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ABSTRACT
Objectives: Time series models are effective tools for
disease forecasting. This study aims to explore the
time series behaviour of 11 notifiable diseases in China
and to predict their incidence through effective models.
Settings and participants: The Chinese Ministry of
Health started to publish class C notifiable diseases in
2009. The monthly reported case time series of 11
infectious diseases from the surveillance system
between 2009 and 2014 was collected.
Methods: We performed a descriptive and a time
series study using the surveillance data.
Decomposition methods were used to explore (1) their
seasonality expressed in the form of seasonal indices
and (2) their long-term trend in the form of a linear
regression model. Autoregressive integrated moving
average (ARIMA) models have been established for
each disease.
Results: The number of cases and deaths caused by
hand, foot and mouth disease ranks number 1 among
the detected diseases. It occurred most often in May
and July and increased, on average, by 0.14126/
100 000 per month. The remaining incidence models
show good fit except the influenza and hydatid disease
models. Both the hydatid disease and influenza series
become white noise after differencing, so no available
ARIMA model can be fitted for these two diseases.
Conclusion: Time series analysis of effective
surveillance time series is useful for better
understanding the occurrence of the 11 types of
infectious disease.

BACKGROUND
Infection surveillance in China has improved
since 2003, with a web-based infection sur-
veillance system replacing the previous
system over 10 years ago, covering the largest
population in the world.1 2 This web-based
surveillance system can report cases of infec-
tion, and more infections than previously, in
a temporal fashion.3 It potentially saves lives
and maintains the health of the whole popu-
lation. The quality of the surveillance has
greatly improved, with the average omission

rate decreased to 13%.4 This surveillance
system currently monitors 39 notifiable infec-
tious diseases, which can be divided into
three classes.5 6 Class A includes plague and
cholera, which can cause large epidemics in
a very short time.7 There are no reports on
time series of class A notifiable diseases, as
only a few cases have been reported over
several decades. Class B includes infectious
diseases that might cause epidemics such as
tuberculosis, syphilis and viral hepatitis.8 We
reported the incidence of class B notifiable
diseases in our previous study,7 with sexual
diseases, viral hepatitis and tuberculosis
being population health challenges.7 Class C
includes less severe and less infectious dis-
eases such as hand, foot and mouth disease
(HFMD), diarrhoea and influenza.
Various methods have been explored for

modelling infection surveillance data over the
last few decades, and time series models are
commonly used.9 10 Decomposition is a
typical time series method, aiming to decom-
pose the infection series into seasonal and
long-trend patterns.9 This method has been
used to analyse the seasonality and secular

Strengths and limitations of this study

▪ The incidence of 11 notifiable infectious diseases
in China from 2009 to 2014 was analysed.

▪ Decomposition methods were used to explore
(1) their seasonality expressed in the form of
seasonal indices and (2) their long-term trend in
the form of a linear regression model.

▪ Except for autoregressive integrated moving
average (ARIMA) models for influenza and
hydatid disease, the incidence models show
good fit.

▪ We could only obtain class C notifiable disease
incidence over a period of 6 years because the
Chinese Ministry of Health only started to
publish these data from 2009. The relatively
short length of the series may affect the forecast-
ing efficacy of the time series modelling.
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trend of class B notifiable infectious diseases in
China.7 9 Autoregressive integrated moving average
(ARIMA) models are one of the most widely used infec-
tion time series models and have been used to fit tuber-
culosis,11 typhoid fever,12 gonorrhoea13 and hepatitis.14

ARIMA is composed of a differencing process and an
autoregressive and moving average (ARMA) model,15 16

which views the infection rate at time t as a linear com-
bination of its previous values and the residuals.
The Chinese Ministry of Health has been reporting class

C notifiable diseases to the public since 2009. Systemic
time series analyses targeting class C notifiable diseases are
greatly needed. Therefore, we performed a time series
study on the monthly time series data of 11 class C infec-
tious diseases using the decomposition method and the
ARIMA model. We described the data’s seasonality and
long-term trend and established a time series model.

DATA AND METHODS
We collected the available time series data on 11 class C
infectious diseases which were reported monthly by the
Chinese Center for Disease Prevention and Control
from 2009 to 2014. The 11 diseases were HFMD, diar-
rhoea, influenza, mumps, leprosy, rubella, kala-azar,
hydatid disease, typhus disease, conjunctivitis and filaria-
sis. The data were analysed using the decomposition
method and the ARIMA model. All analyses were per-
formed using SAS V.9.3.

Decomposition method
The decomposition method was introduced in previous
studies.9 The method breaks the time series into sea-
sonal indices and long-term trend. Let xik denote the
incidence in the k-th month of the i-th year. Then the
seasonal index can be calculated in three steps.
1. Calculate the average value in each period

Xk ¼
Pk

i¼1 Xik

n
; k ¼ 1; 2; . . . ;m:

where n is the number of the time points
2. Calculate the overall average value

X ¼
Pn

i¼1

Pm
k¼1 xik

nm
:

3. Calculate the seasonal index

Sk ¼ Xk

X
; k ¼ 1; 2; . . . ;m:

The ‘deseasonalised’ series becomes: SR ¼ xik � Sk.
After the seasonality is removed, a simple linear

regression model is established between the deseasona-
lised incidence and time t, which can be presented in
the following formula:

SR ¼ aþ b � t þ 1:

The coefficient, constant, R2 (coefficient of determin-
ation) and p values for the regression model are esti-
mated. Changes in incidence can be derived, on average,
by month from the coefficient of the regression.

ARIMA model
The ARIMA model is widely used in infectious disease
time series modelling. As described in previous
studies,9 12 the model can be formed as ARIMA (p, d,
q)×(P, D, Q)s, which can be expressed in the following
formula:

FðBÞUðBSÞrdrD
S xt ¼ VðBSÞQðBÞ1t;

where rd ¼ ð1�BÞd;FðBÞ ¼ 1�f1B��� ��fPB
p;QðBÞ ¼

1�u1B��� ��uqBq;rD
S ¼ ð1�BÞSD;UðBSÞ ¼ 1�m1B

S�
�� ��mPB

PS;VðBSÞ ¼ 1�n1BS��� ��nQBQS, where B is
the backward operator, with FðBÞ, QðBÞ, UðBSÞ and
VðBSÞ being lag polynomials. p and q are non-negative
integers that refer to the order of the ARMA parts of
the model, respectively, while P and Q represent the
order of the seasonal ARMA, respectively. ‘d’ is the level
of integration of the series, ‘DS’ is the level of seasonal
integration, and ‘S’ is the order of seasonality.
The ARIMA modelling procedure consists of three

iterative steps: identification, estimation and diagnostic
checking.17 Several ARIMA models may be identified,
and the selection of an optimum model is usually based
on the minimum Akaike information criterion (AIC)
and Schwartz Bayesian criterion (SBC).18

Here, the ARIMA models were established from 2009
to 2013, to test the accuracy for the values of 2014.
Several ARIMA models were fitted, and the final ARIMA
model was selected on the basis of the minimum AIC
and SBC scores for each disease. The mean absolute
percentage error (MAPE) and mean square error
(MSE) for the forecasting data (2014) were also calcu-
lated using the final ARIMA model.

RESULTS
First, the general descriptive analysis is presented, fol-
lowed by the decomposition method and the ARIMA
model results.

Descriptive analysis
Table 1 shows the number of cases and deaths caused
by the 11 class C notifiable diseases from 2009 to 2014.
The incidence time series of the disease is shown in
figure 1. In total, 20 139 572 cases and 3453 deaths were
detected in the surveillance system during the 6 years.
HFMD ranks first in terms of both reported cases and
deaths (figure 2). The proportion of HFMD cases
increased from 48% to 68% from 2009 to 2014, and the
proportion of deaths was over 80% each year. The
number of diarrhoea cases increased from 2009 to
2013, but fell in 2014. Similarly, mumps cases increased
from 2010 to 2012, and fell in 2013 and 2014. The
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Table 1 Number of cases of class C notifiable diseases in China (ranked by total numbers)

Disease 2009 2010 2011 2012 2013 2014 All

Cases

HFMD 1 164 784 (48.05) 1 795 336 (55.12) 1 638 743 (52.62) 2 198 442 (58.08) 1 855 849 (54.60) 2 819 581 (67.77) 11 472 735 (56.97)

Diarrhoea 660 410 (27.24) 751 230 (23.07) 841 115 (27.01) 896 808 (23.69) 1 017 512 (29.94) 871 085 (20.94) 5 038 160 (25.02)

Mumps 301 906 (12.45) 299 397 (9.19) 458 232 (14.71) 485 450 (12.83) 332 349 (9.78) 189 469 (4.55) 2 066 803 (10.26)

Influenza 202 667 (8.36) 65 664 (2.02) 66 691 (2.14) 123 491 (3.26) 130 390 (3.84) 218 207 (5.25) 807 110 (4.01)

Conjunctivitis 13 808 (0.57) 292 369 (8.98) 34 570 (1.11) 32 530 (0.86) 36 578 (1.08) 41 741 (1.00) 451 596 (2.24)

Rubella 72 707 (3.00) 44 490 (1.37) 67 887 (2.18) 41 507 (1.10) 18 571 (0.55) 13 305 (0.32) 258 467 (1.28)

Hydatid 3309 (0.14) 4738 (0.15) 3421 (0.11) 3591 (0.09) 4261 (0.13) 4017 (0.10) 23 337 (0.12)

Typhus 2815 (0.12) 2264 (0.07) 2393 (0.08) 2119 (0.06) 2021 (0.06) 1703 (0.04) 13 315 (0.07)

Leprosy 1133 (0.05) 1049 (0.03) 912 (0.03) 975 (0.03) 1113 (0.03) 837 (0.02) 6019 (0.03)

Kala-azar 538 (0.02) 428 (0.01) 346 (0.01) 240 (0.01) 174 (0.01) 301 (0.01) 2027 (0.01)

Filariasis 0 (0.00) 0 (0.00) 1 (0.00) 0 (0.00) 1 (0.00) 1 (0.00) 3 (0.00)

All 2 424 077 3 256 965 3 114 311 3 785 153 3 398 819 4 160 247 20 139 572

Deaths

HFMD 355 (83.73) 888 (92.31) 506 (91.67) 569 (93.74) 260 (81.50) 508 (86.25) 3086 (89.37)

Diarrhoea 49 (11.56) 52 (5.41) 34 (6.16) 21 (3.46) 31 (9.72) 29 (4.92) 216 (6.26)

Influenza 17 (4.01) 9 (0.94) 3 (0.54) 11 (1.81) 18 (5.64) 46 (7.81) 104 (3.01)

Mumps 2 (0.47) 5 (0.52) 4 (0.72) 1 (0.16) 4 (1.25) 4 (0.68) 20 (0.58)

Leprosy 1 (0.24) 3 (0.31) 1 (0.18) 2 (0.33) 4 (1.25) 0 (0.00) 11 (0.32)

Rubella 0 (0.00) 1 (0.10) 2 (0.36) 1 (0.16) 0 (0.00) 0 (0.00) 4 (0.12)

Kala-azar 0 (0.00) 1 (0.10) 0 (0.00) 1 (0.16) 1 (0.31) 1 (0.17) 4 (0.12)

Hydatid 0 (0.00) 2 (0.21) 0 (0.00) 1 (0.16) 1 (0.31) 0 (0.00) 4 (0.12)

Typhus 0 (0.00) 1 (0.10) 1 (0.18) 0 (0.00) 0 (0.00) 1 (0.17) 3 (0.09)

Conjunctivitis 0 (0.00) 0 (0.00) 1 (0.18) 0 (0.00) 0 (0.00) 0 (0.00) 1 (0.03)

Filariasis 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00) 0 (0.00)

All 424 962 552 607 319 589 3453

The number in parentheses represents the percentage of cases in the particular year.
HFMD, hand, foot and mouth disease.
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number of influenza cases fell from 2009 to 2010, and
increased from 2010 to 2014. However, there was a con-
junctivitis outbreak in September and October 2010.
The incidences for these 2 months were deemed to be
outliers, and they were thus replaced by the mean inci-
dence (0.2703/100 000) of September 2009 and
September 2010, and the mean incidence (0.1398/

100 000) of October 2009 and October 2010. The
number of rubella cases, hydatid cases and leprosy cases
fluctuated each year. The number of typhus cases fell
from 2009 to 2014. The number of kala-azar cases
increased from 2009 to 2013 and only fell in 2014.
There are only three random filariasis cases reported in
the six years.

Figure 1 Incidence of the 11 types of class C notifiable disease. HFMD, hand, foot and mouth disease.
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Decomposition
Table 2 and figure 3 present the seasonal indices for
each disease. The ranges of seasonal indices of rubella,
HFMD, conjunctivitis, mumps and influenza were >1. In
general, the occurrence of each disease was greatest
during specific months as follows: rubella, April to June
(peaked in May); HFMD, April to July (peaked in May);
conjunctivitis, July to September (peaked in September).
Typhus and hydatid disease did not peak during a specific
month but occurred most often from August to October
and December, respectively. Diarrhoea and leprosy on the
other hand only occurred/peaked in August and May,

respectively. There was no fixed seasonality for the inci-
dence of influenza: it occurred most often from
September to January (autumn and winter in China) in
2009, whereas from 2011 to 2014 it occurred most often
from December to April (winter and spring). There was
no obvious seasonality for kala-azar disease.
Estimations of the coefficient, constant, R2 and

p values for the regression model are shown in table 3.
The regression models for influenza, mumps and
hydatid disease showed no significance (p>0.05), and R2

for the leprosy model was low (R2=0.055). Of the class C
notifiable diseases, HFMD incidence increased most

Figure 2 Change in proportion of cases of the different diseases from 2009 to 2014. HFMD, hand, foot and mouth disease.
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rapidly, by an average of 0.14126/100 000 per month.
The incidence of rubella, typhus and kala-azar
decreased after removal of seasonality.

ARIMA model
The results of the ARIMA estimations, MAPE and MSE
for each disease time series are shown in table 4. The
final selected ARIMA model (based on minimum AIC
and SBC scores) is shown in bold font. The fitting and
forecasting performance of each model is shown in
figure 4. The incidence of hydatid disease and influenza
after differencing was random (white noise), so no

available ARIMA model could be fitted for these two dis-
eases. The other disease series were well fitted. MAPEs
for conjunctivitis, typhus and HFMD were as expected
(0.1638, 0.1819 and 0.3497, respectively). Those for
mumps, rubella, kala-azar and diarrhoea were slightly
high (0.5417, 0.6948, 0.6837 and 0.6838, respectively).

DISCUSSION
Infection surveillance is important in infectious disease
management and prevention. In this paper, we use the
infection surveillance data to show the infection

Table 2 Seasonal index of each type of class C infectious disease

Disease Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Range STD

HFMD 0.25 0.16 0.53 1.46 2.09 2.08 1.59 0.81 0.86 0.82 0.75 0.59 1.93 0.63

Diarrhoea 0.77 0.55 0.59 0.63 0.85 1.09 1.34 1.35 1.10 1.12 1.33 1.28 0.80 0.29

Mumps 0.94 0.55 0.79 1.23 1.60 1.68 1.39 0.75 0.56 0.64 0.84 1.03 1.12 0.37

Influenza 1.25 1.03 1.24 0.81 0.68 0.70 0.58 0.68 1.17 0.9 1.32 1.63 1.05 0.31

Conjunctivitis 0.52 0.49 0.78 0.90 1.05 1.13 1.21 1.45 1.68 1.05 0.91 0.83 1.19 0.33

Rubella 0.38 0.38 1.13 2.59 3.06 2.13 0.84 0.34 0.25 0.23 0.28 0.39 2.83 0.97

Hydatid 0.83 0.69 1.00 0.94 0.97 0.92 0.91 1.14 0.96 0.91 1.11 1.62 0.93 0.22

Typhus 0.62 0.51 0.66 0.67 1.05 1.16 1.29 1.37 1.37 1.40 1.08 0.82 0.89 0.32

Leprosy 1.00 0.85 1.32 1.19 1.21 1.12 1.10 0.95 0.90 0.67 0.85 0.84 0.66 0.18

Kala-azar 1.12 0.87 1.10 1.17 1.05 1.02 0.74 0.73 0.85 0.98 1.15 1.21 0.48 0.16

HFMD, hand foot and mouth disease.

Figure 3 Seasonal index of each type of infectious disease. HFMD, hand, foot and mouth disease.

Table 3 Regression results of each series with seasonality removed

Disease Constant Constant 95% CI Coefficient Coefficient 95% CI p Value R2

HFMD 6.67593 5.25891 8.09296 0.14126 0.10752 0.17499 <0.001 0.49905

Diarrhoea 4.17851 3.8286 4.52841 0.02801 0.01968 0.03634 <0.001 0.3912

Mumps 2.34317 2.00014 2.68619 −0.00566 −0.01382 0.00251 0.171 0.02654

Influenza 0.64218 0.37914 0.90522 0.00523 −0.00103 0.01149 0.101 0.03815

Conjunctivitis 0.09454 0.07167 0.11741 0.00258 0.00204 0.00313 <0.001 0.56109

Rubella 0.43629 0.39905 0.47353 −0.00461 −0.0055 −0.00372 <0.001 0.6056

Hydatid 0.02253 0.0196 0.02547 0.00004 −0.00003 0.00011 0.22 0.02124

Typhus 0.01745 0.01638 0.01851 −0.0001 −0.00013 −0.00008 <0.001 0.47228

Leprosy 0.00694 0.00613 0.00775 −0.00002 −0.00004 0.00000 0.046 0.0556

Kala-azar 0.0032 0.00281 0.00358 −0.00003 −0.00004 −0.00002 <0.001 0.37894

HFMD, hand, foot and mouth disease.
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characteristics of the 11 class C notifiable diseases in
China. Of these diseases, HFMD is the most serious in
terms of both incidence and death rate, which agrees
with previous studies.19 20 The disease is caused by
enterovirus and coxsackievirus, which are very prevalent
in children under the age of five. HFMD can cause
herpes in the hands, feet and mouth, as well as other
complications such as myocarditis, pulmonary oedema
and aseptic meningoencephalitis.21 Some severely
affected patients may die because of the rapid progress
of the disease. From 2009 to 2014, more than 11 million
HFMD cases were detected leading to 3086 fatalities.
HFMD appears to occur most often from April to July
(peaking in May), and increased, on average, by
0.14126/100 000 per month with seasonality removed.
Strategies for the control and prevention of HFMD
include promoting healthcare education, improving

hygiene conditions in hospitals and schools, and
strengthening the control of cross-infection.21

Seasonal patterns are a major cornerstone in under-
standing subtle but drastic effects of climate change on
disease dynamics.7 22 From the present analysis of sur-
veillance data on China’s population, we conclude that
rubella, HFMD and diarrhoea most frequently occur in
summer, whereas conjunctivitis and typhus are most
prevalent during summer and autumn, and hydatid
disease incidence peaks in winter. There is no fixed sea-
sonality for influenza incidence, and no obvious season-
ality was detected for kala-azar.
When there is substantial heterogeneity among differ-

ent years, then conclusions on seasonal patterns based
solely on seasonal indices may not be reliable. This may
be the case for conjunctivitis, hydatid and influenza
disease, as outbreaks in some years may have not been

Table 4 ARIMA models for the infectious diseases

Disease Identification AIC BIC MAPE MSE

HFMD ARIMA (0,0,0)×(1,1,0)12 260.17 262.02 0.3497 8.8720

ARIMA (0,0,0)×(1,1,0)12 260.81 264.51

ARIMA (0,0,0)×(1,1,0)12 267.87 269.72

ARIMA (0,0,0)×(1,1,0)12 264.79 266.65

Diarrhoea ARIMA (1,0,1)×(0,1,1)12 113.73 119.28 0.6838 3.4459

ARIMA (1,0,0)×(0,1,0)12 137.59 139.44

ARIMA (0,0,1)×(0,1,0)12 128.35 130.20

ARIMA (1,0,0)×(1,1,0)12 120.50 124.21

ARIMA (0,0,1)×(1,1,0)12 117.07 120.79

Mumps ARIMA (0,0,1)×(0,1,1)12 54.13 57.83 0.5417 0.6300

ARIMA (0,0,1)×(0,1,1)12 64.16 66.01

ARIMA (0,0,2)×(0,1,0)12 58.00 60.00

ARIMA (0,0,2)×(0,1,1)12 53.23 56.93

Influenza Become white noise after differencing

Conjunctivitis ARIMA (0,0,1)×(0,1,1)12 −120.65 −116.95 0.1638 0.1091

ARIMA (0,0,1)×(0,1,0)12 −103.13 −101.28
ARIMA (1,0,0)×(0,1,0)12 −94.49 −92.64
ARIMA (1,0,0)×(1,1,0)12 −102.63 −98.93
ARIMA (2,0,0)×(0,1,0)12 −99.17 −95.47

Rubella ARIMA (0,0,1)×(0,1,1)12 −34.53 −29.68 0.6948 0.1215

ARIMA (0,0,1)×(0,1,0)12 −31.54 −29.68
ARIMA (0,0,1)×(1,1,0)12 −33.75 −30.05

Hydatid Become white noise after differencing

Typhus ARIMA (0,0,1)×(0,1,1)12 −401.92 −398.22 0.1819 0.0021

ARIMA (1,0,0)×(0,1,0)12 −384.83 −382.83
ARIMA (0,0,1)×(0,1,0)12 −391.05 −389.20
ARIMA (1,0,0)×(1,1,0)12 −393.26 −389.57
ARIMA (1,0,0)×(0,1,1)12 −397.08 −393.38
ARIMA (0,0,1)×(1,1,0)12 −400.224 −396.524

Leprosy ARIMA (0,0,1)×(0,1,0)12 −429.84 −427.99 0.4767 0.0035

ARIMA (1,0,0)×(0,1,0)12 −414.98 −413.14
Kala-azar ARIMA (1,0,0)×(0,1,1)12 −531.63 −527.93 0.6837 0.0021

ARIMA (1,0,0)×(0,1,0)12 −530.26 −528.40
ARIMA (0,0,1)×(0,1,0)12 −525.32 −523.47
ARIMA (0,0,1)×(0,1,1)12 −527.16 −523.46

The final ARIMA model selected is highlighted in bold.
AIC, Akaike information criterion; ARIMA, autoregressive integrated moving average; HFMD, hand, foot and mouth disease; MAPE, mean
absolute percentage error; MSE, mean square error.
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related to seasonal effects. We calculated the seasonal
indices for each year as a comparison (see online
supplementary appendix figure A1) by using the inci-
dences divided by the average incidence for the corre-
sponding year. The seasonal patterns for influenza in
2009 were slightly different from other years. The inci-
dence of influenza generally peaked in December,
January and March, but in 2009 it peaked in September

and November. The incidence of conjunctivitis peaked
in August and September in 2010, 2011 and 2014, but
peaked in June to August in the other years. Hydatid
disease showed strong seasonality with consistent peaks
in December for every year analysed.
The surveillance data used in this study covered

different climate zones and different provinces with
diversified urbanisation levels. The heterogeneity of

Figure 4 Incidence and fitting values predicted by autoregressive integrated moving average (ARIMA) models. HFMD, hand,

foot and mouth disease.
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seasonality not only exists in different years, but also
occurs in different geographic regions. To support the
conclusion, we take influenza data as an example and
calculate the regional seasonal indices using the
monthly data (http://www.phsciencedata.cn/Share/en/
index.jsp) of 31 Chinese provinces from 2009 to 2012
(see online supplementary appendix table A1). The sea-
sonal patterns are slightly different among the different
provinces.
The long-term patterns of the 11 types of class C infec-

tious disease have also been shown with a linear regres-
sion model between the deseasonalised series and time
t. The model shows that rubella, typhus and kala-azar
decreased after removal of seasonality with the improve-
ment of public health surveillance and management. The
regression model is useful for understanding long-term
epidemic trends, which can be applied to forecast future
incidence, greatly facilitating management of public
health resources such as vaccine preparation.7

An ARIMA model has been established for each
disease. All of the incidence models show good fitting
performance except those for influenza and hydatid
disease. Influenza is a well-known typical infectious
disease with seasonal trend23 (range 1.05 in table 2);
however, the ARIMA model cannot be applied to it.
Possible reasons are the heterogeneity among the differ-
ent epidemic periods and climate zones mentioned
above. The incidence series of hydatid disease becomes
white noise after differencing, suggesting that the occur-
rence of the disease is random without seasonal impact.
The forecasting accuracy is not ideal compared with

some other diseases such as typhoid fever12 and syph-
ilis.24 This may be because the relatively short length of
the time series reduced the predictive power of the
model. This is one of the limitations of the study. More
time series data need to be collected for future explor-
ation. Besides collecting more data, relevant secondary
variables, such as average monthly temperatures, would
provide information about the underlying reasons for
seasonal patterns of outbreaks and may enhance future
predictions. We collected the average monthly tempera-
ture time series data from the National Bureau of
Statistics of China and calculated the time series correl-
ation coefficients24 between influenza incidence and
average temperature. As this paper mainly focuses on
univariate time series analysis, we have placed these
results in online supplementary appendix figure A2 as
support information. Certain correlations (0.33) were
observed between the average temperature and the
disease series. In a future study, we will collect data on
more environment and weather variables to enhance
the infection predictions.
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