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tive treatments, these conditions require reconstructive procedures 

such as augmentation cystoplasty, e.g. the use of gastrointestinal 

tissue as bladder replacement [1–3]. However, due to unwanted 

side effects associated with this treatment, such as increased mucus 

production, stone formation, recurrent urinary tract infections and 

malignancies, alternative treatments utilizing bioengineered scaf-

folds, stem and/or primary cells and supportive factors have been 

proposed [4].

In the last two decades many different natural (amniotic mem-

brane [5], bladder acellular matrix [6], collagen [7], silk [8, 9]) and 

synthetic poly lactic-co-glycolic acid (PLGA), polyurethane [10], 

poly-carbonate-urethane-urea [11]) matrices have already found 

their application in preclinical and clinical bladder TE [12, 13]. In 

recent years the use of (multi-)layered hybrid scaffolds has been 

established, as such combinatorial approaches often result in a 

more specific, customized microenvironment for each cellular 

layer, an improved regeneration, and better biomechanical proper-

ties of the construct [14–16].

To further enhance the regeneration efficiency and improve the 

scaffold functionality and integration into the surrounding tissue, 

the scaffolds are seeded with various cells. However, the use of pri-

mary cells is often limited by their short life span, and they cannot 

be isolated from diseased tissue, for example urothelial progenitors 

from bladder cancer patients or smooth muscle cells (SMCs) from 

neuropathic bladders [17, 18]. Based on their ability for multiline-

age differentiation, plasticity, migration and self-renewal, stem 

cells are being considered suitable candidates to further improve 

tissue regeneration and to facilitate faster incorporation of trans-

planted bioscaffolds into the native tissue without the primary cell 

drawbacks [19, 20]. Furthermore, stem cell secretome may im-

prove vascularization [21], cellular coordination, and survival of 

resident and transplanted cells in the regenerating tissue [22]. 

Moreover, stem cells exhibit immunomodulatory abilities affecting 

the length and strength of the inflammatory response, tissue re-

modeling, and thus the overall structure of the local extracellular 

matrix (ECM) and surrounding microenvironment [23, 24]. Fur-
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Summary
Conditions impairing bladder function in children and 
adults, such as myelomeningocele, posterior urethral 
valves, bladder exstrophy or spinal cord injury, often 
need urinary diversion or augmentation cystoplasty as 
when untreated they may cause severe bladder dys-
function and kidney failure. Currently, the gold standard 
therapy of end-stage bladder disease refractory to con-
servative management is enterocystoplasty, a surgical 
enlargement of the bladder with intestinal tissue. De-
spite providing functional improvement, enterocysto-
plasty is associated with significant long-term complica-
tions, such as recurrent urinary tract infections, meta-
bolic abnormalities, stone formation, and malignancies. 
Therefore, there is a strong clinical need for alternative 
therapies for these reconstructive procedures, of which 
stem cell-based tissue engineering (TE) is considered to 
be the most promising future strategy. This review is 
 focused on the recent progress in bladder stem cell re-
search and therapy and the challenges that remain for 
the development of a functional bladder wall.

© 2016 S. Karger GmbH, Freiburg

Introduction

To overcome pathological conditions, such as neuropathic blad-

der, congenital disorders and malignancies, an improvement of 

bladder regeneration and the replacement of urinary bladder tissue 

with functional equivalents remain the major challenges in the 

field of bladder tissue engineering (TE). Upon failure of conserva-
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thermore, adipose tissue-derived stem cells (ADSCs) have been 

found to secrete lymphangiogenic factors and promote the forma-

tion of the lymphatic system [25], exhibiting an even more striking 

effect on the immune system. 

To further improve cell survival, proliferation and motility, tis-

sue vascularization and innervation and to tailor the bioengineered 

scaffold microenvironment to the needs of local and implanted 

cells, a variety scaffold modifications can be performed [26, 27]. 

Beside structural alterations, such changes in porosity [28] the use 

of VEGF, bFGF [29, 30], and other growth factors has been a com-

mon practice. Additionally, recent novel tools and techniques 

added to the expanding list of possibilities, with the most promis-

ing ones coming from the field of nanotechnology. Nanostructured 

co-polymers [10], nano-sized ECM coatings on synthetic polymers 

[31], and combinations of growth factor-laden synthetic nanopar-

ticles with bladder acellular matrix for their directed delivery [29] 

are just a few examples.

Bladder Anatomy

Urinary bladder is a complex, hollow organ that is composed of 

several cell and ECM layers the interaction of which provides for its 

proper function, e.g. acting as an efficient barrier against urine as well 

as its accumulation, storage, and controlled release [32]. This process 

is being coordinated by the afferent and efferent neuronal pathways 

that transfer the sensory signals towards the central nervous system 

and feedback the response back to the bladder tissue, causing coordi-

nated detrusor muscle contraction and voiding [33, 34]. 

The bladder wall is organized into histologically distinct com-

partments. The mucosa encompasses several layers of transitional 

uroepithelium and is separated from the submucosa by the basal 

lamina. On top of the highly vascularized and innervated lamina 

propria lies the main functional bladder part consisting of three 

smooth muscle layers that provide for coordinated micturition. 

The urinary bladder is covered by adventitia, a connective tissue 

layer facilitating protection, vascularization and innervation to the 

bladder wall [35]. 

It is its unique anatomic structure resulting in special require-

ments on the biomechanical properties of an adequate substitute 

which represents a major difficulty in the development of such a 

functional bioengineered bladder wall equivalent [36]. 

Urothelium

Two major critical urothelial functions are a resilient and effec-

tive barrier against urine and a sensory network formation that, via 

its paracrine signaling, stimulates the afferent neurons that are re-

sponsible for the direct control of the bladder filling [35, 37]. The 

urothelium has a multilayered structure with fully differentiated, 

binuclear umbrella cells covered with a protective glycosaminogly-

can layer on the bladder luminal site [38, 39]. The underlying in-

termediate cells show limited proliferative potential while the basal 

urothelium is able to generate large cell numbers in vitro [40]. In 

contrast to other epithelial tissues such as the gut, the urothelial 

turnover rate is rather low and the shift to a highly proliferative 

state happens only in cases of epithelial injury, cancer, or urinary 

tract infection [41]. 

Several stem cell sources have been discussed in the literature as a 

possible urothelial replacement after injury. Almost a decade ago, 

Anumanthan et al. [42] reported a directed differentiation of bone 

marrow stem cells to urothelial cells utilizing embryonic rat bladders 

that have been stripped off urothelium and seeded with mesenchy-

mal stem cells. The constructs were implanted into the renal subcap-

sular space of athymic mice for 42 days, resulting in a multilayered, 

urothelium-like structure formation. In a newer study, Zhang et al. 

[43] were able to increasingly differentiate ADSCs into urothelial-

like cells by directly co-culturing them with the SV-HUC-1 human 

urothelial cancer cell line in a time-dependent manner. 

Another viable source of multipotential cells suited for genitou-

rinary therapeutic approach may be the urine-derived stem cells 

(UDSCs). Bharadwaj et al. [44] obtained a small UDSC population 

from fresh urine samples of healthy patients of various ages and 

showed their ability to expand to a large cell population, while 

proving that the UDSCs can be differentiated into urothelium and 

other cell types efficiently simply by changing the culture medium 

composition. While the source of these cells is unknown, it has 

been proposed that they are of renal origin, as they express the kid-

ney-related markers PAX8, NR3C2 and L1CAM [45, 46]. 

However, due to very rapid natural urothelial regeneration after 

injury and fast urothelial ingrowth onto the transplanted luminal 

biomaterial surface, strategies providing suitable biomaterial mim-

icking the basilar membrane without urothelial cell coverage may 

well be used in regenerative medicine therapies for urothelial re-

pair [15, 47].

Lamina propria

Beside afferent and efferent nerve endings, the submucosal layer 

of the bladder lamina propria (LP) contains fibroblasts, adipocytes, 

and interstitial cells of unknown origin and function [48, 49]. LP is 

rich on type III collagen, elastin, laminin, and fibronectin [50] as well 

as a variety of growth factors such as VEGF, bFGF, EGF, and PDGF 

[51] that are crucial for the urothelial and SMC survival and prolif-

eration [52]. Moreover, an increasing amount of evidence shows the 

importance of this ECM-rich, highly vascularized and innervated 

layer in the crosstalk between the urothelium and the detrusor mus-

cle [48]. However, a little attention has been given to the LP in the 

field of bladder TE so far as better understanding is required to fit-

tingly use this compartment to facilitate bladder regeneration. 

Detrusor Muscle

Detrusor muscle is the major functional part of the bladder. 

This muscle layer is controlled by autonomic efferent sympathetic 
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and parasympathetic neurons acting as the major excitatory mech-

anism of bladder SMCs and allowing for coordinated storage and 

emptying of urine [53]. 

Bladder SMCs can be easily isolated by explant and enzyme 

treatment methods from human and rodent bladder [54, 55]. How-

ever, several issues currently limit their applicability. Beside their 

restricted proliferation ability and the loss of contractile phenotype 

during in vitro culture and expansion [56], there are many obsta-

cles associated with utilizing patients’ own SMCs, such as sample 

size limitation and pathological changes [18, 57]. Thus, to over-

come these constraints, adult [58], embryonic (ESCs) [59] and in-

duced pluripotent stem cells (iPSCs) [60] have been considered 

potential candidates for detrusor muscle bioengineering. 

The ability of adult stem cells to differentiate and self-renewal 

makes them a suitable source for bladder TE. Many adult stem cell 

types have been utilized for bladder SMC bioengineering, such as 

ADSCs [61], UDSCs [62–64], endometrium [65], menstrual blood 

bone marrow-derived stem cells (bMSCs) [66], and dental pulp 

stem cells (DPSCs) [67, 68]. 

ADSCs are one of the most promising candidate cells for blad-

der engineering mainly due to their high abundance in and com-

paratively simple isolation from patients [58]. Efficient myogenic 

ADSC differentiation using induction media MCDB131 supple-

mented with heparin [61, 69] or addition of growth factors, such as 

TGF-β1 and BMP4 were reported by several groups [70]. Improved 

bladder architecture was observed in small animal models upon 

ADSC injection [71] or in combination with an acellular scaffold 

[72]. Furthermore, a recent study utilizing ADSCs in combination 

with a bladder acellular matrix graft in a rat model resulted in an 

enhanced detrusor muscle, neuronal regeneration, and improved 

bladder capacity [73]. 

Recently, human UDSCs isolated from voiding urine were pro-

posed as a good source for urological tissue bioengineering [62–

64]. The mesenchymal-like UDSCs [44] have demonstrated their 

ability to differentiate to SMCs upon myogenic differentiation [62] 

with a similar contractile phenotype [64]. After differentiation, the 

SMC-like UDSCs were seeded on bacterial cellulose polymer and 

implanted subcutaneously into nude mice where they formed mul-

tiple urothelial  and SMC layers [63]. Furthermore, human UDSCs 

seeded on heparin-bFGF-enriched scaffold exhibited organized 

smooth muscle tissue and urothelial formation, resulting in an en-

hanced biocompatibility, increased bladder capacity, and compli-

ance in a partial cystectomy rat model [74]. The effortless collec-

tion, low-cost, safety and differentiation capacity of UDSCs to 

SMCs make them a good stem cell source for detrusor muscle engi-

neering [63, 75]. 

Current in vitro studies suggest endometrium [65] and men-

strual blood [66] as stem cell sources expressing mesenchymal lin-

eage-specific markers [76]. However, at this stage the results are 

inadequate and require further research and confirmation in ani-

mal models. 

bMSCs are an alternate, well established cell source for detrusor 

bioengineering. It was shown that bMSCs exhibit similar features 

and phenotype to bladder SMCs in vitro [77, 78]. Moreover, 

Sharma et al. [79] demonstrated an improved bladder reconstitu-

tion, an increased SMC marker expression, and a higher number of 

smooth muscle bundles when seeding bMSCs on elastomeric scaf-

fold compared to human bladder SMCs and to unseeded control 

animals in a nude rat bladder augmentation model after 10 weeks. 

In a recent study by Coutu et al. [80], decellularized bladder acel-

lular matrix (BAM) was seeded with rat bMSCs and transplanted 

into rat bladder after partial cystectomy. MSC-seeded BAM exhib-

ited increased muscle regeneration and a significantly improved 

bladder capacity and compliance compared to BAM alone, almost 

reaching healthy rat bladder values. 

In another study performed by Chung et al. [81] bMSCs seeded 

on SIS showed rapid cellular regeneration of bladder constituents 

morphologically and genetically. A similar study utilizing a bMSC-

seeded small intestinal submucosa (SIS) in a canine hemicystec-

tomy and bladder augmentation model showed similar cell prolif-

eration, morphology, and contractility as bladder SMCs in vitro 

and resulted in successful bladder regeneration in vivo [82]. 

In a similar approach umbilical cord blood-derived MSCs were 

seeded on BAM used as a graft for bladder defect reconstruction in 

a canine model. Their application resulted in a multilayered 

urothelium and a well-developed smooth muscle layer compared 

to the unseeded group after 12 weeks of in vivo regeneration, con-

firming their excellent regenerative capacity [83]. 

Lastly, in their study Song et al. [67] differentiated mesenchymal-

like DPSCs arising from their perivascular niche  into SMC-like cells 

in vitro using a combination of condition media for bladder SMCs 

and TGF-β1. Compared to other MSCs derived from bone marrow, 

adipose tissue or peripheral blood, DPSCs have a striking advantage 

due to their availability with least invasive procedures without any 

ethical concerns. Despite the promising results, more work is re-

quired to investigate function of SMC-like DPSCs in vivo.

The pluripotent ESCs are isolated from the inner cell mass of 

embryo’s blastocyst and can form the cells of all three primary 

germ layers: ectoderm, endoderm and mesoderm. Thus they are 

able to expand into the majority of cell types within the body. ESCs 

are a valuable cell source to study SMC differentiation and to test 

medicinal therapeutic agents. Blank et al. [84, 85] reported the first 

in vitro system, in which the mouse embryonal carcinoma P19 cells 

were induced to become SMCs under retinoic acid treatment, ex-

pressing SMC gene markers. A similar approach was used to dif-

ferentiate human ESCs into SMCs in the presence of retinoic acids 

[86]. Another efficient method to differentiate SMCs from human 

ESCs was described by Xie et al. [87] who showed SMC lineage 

marker upregulation and active contraction of SMC-like cells in 

the presence of carbachol, a muscarinic agonist. 

Direct ESC use for bladder regeneration was shown by Laksh-

manan et al. [88] who generated viable in vitro grafts by seeding 

human ESCs in co-culture with bladder SMCs and urothelium on 

SIS. In a later study, the same construct was utilized to augment a 

previously injured rat bladder, resulting in an improved regenera-

tion of the ESC-seeded graft compared to unseeded SIS [89]. How-

ever, despite these remarkable results the use of human ESCs for 

clinical treatments remains ethically controversial.
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iPSCs can offer a theoretically unlimited number of differenti-

ated cells for use in TE and autologous cell therapies; however, 

their efficacy and safety is still under investigation. Human smooth 

muscle iPSCs have been generated in vitro with different efficien-

cies using several differentiation protocols directing the cells to-

wards the contractile [14] or synthetic [90] SMC phenotype [60, 

91]. Depending on the research question asked, an appropriate 

protocol should be selected, and the in vitro differentiation effi-

ciency and in vivo safety should be tested. 

Vascularization

During the first days after in vivo transplantation, before the de-

velopment of a functional vascular plexus, cell survival in a bioen-

gineered bladder wall equivalent is solely dependent on oxygen and 

nutrient diffusion from the surrounding tissue. Resultant anoxic 

microenvironment combined with the lack of nutrients usually 

causes cell death, inflammation, and necrosis in the transplanted 

substitute, considerably impairing tissue regeneration [4]. To mini-

mize these adverse effects, rapid neo-vascularization of the bioen-

gineered scaffold is crucial. 

The standard procedures in TE to facilitate angiogenesis into a 

bioengineered scaffold utilize VEGF and bFGF [4, 29, 30]. Other 

growth factors, such as angiopoietin 1 and 2, PDGF and TGF-β 

have also been considered due to their direct and indirect pro-an-

giogenic effects in vivo [92]. However, clinical growth hormone 

therapies are being used only in rare cases as their directed regula-

tion is difficult. Therefore, further TE approaches to improve cell 

survival after transplantation, e.g. the use of oxygen-releasing bio-

materials [93] and scaffold modifications using in vivo light acti-

vated adhesive peptides to enhance vascularization [94], have been 

developed. Such biomaterial-based methods can be combined with 

primary endothelial cells (ECs) to form pre-vascularized networks 

to facilitate rapid blood supply in the transplanted tissues [95, 96]. 

Beside primary ECs, various stem cells such as ADSCs [97] and 

MSCs [98] have been found to potently facilitate neo-vasculariza-

tion due to their considerable pro-angiogenic secretome [22, 99]. 

Furthermore, based on their close resemblance to pericytes, ADSCs 

and MSCs may provide for additional pro-angiogenic effect by sta-

bilizing newly formed blood vessels [100, 101]. Such an effect has 

been described by Grainger et al. [102] who showed that the com-

bination of primary ECs with ADSCs and MSCs resulted in a for-

mation of more mature capillaries and less extravascular leakage 

compared to human lung fibroblasts. Also the EC-ADSC and EC-

MSC constructs exhibited more mature pericyte markers. Moreo-

ver, combinatory approaches such as genetic modification of MSCs 

to overexpress WNT-5 [103] or the co-administration of control-

released bFGF along with ADSCs [104] may lead to a further im-

proved bladder neo-vascularization. 

Despite its importance in the development of functional bladder 

tissue, vascularization has not been a major focus in bladder TE so 

far as many fundamental issues such as the generation of functional 

bladder smooth muscle still limit its application to a full potential. 

Innervation

To ensure smooth muscle long-term functionality and survival, 

a complex neuronal network has to be established during tissue re-

generation and scaffold engraftment. Such networks require proper 

afferent and efferent neuronal endings to connect with the appro-

priate cellular compartments in the regenerating bladder wall and 

ensure its correct function [105]. Despite its major importance for 

the development of functional bladder tissue, stable re-innervation 

has not been a primary target of bladder TE yet as many crucial 

parts in the functional upstream are still unknown. Nevertheless, 

despite the lack of understanding, we outline a hypothetical ap-

proach for functional bladder innervation based on recent neuro-

logical TE research. 

The simplest yet highly efficient approach in neuronal TE in-

volves NGF [33] embedded in synthetic or natural scaffolds [106, 

107]. Such constructs provide spatial and signaling ques allowing 

neuronal guidance from the spinal cord to the regenerating bladder 

tissue. Other growth factors such as neurotrophin-3, ciliary neuro-

trophic factor, VEGF, and IGF-1 [108] may be used to further fa-

cilitate peripheral nerve regeneration. However, such treatments 

have their spatial and temporal limitations and might lead to an 

uncontrolled localized neuronal outgrowth and random formation 

of neuronal pathways in the tissue. An improved neuronal guid-

ance connecting the dorsal root ganglia with the regenerating blad-

der wall could further be achieved using electroactive tissue scaf-

folds [109]. In addition to neuronal outgrowth and guidance, elec-

troactive polyurethane was found to significantly enhance 

Schwann cells’ neurotrophin secretion and myelin gene expression, 

showing great potential to stabilize newly developing peripheral 

neuronal pathways [110]. More complex approaches, such as the 

development of composite silk fibroin-based nerve guidance con-

duits [111] or a combination of electrospun NGF-releasing poly-L-

lactic acid microfibers with iron oxide nanoparticles [112], may 

result in an enhanced, more directed neuronal guidance over pro-

longed distances.

Stem cell-based in vitro generation of peripheral neurons and 

Schwann cells, their growth on a tailored scaffold, and subsequent 

transplantation onto the bladder wall may be a viable approach to 

ensure a comprehensive bladder innervation. A subsequent, long-

term electromagnetic stimulation is likely to be needed thereafter 

to ensure the smooth muscle and neuronal survival and prime the 

neurons to propagate into the specific bladder tissues [113, 114]. 

To obtain an adequate number of Schwann cells, various stem 

cell types [115] including ADSCs [116], bMSCs- and DPSCs [117, 

118] can be isolated, expanded and differentiated using condi-

tioned media. Additionally, neuronal ADSC differentiation can be 

achieved by simply applying electric current combined with copper 

electrodes [119]. In addition to their differentiation potential, 

ADSCs show indirect, most probably paracrine neurotropic regen-

erative abilities [120].

It is likely that for the development of a functional neuronal 

network a combined approach is needed that utilizes synergistic 

techniques from many different TE fields. 
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Clinical Bladder Tissue Engineering

Bladder TE has seen its first successful clinical implementation 

in the late 1950s [121]. Two major approaches have been devel-

oped over the years so far, the first of which utilizes the use of natu-

ral or synthetic scaffolds alone with the idea to support native cell 

ingrowth and thus the regeneration of the bioengineered tissue/

scaffold, while the second approach includes combinations of au-

tologous cells and biomaterials. A variety of natural and synthetic 

materials have been investigated and clinically applied by several 

research groups since. 

In early studies, the use of bladder-shaped plastic molds as sub-

stitutes for bladder reconstruction has been reported by several re-

searchers. These new bladders consisted mainly of fibrotic tissue 

leading to various complications without functional tissue regen-

eration [121–124]. 

A more sophisticated approach using gelatin sponge for bladder 

reconstruction in bladder cancer patients was performed by Tsuji 

et al. [125]. Due to its structural composition the gelatin sponge 

provided more suitable microenvironment for tissue growth and 

improved degradability over time. Despite an early improvement 

in bladder capacity shortly after transplantation, patients showed 

severe urinary incontinence, urine leakage, and other complica-

tions thereafter [122, 125]. In a subsequent clinical trial, gelatin 

sponges were pretreated with nobecutane or rezifilm before their 

use as augments for bladder enlargement. These constructs showed 

increased bladder capacity, complete epithelial covering, excellent 

smooth muscle regeneration, and no inflammatory reaction. Ac-

cording to the authors, the patients did not show any urinary com-

plications [126]. However, the fact that gelatin sponge has not been 

used since then in further clinical trials of bladder augmentation 

indicates skepticism about the reliability of the presented results. 

These doubts have been confirmed by Taguchi et al. [127] who 

showed that the gelatin sponge disintegrated into small pieces in 

vivo. In combination with nobecutane it formed synthetic resin-

like structures and did not degrade, forming calculi in the tissue. 

Another partial success of human bladder augmentation was re-

ported using formalin-preserved dog bladders as temporal scaf-

folds for tissue growth in patients after sub-total or radical cystec-

tomy. Although a pseudo-bladder developed in relatively short 

time, it showed decreasing capacity over time, and patients fre-

quently suffered from urinary incontinence, vesicoureteral reflux, 

and ureteral orifices [128]. 

The first clinical study utilizing patients’ own autologous cells in 

combination with collagen alone or a collagen-PGA hybrid con-

structs was published in 2006. The bladder substitutes were seeded 

in vitro with urothelial and smooth muscle cells and implanted in 

young patients with myelomeningocele and end-stage bladder dis-

ease [129]. After a mean follow-up of 46 months, the collagen-PGA 

composite resulted in a significantly improved bladder regeneration 

compared to collagen scaffold alone. An additional omental wrap 

enhanced the graft vascularization, further improving the trans-

planted cell survival and scaffold engraftment. Morphological analy-

sis of the scaffold biopsies showed proper architecture of the recon-

structed bladder wall. However, only two patients showed increased 

bladder compliance and capacities and longer dry periods over time. 

The majority of treated patients lacked an improvement in bladder 

compliance and capacity and showed the development of fibrous tis-

sue in their transplanted bladder walls. Although this study demon-

strated the feasibility and safety of the transplantation technique, it 

requires further research to achieve a functional bladder equivalent. 

While several pre-clinical studies demonstrated a possible use of 

stem cells in rodent models, an effective and efficient use of TE in 

bladder reconstruction in patients suffering from urinary bladder 

disorders requires mastering of proper stem cell harvesting, cultur-

ing, differentiation, and expansion as well as designing functional 

scaffold modifications and microenvironment tailoring to the spe-

cific stem cell needs. 

Conclusion

In the last two decades, the field of bladder TE underwent a sub-

stantial evolutional step away from simply mixing cells, biomate-

rial, and supportive factors to more sophisticated approaches, in 

the attempt to copy nature’s perfection. However, despite the on-

going research an improvement in bladder functionality has not 

yet been achieved. 

Although therapeutic stem cell use certainly is a step in the right 

direction, as it helps to mitigate many TE limitations, the lack of 

fully understanding stem cell biology is confining their applicabil-

ity in this field. Furthermore, for successful stem cell use in func-

tional bladder bioengineering, it is crucial to achieve natural cross-

talk between the transplanted stem cells and the scaffold, the host 

immune system and the existing bladder microenvironment, a full 

comprehension of which is still missing.

Besides, stem cell application in bladder TE has been limited to 

the use of autologous cells as well as their isolation, differentiation, 

combination with natural or synthetic carriers, and therapeutic 

transplantation into the host organism. More natural approaches, 

such as the stimulation of resident stem and progenitor cells, sup-

porting natural healing processes in damaged bladder tissue and 

modifying diseased bladder microenvironment have not yet been 

sufficiently investigated so far. 

Due to its complexity, functional bladder TE requires an out-of-

the-box thinking and a multidisciplinary approach for its success. 

Its anatomically complex, multilayered structure needs a multifac-

torial microenvironment that has to be created to provide for each 

specific cell type used in its redevelopment. Clearly, more research 

is necessary to fully understand the possibilities and verify the opti-

mal use of transplanted and residential stem cells for functional 

bladder bioengineering. 
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