major source of failures of drug development programs. Hence, being able to 

predict the likelihood of a given molecule of engaging in off-target shenanigans is of 

paramount importance to the entire field of drug discovery and in the developing field of 

polypharmacology.20 Several predictive statistical and cheminformatics-based approaches 

have been proposed that can suggest ADME(T) (Adsorption, Distribution, Metabolism, 

Excretion, Toxicity) properties of drug candidates, and recently a large cheminformatics-

based strategy has been used to predict off-target binding for 656 drugs, with a success rate 

of about 50% in terms of experimental validation of the predictions.26

Just as docking can be used to discover new ligands binding to a given target and to predict 

binding of substrates and products to enzymes in a biochemical pathway, docking 

approaches can also be used to predict off-target binding of drug candidates. Following the 

pioneering work of other groups in this field,27–30 we are developing ensemble-based 

docking as a predictive technology platform to red-flag drug candidates for their potential to 

bind off-target to proteins known to be involved in most clinical failures. This approach is 

different from cheminformatics/ligand-based predictions in that it requires no parameters 

other than those used in the parametrization docking scoring functions, and is hence 

amenable to use in the case of novel molecules for which little chemical similarity to known 

drugs is available.

A list of 44 proteins has been proposed to be used in safety panels by four drug discovery 

companies (Astra Zeneca, GlaxoSmithK-line, Novartis and Pfizer), based on a consensus on 

which proteins are most often associated with off-target binding and clinical failures.31 Out 

of these proteins 35 (80% of the total) are membrane proteins, seven are enzymes and two 

are nuclear receptors. Of the 35 membrane proteins 24 are GPCRs, 3 are transporters, and 7 

are ion channels. 25 of the membrane proteins have a (sometimes incomplete) structure 

deposited in the Protein data bank.

We have focused a first set of calculations on one of these 44 proteins: the human adenosine 

A2A receptor, a GPCR with a (relatively) short extra membrane loop and available 

structures amenable to the building of a protein model. This protein is found in CNS tissues, 

and its function is to regulate pain, cerebral blood flow, basal ganglia functions, respiration 

and sleep. Adverse side effects due to off-target drug-induced activation are pain, asthma, 

seizures and other neurological disorders).

Lists of ligands and decoys are available in the DUD-E database for the protein. The PDB 

entries 3QAK and 2YDV, two X-ray crystallographic structure resolved at 2.6 Å and 2.71 Å 

resolution, respectively, and both co-crystallized with an agonist molecule, were used and 

combined to build a complete model of the protein, by using segments that were present in 

one structure and not in the other one and in particular to obtain a complete structure for 

extracellular loops. The protein was included in a membrane model, and explicit solvation 

and counter-ions were added (see Fig. 4). A 1 μs microsecond coarse-grained molecular 

dynamics simulation of the model using the Gromacs v5.0.1 program and Martini v.2.0 force 

field was performed on the Moldyn cluster at the Center for Molecular Biophysics and the 

Newton High Performance cluster at the University of Tennessee. The coarse-grained 
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trajectory was mapped back to an atomistic model using python and shell scripts from 

www.cg.martini.nl and adapted for this case.

A cluster analysis was performed on the trajectory and 32 snapshots were selected using a 

2.0 Å cut-off for the pairwise RMSD value of all MD frames based on the entire protein 

structure, to represent the range of conformations sampled by the protein during the 

molecular dynamics simulation. A set of 11,733 molecules were docked in each of the 32 

snapshots and in the crystal structure of the protein using our VinaMPI program. The 

docking box included the entire channel and cytoplasmic and extra-cytoplasmic proteins 

regions outside of the membrane. This set of 11,733 molecules was obtained from the DUD-

E database entry corresponding to this protein, and contains 844 known ligands, and 10,889 

molecules chemically similar to the 844 ligands and labeled as ‘decoys’. These 11,733 

molecules were then ranked according to their calculated docking scores. In the case of the 

ensemble-docking using the 32 snapshots, all the docking results were combined together 

and only the top-score of any given molecule of all 32 scores (one for each conformers) was 

used in the ranking, following the protocol of Ellingson.20

The known ligands represent only ~7% of the compounds in the database used in the 

docking. When using the crystal structure to perform the docking, only 58 known ligands are 

ranked amongst the 10% top-scoring molecules (i.e., amongst the top 1174 compounds), 

which is close to random. However, when using the ensemble docking approach, a total of 

343 unique known ligands are ranked amongst the 10% top-scoring molecules. Assuming 

that all decoys indeed do not bind to the protein, about a third of the top 1174 molecules, if 

assayed experimentally, would have been identified as ligands. Using an ensemble-based 

strategy has hence increased the rate of ‘known ligand’ prediction by ~600% with respect to 

what can be achieved using only the crystal structure, comparable to the FXa:FVa case 

described above. About 40% of the known ligands would have hence been correctly 

predicted to be capable of binding to this protein target. Had these 844 chemicals been drug 

candidates developed against another protein target, off-binding to adenosine A2A receptor 

would have correctly been predicted for nearly half of them.

Figure 5 shows that most of the correctly-identified ligands select essentially 5 protein 

conformers, which corresponds to about one sixth of the representative protein 

conformations. In the present case, it was already known what compounds were ‘ligands’ 

and what compounds were ‘decoys’, and we could identify a posteriori the MD snapshots 

most-often selected by validated ligands. In contrast, in the case of novel proteins and/or of 

novel compounds docked to a protein, one does not know a priori which of the protein 

conformers will be selected. There is a great interest in identifying protein conformers 

selected by ligands for binding. We have proposed an approach based on pooling together 

docking scores obtained in different snapshots, as used in the present case, and selecting the 

best scores for each compound amongst all the protein conformers.20 Other approaches are 

being developed and proposed.32 This will undoubtedly continue to be of importance as 

ensemble-based docking approaches continue to be implemented.
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4. Discussion and conclusions

Together, the above results illustrate the potential of ensemble-based docking approaches for 

increasing the quality and the scope of structure-based drug discovery. Simulating in silico a 

conformational selection mechanism is much more computationally expensive than using a 

single structure, but contemporary computer power allows such an approach, especially 

when bringing massively-parallel supercomputer power into play. Multiple protein-based 

docking can also be useful in a more traditional induced-fit approach on more modest 

computational resources to explore limited biochemical pathways. The latter approach, when 

combined with conformational selection and supercomputing, will certainly play an 

increasing role in obtaining a predictive understanding of metabolomics, in toxicity 

prediction and in providing a structural rationale for a systems approach to the biochemical 

functioning of cells. With the large quantity of data being generated, it will become vital to 

continue to develop data-mining techniques to process the docking results obtained on 

several conformers of a protein, and in particular to identify—if this is at all possible—what 

protein conformations will be selected by what chemicals.

Evolution of the methodology outlined here can be envisaged, and should take into account 

the inexorable march towards the exascale in supercomputing power. The use of massively-

parallel supercomputing power to exhaustively search protein conformational space using 

MD may be contemplated, and this, then could be combined with Markov-State modeling to 

form a complete thermodynamic description of the metastable state space of apo-proteins.33 

Within the confines of the conformational selection approach, this would need to be 

performed only once per protein. A library of accessible conformations would then be 

established, to which large databases of drugs could be docked and the results parsed to 

determine both target binding and off-target effects.
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Figure 1. 
Illustration of (top) idle cores leading to wasted computational resources in docking and 

(bottom) improved usage of computational resources with an equal distribution of 

complexity strategy.
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Figure 2. 
Flowchart of docking results for the FXa:FVa hit discovery project.
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Figure 3. 
Flowchart of pathway exploration in the PCB-30 estrogenization project.
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Figure 4. 
Simulated coarse-grained model of the protein embedded in a membrane system, showing 

hydration (thin blue points) and counter-ions (van der Waals spheres in the solution phase).
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Figure 5. 
Enrichment factors for each of the 32 snapshots and for the crystal structure (thick red line). 

Top: for the entire docked database; Bottom: zoom-in on the top 5% of the docked database.
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