
GLUMIP 2.0: SAS/IML Software for Planning Internal Pilots

John A. Kairalla,
The University of Florida

Christopher S. Coffey, and
The University of Alabama at Birmingham

Keith E. Muller
The University of Florida

Abstract

Internal pilot designs involve conducting interim power analysis (without interim data analysis) to 

modify the final sample size. Recently developed techniques have been described to avoid the type 

I error rate inflation inherent to unadjusted hypothesis tests, while still providing the advantages of 

an internal pilot design. We present GLUMIP 2.0, the latest version of our free SAS/IML 

software for planning internal pilot studies in the general linear univariate model (GLUM) 

framework. The new analytic forms incorporated into the updated software solve many problems 

inherent to current internal pilot techniques for linear models with Gaussian errors. Hence, the 

GLUMIP 2.0 software makes it easy to perform exact power analysis for internal pilots under the 

GLUM framework with independent Gaussian errors and fixed predictors.
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1. Internal pilot designs

1.1. Motivation

The greatest barrier to an appropriate choice of sample size in a study is often the choice of 

valid nuisance parameter values. Internal pilot designs involve conducting interim power 

analysis (without interim data analysis) to modify the final sample size of a study. When the 

best nuisance parameter values available for study planning may not reflect the true 

population parameter values, internal pilot designs become extremely advantageous.

For a linear model with Gaussian errors, the internal pilot is designed to avoid the 

uncertainty of the error variance. Data collection begins based on the sample size chosen 

with the best guess for the error variance. Some fraction of the planned observations are then 

used to re-estimate the variance. An interim power analysis is conducted based on the 

revised variance estimate and the initially specified effect of interest. The interim power 
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analysis allows adjusting the sample size up or down to help achieve the target power and 

not waste resources. Such designs differ from traditional (external) pilot studies in that the 

observations used to estimate the variance are included in the final analysis. In contrast to a 

group sequential design, an internal pilot design involves only an interim power analysis, 

with no interim hypothesis testing.

The GLUMIP 2.0 software package is designed to accurately assist in planning and 

implementation of internal pilot designs in the General Linear Univariate Model (GLUM) 

framework with Gaussian errors and fixed predictors using exact theory for power and type I 

error rate.

1.2. A detailed example

Consider a study of contrast-limited adaptive histogram equalization (CLAHE) to determine 

which image processing parameters improve observers’ abilities to detect breast cancer in 

mammograms as a function of two within-subject image processing factors (clip value and 

region size) each having three levels (Pisano et al. 1998). One major objective was testing 

the difference, in log contrast units, between each of the nine processed conditions (clip 

value×region size combinations) versus the unprocessed condition. Thus, the task reduces to 

nine paired t tests. In planning the study, we seek the required sample size to ensure some 

level of target power (Pt) for a specified effect of interest (θ*) at a target type I error rate 

(αt). The true sample size required to meet these conditions also depends on the unknown 

variance, a nuisance parameter. The design parameters used for sample size determination 

were chosen from an unpublished earlier study:

Target type I error rate (Bonferroni corrected): αt = 0.01/9 = 0.0011

Target power: Pt = 0.90

Effect of interest (meaningful difference): θ* = 0.1

Variance estimate (from an unpublished study): σ0
2

 = 0.0065

With a univariate linear model of Gaussian data (and fixed sample size), the usual test of a 

general linear hypothesis achieves an actual type I error rate equal to the target type I error 

rate. However, in many situations, the two differ. For example, a Bonferroni correction often 

creates a conservative test because it only guarantees achieving an actual type I error rate no 

more than the target. For the example above, we shall avoid any discussion of type I error 

rate for the group of nine tests, and consider only the properties of a single test.

Many different programs allow computing power for studies with fixed sample sizes. 

Choices include free software, such as POWERLIB (Johnson et al. 2008) or PS (Dupont 

and Plummer 2004), and commercial software, such as nQuery (Statistical Solutions 2005) 

or PASS (NCSS 2005). For the CLAHE example, the calculations suggested that 20 readers 

(subjects) would be required to achieve 0.90 power to detect the effect of interest.

Unfortunately, after the study design had been completed and planning had begun for a 

study involving 20 readers, an error was discovered in the image processing for the previous 
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study providing the variance estimate. This error caused concern about the validity of . 

Since there was no consensus regarding the direction of the possible bias in the estimate, the 

scientists feared that this uncertainty could lead to a study with incorrect power. Hence, this 

study could have greatly benefited from the use of an internal pilot design. This example 

will be further discussed with enumeration in Section 3.2.

1.3. Review of internal pilot literature

The internal pilot design was introduced by Wittes and Brittain (1990) for two group settings 

with Gaussian outcomes. The method uses the updated variance estimate at the interim stage 

to re-estimate the sample size. In the final test, a variance estimate using all subjects is used 

with a usual test statistic and critical value assuming a fixed sample study.

In the case of continuous outcomes, most research in internal pilot designs involves only the 

independent group t test setting (Jennison and Turnbull 2000). However, not all designs, or 

even all clinical trials involve only two groups. Therefore, Coffey and Muller (1999, 

2000a,b, 2001) and Coffey et al. (2007) described methods and many exact results, including 

a computable form of the distribution of the test statistic, for any univariate linear model 

with fixed predictors and Gaussian errors. Many t test results are special cases. Good 

reviews for internal pilot designs have been recently published by Proschan (2005) and 

Friede and Kieser (2006).

One potential drawback to utilizing an internal pilot design is that the final sample size 

becomes a random variable. The proposal by Wittes and Brittain (1990), an unadjusted test, 

ignores the randomness of the final sample size and uses the fixed sample test statistic and 

critical value (TEST=0 in the GLUMIP program). The approach can have great benefits in 

terms of either increasing power if the original variance value was too small or reducing the 

expected sample size if the original variance value was too large. One major advantage of 

the unadjusted test is that it requires no new software for implementation. Existing software 

for power analysis can be used for the sample size re-estimation and, since the randomness 

of the final sample size is ignored, most standard statistical software packages can be used at 

the analysis phase. However, the risk of type I error rate inflation may offset the benefits in 

the minds of many researchers (Kieser and Friede 2000) and regulatory agencies (ICH 

Guideline E9 1998). A key motivating reason for using the software described here lies in 

the need to examine and account for potential inflation of type I error rate when using an 

internal pilot design.

With internal pilots, the randomness of the final sample size leads to a downwardly biased 

unconditional final variance estimate which causes type I error rate inflation (Proschan and 

Wittes 2000; Miller 2005). The amount of type I error rate inflation for the unadjusted test 

varies directly with the degree of downward bias in the final variance estimate (Coffey and 

Muller 2000a). Upward bias in the type I error rate results from the downward biased 

variance estimate residing in the denominator of the unadjusted test statistic. Any approach 

with comparable power and expected sample size which preserves the type I error rate at or 

below the target level will be preferred to the unadjusted approach. Consequently, the focus 
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in the two independent group univariate setting has shifted to retaining most benefits of an 

internal pilot design while controlling the type I error rate.

Proposed methods for controlling the type I error rate generally fall into two categories 

corresponding to whether or not the blind for treatment group allocation is maintained. For 

blinded sample size re-estimation, Gould and Shih (1992) and Zucker et al. (1999) suggested 

using the one-sample variance estimator, with a simple adjustment based on the planned 

treatment effect of interest. When the true treatment difference is close to the prespecified 

difference, Kieser and Friede (2003) showed that this approach approximately controls the 

type I error rate. From a regulatory standpoint, methods that keep the treatment group 

allocation blinded may be preferred to those that require unblinding (ICH Guideline E9 

1998). However, as Miller (2005) pointed out, the decision as to whether a blinded or 

unblinded procedure should be used must be made on a case by case basis. In many 

instances, an unblinded procedure may be appropriate provided that steps are taken to 

minimize the number of individuals who have access to the unblinded information, e.g., the 

use of an independent statistician.

All of the internal pilot methods contained in the GLUMIP 2.0 software require treatment 

group unblinding. Included methods to address the concern of type I error rate inflation fall 

generally into two categories:

1. Three approaches replace the downward biased unadjusted estimate with 

an unbiased variance estimate in the denominator of the test statistic to 

control the unconditional type I error rate. Each uses all of the available 

data for estimating the numerator of the test statistic (mean effect), but 

differ in the amount of information used in the denominator (variance 

estimate). Hence, each method controls the type I error rate by weighting 

the observations unequally for the purpose of computing a final variance 

estimate.

Stein (1945): Use a variance estimate based only on the internal pilot 

sample.

Zucker et al. (1999): Use a variance estimate based only on that part of the 

final sums of squares error orthogonal to the internal pilot sample. The 

approach controls type I error rate both conditionally and unconditionally.

Proschan and Wittes (2000): Combine the two estimates using fixed 

weights that are not a function of the observed data. Note that this test is 

only appropriate if the final sample size is not allowed to decrease below 

the originally planned sample size.

2. One approach uses the unadjusted test statistic but increases the critical 

value to ensure that the maximum possible type I error rate is no greater 

than the target level.

Coffey and Muller (2001): Approach referred to as a bounding method 

since it guarantees an upper bound on type I error rate. The test may be 
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conservative, i.e., the observed type I error rate may be less than the target 

level.

Other unblinded methods for controlling the type I error rate have also been proposed. 

Miller (2005) proposed a correction to the unadjusted variance estimate that holds the type I 

error rate at or below the target level. Denne and Jennison (1999) proposed a method that 

approximately controls the type I error rate using a degrees of freedom adjustment factor to 

calculate the critical value. These methods are not included in GLUMIP 2.0 but may be 

included in future versions.

Coffey and Muller (2001) compared the performance of three of the approaches above, Stein 

(1945), Zucker et al. (1999), and Coffey and Muller (2001), in terms of maintaining the 

benefits of the internal pilot design while controlling type I error rate across a range of 

conditions. They varied 1) the rule for sample size re-estimation, 2) the true variance value, 

3) the size of the internal pilot sample, 4) whether or not the final sample size was allowed to 

decrease if the original variance value was too large, and 5) whether or not a finite maximum 

sample size was specified. With large samples (~ 500+), the choice of method had little 

impact on the power and expected sample size. Furthermore, in general, there was minimal 

(if any) type I error rate inflation with the unadjusted test. Thus, internal pilot designs can be 

utilized in large randomized clinical trials to assess key nuisance parameters and make 

appropriate modifications with little cost in terms of an inflated type I error rate. However, in 

small to moderate samples, the inflation of the type I error rate with the unadjusted test was 

a concern and the choice of method had a big impact on the power and expected sample size. 

In general, the bounding test best maintained the benefits of an internal pilot design while 

controlling type I error rate across the entire range of conditions considered. Coffey and 

Muller (2000b) demonstrated that the inflation of type I error rate diminishes as the size of 

the study increases. This suggests that if one were able to determine a priori that the 

maximum possible inflation of type I error rate was so small as not to cause concern, 

researchers could easily gain the benefits of the internal pilot using the unadjusted method 

without having to worry about potential problems with type I error rate inflation.

It is important to distinguish the similarities and differences between internal pilot designs 

and other common approaches to analyzing and monitoring data from clinical trials. In the 

past 20 years, the use of group sequential methods to monitor the efficacy and safety data on 

an interim basis has become common in large clinical trials. Such methods often involve 

multiple interim analyses and allow early stopping for efficacy or futility, early termination 

of ineffective arms, and more efficient utilization of limited resources. Hence, group 

sequential (GS) methods protect against observing a larger or smaller than expected effect 

during the course of a trial. On the other hand, since internal pilot designs protect against the 

mis-specification of nuisance parameters at the design stage of a study, they are usually 

effective with just two stages. Current research is looking at ways to simultaneously obtain 

the benefits of both approaches, i.e., combine the early stopping benefits of GS methods 

with sample size re-estimation methods protecting against mis-specification of nuisance 

parameters (Tsiatis 2006).
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More recently there has been great interest in the development of adaptive design (AD) 

methodology. Adaptive designs offer researchers flexibility to redesign trial procedures and 

analysis at interim stages if the data disagree with planning assumptions. The large volume 

of recent research has created a confusion in terminology with many types of study 

modification referred to as adaptive. In Spring 2005, a PhRMA working group on ADs in 

clinical drug development was formed to investigate and facilitate their acceptance and 

usage. An Executive Summary of the group’s findings (Gallo et al. 2006) defines an adaptive 

design as “a clinical study design that uses accumulating data to decide how to modify 

aspects of the study as it continues, without undermining the validity and integrity of the 

trial.” Under this definition, the adaptations only use information from accumulating data as 

opposed to flexible designs which can also incorporate external information (Burman and 

Sonesson 2006). The PhRMA working group also stresses that the changes should be made 

“by design” and not undertaken on an ad hoc basis. Adaptive designs often include planned 

sample size re-estimation based on revised estimates of nuisance parameters and treatment 

effects. Under the PhRMA definition, it is clear that internal pilots are a special case of 

adaptive designs with sample size re-estimation based only on updated nuisance parameter 

estimates. For a more detailed recent discussion comparing various types of adaptive designs 

and group sequential methods, see Shih (2006).

Various software packages and modules have been released to assist in the planning and 

analysis for group sequential and adaptive designs. Notable among these packages are 

ADDPLAN (Wassmer and Eisebitt 2007) and East (Cytel Inc. 2007). ADDPLAN was 

originally developed to perform the inverse normal combination test proposed by Lehmacher 

and Wassmer (1999), but currently also supports group sequential methods as well as other 

methods such as the adaptive inverse normal design which allow for data-driven adaptations. 

East is a well known software package mainly used for planning and analysis of group 

sequential trials. However, it allows for study adaptation through information based 

monitoring techniques that can adjust study sample sizes. Wassmer and Vansemeulebroeck 

(2006) published a review on available group sequential and adaptive software with more 

details. Very little currently exists in available software to directly assist in the design and 

implementation of internal pilot designs, however, East can be utilized to plan large sample 

internal pilot studies as a special case of the information based monitoring tools. The 

underlying theory of the program, however, is based on large samples and trial and error 

simulations would be needed in order to implement accurate planning in small sample 

situations. Additionally, a recent SAS macro by Wang et al. (2008) uses computationally 

intensive simulations to assist in the planning and design of blinded internal pilots with the 

randomization test described by Kieser and Friede (2003).

2. Program description

2.1. Overview of the program

The GLUMIP 2.0 software package uses exact theory to perform power analysis for internal 

pilot designs under the GLUM framework using results from Coffey and Muller (1999, 

2000a,b, 2001) and Coffey et al. (2007). Accordingly, while accurate for larger studies, the 

software package has its primary value in planning small sample studies. Broad classes of 
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ANOVA and regression problems can be treated with these methods. Key restrictions 

include the assumption of Gaussian errors, fixed predictor values, common design for all 

replications, and no missing data. The notation used in the program is based on the model 

introduced in Coffey and Muller (1999), which includes the two sample t test as a special 

case:

(1)

The internal pilot design leads to interest in two different but intimately connected models. 

The combined model for the final analysis may be written as

(2)

with partitioning corresponding to the n1 and, random, N2 observations in the internal pilot 

and second samples, respectively. All rows of e1 and e2 are assumed to follow independent 

Gaussian distributions with mean zero and variance σ2. Let Es (X) represent the essence 
matrix, i.e., the matrix created by deleting duplicate rows from a design matrix (Helms 

1988). We restrict Es (X1) = Es (X2). Hence, the software applies to designs where the 

values of the predictors are known in advance and we increment random total sample size, 

N+ = n1 + N2, only in multiples of a constant replication factor, m. Consequently, the 

columns of X1 and X2 span the same space and hence rk (X1) = rk (X2) = rk (X+) = r. We test 

H0: θ = C β = θ0, with C a fixed a × q contrast matrix. Without loss of generality assume θ0 

= 0. We seek a sample size large ×enough to ensure target power (Pt) and type I error rate 

(αt) for a scientifically important effect of interest (θ = θ*). See Coffey and Muller (1999, 

2001) or Coffey et al. (2007) for additional details.

Three sample size re-estimation rules are available within the current GLUMIP version:

• RULE=0 (Unadjusted): Sample size re-estimation is based on a fixed 

sample F approximation (Wittes and Brittain 1990).

• RULE=1 (Stein): Sample size re-estimation is based on an F approximation 

with n1 − r denominator degrees of freedom (Stein 1945).

• RULE=2 (Second Sample): Sample size re-estimation is based on an F 
approximation with n2 denominator degrees of freedom Zucker et al. 
(1999).

Five testing techniques are available within the current GLUMIP version.

• TEST=0 (Unadjusted): Ignores the randomness of the final sample size 

and uses the fixed sample test statistic and critical value (Wittes and 

Brittain 1990).
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• TEST=1 (Stein): Use a variance estimate based only on the internal pilot 

sample. This approach is based on Stein’s two-stage procedure (Stein 

1945).

• TEST=2 (Second Sample): Use a variance estimate based only on that part 

of the final sums of squares error orthogonal to the internal pilot sample 

(Zucker et al. 1999).

• TEST=3 (Bounding):Use the unadjusted test statistic but increases the 

critical value to ensure that the maximum possible type I error rate is no 

greater than the target level (Coffey and Muller 2001).

• TEST=4 (Weighted): Combine the two estimates using fixed weights that 

are not a function of the observed data (Proschan and Wittes 2000). Note 

that this test is only appropriate if the final sample size is not allowed to 

decrease below the originally planned sample size.

For the purposes of this software, an internal pilot Method is defined as a combination of 

sample size re-estimation rule (RULE) and testing technique (TEST). For example, Method 

0/3 implies that RULE=0 and TEST=3. In theory (and in fact GLUMIP 2.0 allows for it) one 

can combine any of the re-estimation rules and tests, however, five natural combinations 

seem most appealing:

• Method 0/0 (Unadjusted): Sample size re-estimation is based on a fixed 

sample F approximation. The randomness of the final sample size is 

ignored and the fixed sample test statistic is used (may inflate type I error 

rate).

• Method 1/1 (Stein): Sample size re-estimation is based on an F 
approximation with n1 − r denominator degrees of freedom. The 

denominator of the test statistic contains the variance estimate using only 

the first n1 observations.

• Method 2/2 (Second Sample): Sample size re-estimation is based on an F 
approximation with n2 denominator degrees of freedom. The denominator 

of test statistic contains the variance estimate using observations 

orthogonal to the first n1 observations.

• Method 0/3 (Bounding): The sample size re-estimation and test statistic 

are the same as for the unadjusted, but the critical value is modified to 

ensure that the maximum type I error rate as a function of γ, the ratio of 

the true variance to the variance value used for planning, equals the target 

type I error rate.

• Method 0/4 (Weighted): The sample size re-estimation is the same as in 

the unadjusted method. The test statistic is based on combining the 

variance estimate using only the first n1 observations and the variance 

estimate using only those observations orthogonal to the first n1 

observations using fixed, pre-determined weights.
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2.2. What’s new?

GLUMIP 2.0 includes one new test and one modified test as compared to the previous 

version. Additionally, a new module (N2CALC) has been created to assist in the calculation of 

the second stage sample size during study implementation.

The weighted test statistic proposed by Proschan and Wittes (2000) has been added 

(TEST=4). For this method, the sample size re-estimation rule is the same as for the 

unadjusted test, but the test statistic is based on combining the variance estimate using only 

the first n1 observations and the variance estimate using only those observations orthogonal 

to the first n1 observations using fixed, pre-determined weights. In previous versions of the 

software, TEST=1 corresponded to a modified Stein test in which the test statistic was based 

on a variance estimate using only the minimum number of observations certain to be in the 

final sample (n+,min). In the current version, TEST=1 corresponds to a pure Stein-like test for 

which the test statistic is based on a variance estimate using only the internal pilot sample 

(n1).

Coffey and Muller (2001) demonstrated that the bounding method best maintained the 

benefits of an internal pilot design while controlling type I error rate across a wide range of 

conditions. Unfortunately, the computational tools utilized in previous versions of the 

GLUMIP software for this method were often very slow and unstable, which limited the 

practicability of doing a large number of calculations. GLUMIP 2.0 has several changes that 

provide notable improvements in computing stability, speed, and accuracy. The problems 

addressed and the modifications used to address them in the new version of the software are 

summarized below. See Coffey et al. (2007) for additional theoretical and descriptive details.

1. The old algorithm computed type I error rate or power by nesting two 

numerical integrations and required the use of Davies’ algorithm (Davies 

1980). New expressions, based on simple forms for the test statistic 

density, allow the CDF of the internal pilot test statistic to be written as a 

series of single integrations with well-behaved function evaluations. The 

new expressions are faster, more stable, and more accurate than the 

previous versions.

2. The old algorithm for finding the maximum type I error rate for a given 

value of α sometimes failed to converge. This problem was eliminated by 

replacing a derivative-based algorithm with a Fibonacci search (Kiefer 

1953) in the _MAXTS module.

3. Although theoretically it should be, the computed type I error rate was not 

always a locally monotone function of γ using the old algorithm. The 

underlying problem was due to the lack of consistency of stopping values 

among different γ values (with all other inputs held constant). To correct 

this, the algorithm in the _NDIST module was modified to ensure more 

consistent stopping values.

4. Although always very close, the desired bound in type I error rate was 

often not fully achieved using the old algorithm, particularly for examples 
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with small target type I error rates. This problem was addressed by 

modifying the stopping rule used in the _FINDADJ module in several ways 

to guarantee a proper bound on the type I error rate.

The new algorithms provide much faster and more stable calculations of type I error rate and 

power. As a consequence, the bounding method becomes practical and easy to implement 

even in small sample studies, where it has the most value.

With knowledge of the sample size re-estimation rules, current software can be employed to 

calculate the second stage sample size based on the revised variance estimate. However, the 

module N2CALC was created to simplify and automate this process when desired. The 

module uses the given sample size update rule (RULE), a variance input, and the study design 

to calculate the additional sample size needed for the second stage. See Section 2.5 for more 

details.

2.3. Running the program

The GLUMIP program consists of a set of modules written in SAS/IML. Because the 

program is run from within the SAS/IML package, the user must first issue the PROC IML; 

statement. The GLUMIP program code can then be attached to the user’s program with a 

%INCLUDE statement. GLUMIP can be called from the user’s program by four different 

commands: RUN GLUMIP;, RUN MAXTS;, RUN FINDADJ;, or RUN N2CALC;. The RUN 

GLUMIP; command accesses the main module and is used for power, type I error rate, and 

expected sample size calculations for all of the possible RULE/TEST combinations. The RUN 

MAXTS; command can be used to determine the maximum type I error rate for the 

unadjusted test (TEST=0) as a function of  (the ratio of the true variance to the 

variance value used for planning). The RUN FINDADJ; command can be used with the 

bounding test (TEST=3) to determine an adjusted level of that can be used to solve for a 

critical value such that the maximum type I error rate (over possible values of γ) is no larger 

than αt. The RUN N2CALC; command can be used to determine the second stage sample size 

needed during the interim analysis for a given first stage variance estimate,  (SIGHAT1), 

and a given sample size re-estimation rule (RULE).

The following module names are used by the software, and hence should not be used by the 

user: _MAXTSB, _FINDADJB, _GLUMIP, _FCTS1, _FCTS2, _FCTT, _GETPOW, _QUAD2D01, 

_NDIST, _FINDADJ, _MAXTS, and _N2CALC. With 27 exceptions, all matrices used within 

the modules are locally defined, so there is no possibility of accidentally redefining a user-

defined matrix. The exceptions are the required input matrices (SIGMA0, SIGHAT1, ALPHAT, 

POWERT, C, N1, BETA_PLN, ESSENCEX, BETA_ALT, GAMLIST, NPLUSMIN, RULE, TEST), the 

optional input matrices (NPLUSMAX, ROUND, WEIGHTS), the output matrices (_IPCALCS, 

_IPNAMES, _MAXTS, _MAXTSNM, _FINDADJ, _FINDADJNM, _N2CALCS, _N2CALCNM) and 

the matrices of parameters necessary for invoking the algorithms (GLOBAL1, GLOBAL2, 

_ZERO_).

Table 1 summarizes the notation. See Coffey and Muller (1999, 2001) or Coffey et al. (2007) 

for additional details. The table also provides the corresponding variable names in the 
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GLUMIP program. The user must specify the design parameters for the initial power 

calculation. These include scalars for the initial variance estimate (SIGMA0), target type I 

error rate (ALPHAT), and target power (POWERT), a column vector of primary planning 

parameters used for sample size calculations (BETA_PLN), an essence matrix (ESSENCEX), 

and contrast matrix (C) for the initial power calculation. Note that these parameters are 

simply those that would be required for a power calculation in a fixed sample setting. The 

user must also specify a column vector containing the true matrix of primary parameters 

(BETA_ALT) and a list of gamma values (GAMLIST, where gamma is the ratio of the true 

variance to the variance value used for planning) to be used in the power calculations. The 

program tolerates defining GAMLIST as either a row or column vector. Finally, the user must 

specify the internal pilot specifications to be utilized for the chosen study. These consist of 

scalars for the choice of internal pilot sample size (N1), the minimum allowable size of the 

final sample (NPLUSMIN), the sample size re-estimation rule to apply (RULE), and the 

method for hypothesis testing (TEST).

By default the program performs computations assuming a balanced design with no finite 

upper bound on the final sample size. The user may choose to modify this by supplying one 

or more optional matrices. The user can specify a scalar (NPLUSMAX) to define a maximum 

allowable final sample size. In addition, the user can specify ROUND, a value between 1 and 

10. This value determines when probabilities are sufficiently small to stop calculating the 

pdf of the final sample size for the largest value in GAMLIST. To allow for purposefully 

unbalanced designs, the user can specify a vector of weights (WEIGHTS) for each row of 

ESSENCEX per replication. For example, in a two group comparison where it is desired to 

maintain a 2:1 ratio in group 1 vs. group 2, one would choose a 2×2 identity matrix for 

ESSENCEX along with the following weight vector: WEIGHTS={2 1}‘;. Note that the 

replication factor m is calculated by the program as the sum of the elements of the WEIGHTS 

vector. For this unbalanced design, this implies that m = 3 while in a corresponding balanced 

design, m = 2 is the number of independent groups. This factor does not ever have to be 

specified and WEIGHTS does not have to be specified for balanced designs.

The current version of the software has a limited error checking capacity. GLUMIP 2.0 will 

check to make sure that all required inputs are valid. If an invalid input is encountered (e.g., 

a negative variance), the program will stop and warn the user.

2.4. How the program works

The GLUMIP package can be called from the user’s SAS/IML program by any of four 

different commands: RUN GLUMIP;, RUN MAXTS;, or RUN FINDADJ; or RUN N2CALC;. 

The RUN GLUMIP; command accesses the software’s main module, which calls on other 

modules to perform various tasks and functions.

If the RUN GLUMIP; command is given, the program first determines what value to use for 

critical value calculations associated with the final test statistic. For all tests (TEST=0, 1, 

2, or 4) other than the bounding test (TEST=3), this is simply the target level input to the 

program (ALPHAT). If the bounding test is selected, the program uses the _FINDADJ module 

to determine the adjusted level of alpha to use for determining the critical value such that the 
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maximum type I error rate as a function of γ will equal ALPHAT. The _FINDADJ module 

begins by calling the _MAXTS module to determine maximum type I error rate at the 

specified value of ALPHAT. Linear interpolation is then used as an initial guess for the 

required α adjustment, along with +/− 10% on either side. The algorithm then uses a doubly 

iterative search to find the desired adjustment. The inner iteration calls the _MAXTS module 

to determine the maximum type I error rate at a specified value of α (which changes during 

each loop). The outer iteration searches for the adjusted α* value such that the maximum 

type I error rate across γ equals αt. Success of the outer iteration depends directly on the 

accuracy in achieving type I error rate bounded at or below αt. The outer iteration continues 

until either 1) α* ≤ αt is found with maximum type I error rate sufficiently close in relative 

difference to αt, or 2) the lower and upper limits of α* are sufficiently close to each other 

relative to αt. In the first case, the α* value is returned. In the latter case, the lower limit is 

returned.

For all tests (TEST=0, 1, 2, 3, or 4), following selection of the α value for critical value 

calculations, the program determines the distribution of the final sample size for the 

maximum value in the GAMLIST vector. This process uses the _NDIST module and depends 

on the specified re-estimation rule (RULE). The distribution of the final sample size is 

obtained by noting the monotone relationship between the final sample size, n+, and the 

variance estimate obtained from the internal pilot sample, . For each possible value of n+, 

the program determines the cut point of  that, if used in a sample size calculation, would 

lead to a sample size less than or equal to n+ (Coffey and Muller 1999, 2001). This process 

continues until either the maximum final sample size is encountered or the probability of 

observing a sample size greater or equal to the current value of n+ falls below some 

threshold defined by αt · 10−ROUND (by default ROUND is 3). The program then begins 

looping through each of the other specified values in GAMLIST. For each γ value, the 

process described above is applied until the algorithm first encounters the maximum final 

sample size specified by the user, the sample size at which the algorithm stopped for the 

maximum value in GAMLIST, or the current value of n+ falls below some threshold defined 

by αt · 10−(ROUND+2).

The distribution obtained from _NDIST is used to calculate the expected final sample size 

and is used in the _GETPOW module to compute the exact power under an internal pilot 

design for the specified testing method. For TEST=0, 1, 2, or 4, the critical value is 

obtained by choosing the 1−αt percentile of an appropriate F distribution. If TEST=3 (the 

bounding test), the program uses the adjusted alpha level returned by the _FINDADJ function 

for determining the critical value. The power calculation consists of two stages. In the first 

stage, we condition on n+ and perform appropriate calculations. For TEST=0 or 3, the 

SAS/IML QUAD function is used along with either the _FCTT module (if n+ = n1) or the 

_FCTS1 and _FCTS2 modules to integrate the CDF of the test statistic across the cut points 

for each possible n+ value determined from _NDIST. For TEST=1, the QUAD function is 

used along with the _FCTT module to integrate the CDF. For TEST=2, the test statistic 

conditionally follows an F distribution and only the SDF function is required for the 

conditional calculation. For TEST=4, the _QUAD2D01 module is used to invoke the Davis 
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and Rabinowitz (1984) method of numerical integration to perform 2D numerical integration 

of the quantile transformed integrand of the test statistic. Finally, the _GETPOW module 

returns the unconditional power determined by applying the law of total probability and 

summing over all possible values for the final sample size.

The _GLUMIP module repeats the above for each value specified in GAMLIST. After looping 

through all values, the module returns a matrix, _IPCALCS, that has one row for each value 

in GAMLIST and eleven columns corresponding to the values for ALPHAT, the alpha value 

used to compute the critical value (equal to ALPHAT unless the bounding test is used), 

POWERT, GAMMA, N1, NPLUSMIN, NPLUSMAX (the SAS missing value .I is returned if no finite 

maximum sample size is specified), RULE, TEST, expected sample size, and power (or type I 

error rate if under null hypothesis). The program also returns a matrix, _IPNAMES, which 

contains column labels useful when printing the _IPCALCS matrix. These matrices are 

available to the user for further manipulation until the next RUN GLUMIP; command is 

issued. If the user wants to keep these values after an additional invocation of GLUMIP, 

they should be stored in matrices with distinct names before reissuing the RUN GLUMIP; 

command, or the results will be lost.

In some extreme cases, all of the probability may lie in one value for the final sample. For 

example, consider a case where no reduction in the planned sample size is allowed but we 

have dramatically overstated the true variance during planning. It may follow that the 

original planned sample size will be observed with a probability of 1. In such situations, we 

effectively have a fixed sample size and calculations can be simplified and based on an 

appropriate F distribution.

This software was written and has run successfully under SAS 9.1.3 using the Microsoft PC-

Windows operating system.

2.5. Additional useful functions

The GLUMIP program provides the RUN MAXTS; command as a stand alone option for 

determining the maximum type I error rate as a function of γ when using the unadjusted 

method. This command requires the same design parameters and internal pilot rules (except 

for RULE and TEST) as the RUN GLUMIP; command. The RUN MAXTS; command accesses 

the main module, which calls on the _MAXTSB and _MAXTS modules to implement an 

optimal Fibonacci algorithm to determine the maximum type I error rate for the given set of 

inputs. This command produces a list: _MAXTS, which contains the value of γ at which the 

maximum type I error rate occurs, the maximum type I error rate, and the ratio of the 

maximum type I error rate to the target type I error rate. The module also produces 

_MAXTSNM, a list of column labels useful when printing _MAXTS. See Section 3.1 or 3.2 for 

use of the MAXTS module in examples.

If the user wants to implement a bounding test to protect against type I error rate inflation, 

the GLUMIP program provides the RUN FINDADJ; command as a stand alone option. The 

command finds an adjusted alpha level to ensure that the maximum type I error rate (over 

possible values of γ) is no larger than ALPHAT. The same design parameters and internal 
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pilot rules as the RUN GLUMIP; command are required except for RULE and TEST. The RUN 

FINDADJ; command accesses the main module, which calls on the _FINDADJB and 

_FINDADJ modules. This command returns a scalar value, _FINDADJ, which contains the 

adjusted alpha value and _FINDADJNM, a column label useful when printing the returned 

value. See Section 3.2 for use of the FINDADJ module in an example.

The GLUMIP program provides the RUN N2CALC; command as a stand alone option for 

determining the second stage sample size needed during study implementation. This 

command requires the same design parameters and internal pilot rules (except for TEST and 

SIGMA0) as the RUN GLUMIP; command. Additionally, the first sample error variance 

estimate (SIGHAT1) is a necessary input. The RUN N2CALC; command accesses the main 

module, which calls on the _N2CALC module to implement the necessary sample size 

calculations.

The code determines the second stage sample size in the following manner. For each 

candidate value for the second stage sample size (increasing by replication factor m), a 

critical value is determined using the given sample size re-estimation rule (RULE). Next, the 

minimum noncentrality factor needed for significance of the final test is calculated. From 

this noncentrality, assuming the effect size of interest, a cut-off for a sufficiently low 

variance value is determined and the program stops if the first sample variance estimate is 

less than or equal to this value. Otherwise the program increases the sample size until either 

the condition is met, or the maximum sample size (NPLUSMAX) is attained.

This command produces a list: _N2CALCS, which contains SIGHAT1, N1, RULE, N2CALC 

(second stage sample size), NPLUSCALC (total sample size), and the projected power of the 

study using the given total sample size. The module also produces _N2CALCNM, a list of 

column labels useful when printing _N2CALCS. See Section 3.5 for use of the N2CALC 

module in an example.

2.6. Calling the program from a user written module

The software can also be run by using a CALL statement. This allows using the GLUMIP 

software within other modules. Note that the GLUMIP input matrices must all be specified 

as global variables in the modules referring to them. The following incomplete code 

(Program 1) illustrates how to define a user module that calls the GLUMIP software.

3. Example programs

We illustrate the usefulness of our code by reproducing results reported in four journal 

articles and one textbook. With the exception of our own works, the original published 

results were based on simulations. However, power calculation via simulation should only be 

a last resort since simulations have many practical disadvantages when compared to exact or 

approximate methods. Specifically, simulations typically require large amounts of computer 

time and each slight design change requires waiting for a new set of simulations to run. 

These limitations are worsened by the additional dimensions of study design created by the 

introduction of an internal pilot design. (Due to the fact that we are re-estimating the sample 

size at the internal pilot phase, a power calculation is embedded in the internal pilot phase. 
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Hence simulating the power of an internal pilot design conditional on a particular first stage 

sample size requires, in essence, a simulation embedded in a simulation.) The output given 

are results using exact theory embedded in the GLUMIP program that are fast, stable, and 

accurate, thus removing the need to conduct simulations.

3.1. Example from Wittes and Brittain (1990) paper

A two group comparison previously described in Wittes and Brittain (1990) illustrates the 

use of the software. For this example with αt = 0.05, Pt = 0.90, θ* = 1 and , a fixed 

sample size power calculation suggests 43 subjects per group (n0 = 86). We consider an 

internal pilot design with 22 subjects per group in the internal pilot sample (n1 = 44), no 

finite maximum sample size, and no reduction of the final sample size if the variance was 

originally overstated (n+,min = 86). Program 2 invokes the RUN GLUMIP; command to 

reproduce the power calculations reported in Table I of the Wittes and Brittain (1990) paper 

and Table II of the Coffey and Muller (1999) paper. For all examples displayed here, the 

GLUMIP code is attached using a SAS macro variable (&PROGPATH) to point to the 

directory where the GLUMIP 2.0 program is saved. For instance, all of the examples 

displayed here assume that the GLUMIP source code is saved in the H:\GLUMIPZIP\IML 

directory on the user’s hard drive. Please note that this line of code will need to be changed 

to point to the directory where the GLUMIP 2.0 program is saved on the user’s computer. 

The user must then provide values for all required inputs and any optional inputs desired. 

Using the /NOSOURCE2 option prevents the hundreds of lines of GLUMIP code from 

appearing in the SAS log. The RUN GLUMIP; command begins execution of the GLUMIP 
program. Program 2 generates the following output, indicating that the internal pilot design 

successfully maintains power at the target level of 0.90 regardless of the true value of the 

variance.

Program 3 invokes the RUN GLUMIP; command to reproduce the type I error rate 

calculations for this same example. Note that BETA_ALT, the vector of true parameters, takes 

the null vector value of 02 for this calculation. Program 3 generates the following output.

While the results above suggest that type I error rate inflation is not a significant issue, we 

only observed the type I error rate for 5 specific values of γ. If one were able to determine a 

priori that the maximum inflation of type I error rate was so small as not to cause any 

concern, researchers could gain the benefits of the internal pilot using the unadjusted method 

without having to worry about potential problems with type I error rate inflation. Program 4 

invokes the RUN MAXTS; command to determine the extent of potential type I error rate 

inflation for this example.

Program 4 generates the following output, indicating the maximum type I error rate of 

0.0518 occurs at γ = 1.4425. Hence, for this example, the maximum amount of type I error 

rate inflation is a little under 4% and no adjustment may be required. As a consequence, 

researchers could ignore the randomness of the final sample size and use most standard 

statistical software packages at the analysis phase.
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(n1 = 44), no finite maximum sample size, and no reduction of the final sample size if the 

variance was originally overstated (n+,min = 86)

In Program 5, we slightly alter the example from Wittes and Brittain (1990) in order to 

exemplify the use of unbalanced groups for power and expected sample size calculations 

with the GLUMIP 2.0 software. We will assume a 2:1 unbalanced two group design, which 

might be considered if a new treatment were more expensive than the control treatment. 

With the same effect size and planning variance used, the fixed sample, unbalanced design 

requires 96 subjects (n0 = 96). The internal pilot sample will use 48 subjects (n1 = 48) with 

the minimum final sample size not allowed to decrease (n+,min = 96). Note the addition of 

the WEIGHTS = {2 1}‘; line to the program to specify the non-default unbalanced design 

preference. Program 5 generates the following output for the unbalanced design.

3.2. Example from Coffey and Muller (2001) paper

We revisit the CLAHE example (Pisano et al. 1998) described in Section 1.2 and used in 

Coffey and Muller (2001) to demonstrate the performance of various methods of controlling 

type I error rate while gaining the benefits of an internal pilot design. Specifically, we 

consider an internal pilot design with the following specifications: 1) a pre-planned sample 

size of n0 = 20 radiologists, 2) the first n1 = 10 radiologists comprise the internal pilot 

sample (N1=10), 3) the final sample size is allowed to decrease if the original variance value 

overestimates the true variance (NPLUSMIN=10), and 4) a finite upper bound of n+,max = 30 

radiologists (NPLUSMAX=30). Program 6 invokes the RUN MAXTS; command to determine 

the maximum type I error rate using the unadjusted method for the CLAHE example in this 

setting. Program 6 generates the following output, indicating the maximum type I error rate 

of 0.0019 occurs at γ = 1.70:

Hence, for this example, ignoring the randomness of the final sample size introduced by 

using an internal pilot design could lead to as much as a 70% inflation of the target type I 

error rate. In such situations, one should attempt to maintain the benefits of an internal pilot 

design while controlling type I error rate using one of the methods described in Coffey and 

Muller (2001).

The bounding method provides one option for controlling the type I error rate for this 

example. Program 7 invokes the RUN _FINDADJ; command to determine the adjusted alpha 

value to use for determining the critical value. Program 7 generates the following output, 

indicating that the critical value for the bounding test should be computed using α* = 

0.0006.

In general, if the analysis calls for a final sample size n+, the critical value for a one group t 

test for a given α can be written tcrit =  (1−α/2, n+−1). For this example, if n+ = 20 is 

determined, this translates to using an adjusted critical value of tcrit =  (1−0.0006/2, 19) 

= 4.11 while the unadjusted test with α = 0.0011 would use tcrit =  (1−0.0011/2, 19) = 

3.84.
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However, the bounding test is not the only option for controlling the type I error rate. Rows 

4–6 of Table 2 in Coffey and Muller (2001) provided some results for expected sample size 

and power when applying Methods 0/0, 1/1, 2/2, and 0/3 to the CLAHE example with these 

internal pilot rules. Program 8 uses GLUMIP 2.0 to reproduce the calculations in addition 

to including calculations for Method 2/2. In the current version of the software, RULE and 

TEST must be scalar values. Hence, we had to write our own DO-END loop to compute the 

power and expected sample size for multiple combinations of the two. In addition, note that 

when using Method 2/2, we must set NPLUSMIN=12 to ensure that we have enough 

observations in the second sample to compute an estimate of the variance. Program 8 

produces the following results, which clearly agree with the results shown in rows 4–6 of 

Table 2 in Coffey and Muller (2001):

3.3. Example from Proschan and Wittes (2000) paper

A two group comparison previously described in Proschan and Wittes (2000) with αt = 0.05, 

Pt = 0.90, σ2 = 1, and θ* = 1 illustrates the performance of the weighted test. The authors 

reported simulation results to evaluate the type I error rate and power of Stein’s test, the 

weighted test, and the unadjusted test for three different scenarios, corresponding to whether 

the prior estimate of the standard deviation was 25% low, on target, or 25% high (  ∈ 
0.5625, 1.0, 1.5625). For these three scenarios, a fixed sample size power calculation 

suggests 12, 22, and 34 subjects per group, respectively (n0 ∈ 24, 44, 68). They considered 

an internal pilot design with one-half of the originally planned subjects included in the 

internal pilot sample (n1 ∈ 12, 22, 34), no finite maximum sample size, and no reduction of 

the final sample size if the variance was originally overstated. Program 9 invokes the RUN 

GLUMIP; command to reproduce the type I error rate calculations reported for Table 1 in the 

Proschan and Wittes (2000) paper. Note that when TEST=4 is used, GLUMIP issues the 

following caution (not included in output): WARNING: TEST=4 is only appropriate 

when NPLUSMIN = N_not, the originally planned sample size. Otherwise 

interpret results with caution. Program 9 generates the following output.

To reproduce the power calculations for Table 1 in the Proschan and Wittes (2000) paper, the 

only change that is required to the above code is to replace the statement BETA_ALT = {0 

0}‘; with the statement BETA_ALT = {0 1}‘;. The code (Program 10) generates the 

following output.

3.4. Example from Jennison and Turnbull (2000) textbook

In Table 14.4 of their textbook, Jennison and Turnbull (2000) reported simulation results to 

examine the mean total sample size, type I error rate, and power of the unadjusted test for 

comparing two means. For their example, they set αt = 0.05, Pt = 0.90, and θ* = 1. They 

considered five different scenarios for the variance, but in each case they assume that the 

prior estimate of the variance is equal to the true, unknown value. For these five scenarios, a 

fixed sample size power calculation suggests 8, 12, 23, 44, and 86 subjects per group, 

respectively. They considered an internal pilot design with varying fractions of the originally 

planned subjects included in the internal pilot sample, no finite maximum sample size, and 

allowed the final sample size to be reduced if the variance was originally overstated. 

Kairalla et al. Page 17

J Stat Softw. Author manuscript; available in PMC 2016 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Program 11 invokes the RUN GLUMIP; command to reproduce the type I error rate 

calculations reported for Table 14.4 in the Jennison and Turnbull (2000) text. Program 11 

generates the following output.

To reproduce the power calculations for Table 14.4 in Jennison and Turnbull (2000), the only 

change that is required to the above code is to replace the statement BETA_ALT = {0 0}‘; 

with the statement BETA_ALT = {0 1}‘;. The code (Program 12) generates the following 

output.

3.5. 3-Group ANOVA Example from Coffey and Muller (1999) paper

To illustrate the flexibility and usefulness of the GLUMIP software package, we consider a 

three-group analysis of variance (ANOVA) design described as Example C in Coffey and 

Muller (1999). For the two degree of freedom test of differences among groups with αt = 

0.05, Pt = 0.90, σ2 = 1, and θ* = [0.5 1.0]′, a fixed sample calculation suggests 27 

observations per group. To mirror the results found in Coffey and Muller (1999), we 

consider the three-group ANOVA example for an internal pilot with the following 

specifications: 1) a pre-planned sample size of n0 = 81, 2) the first n1 = 39 (13 per group) 

observations comprise the internal pilot sample (N1=39), 3) both allowing and not allowing 

the final sample size to decrease if the original variance value overestimates the true variance 

(NPLUSMIN=39 and NPLUSMIN=81, respectively), 4) no finite upper bound of observations, 

5) using Unadjusted Method for sample size re-estimation and testing (RULE=0 and 

TEST=0). Program 13 invokes the RUN GLUMIP; command to reproduce the type I error rate 

results found in Coffey and Muller (1999, Table V).

Program 13 generates the following output.

To reproduce the power calculations for Table V in Coffey and Muller (1999), the only 

change that is required to the above code is to replace the statement BETA_ALT = {0 0 0}

‘; with the statement BETA_ALT = {0 0.5 1.0}‘;. The code (Program 14) generates the 

following output.

The following program (Program 15) illustrates the use of the new (N2CALC) module for the 

three-group ANOVA example. The program will consider sample size calculations for 

various first sample variance estimates (SIGHAT1) using either the unadjusted or the Stein-

like sample size re-estimation rules (RULE=0 or 1, respectively).

Program 15 generates the following output, giving needed second stage sample sizes.

4. Discussion

The results in Coffey and Muller (2001) extend many internal pilot design concepts from the 

t test setting to the classic general linear univariate model setting. The introduction of the 

GLUMIP program further extends the practicability of internal pilot designs in two ways:

1. Researchers can examine the maximum inflation of type I error rate 

possible if an internal pilot is used with the unadjusted test. This can allow 
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a very quick and early determination as to whether type I error rate 

inflation should be a concern in any particular study.

2. When there is reason to be concerned about type I error rate inflation, 

investigators have several options as to how to control type I error rate and 

maintain the benefits of an internal pilot design. GLUMIP can allow 

investigators to examine the impact on power and sample size for each 

choice and make a decision to maximize the benefits of the internal pilot 

design for their particular study.

Furthermore, the new and much simpler density and cumulative distribution function forms 

included in this updated version make the bounding method more practical and convenient 

even in very small samples where it has the most value. The speed also allows quickly 

plotting power and expected sample size over wide ranges of design parameters. The ability 

to produce such plots in a timely manner has many advantages. For example, there is an 

obvious trade-off between choosing a large enough value of n1 to ensure a reliable estimate 

of σ2 and choosing the smallest possible value of n1 such that modifications to sample size, 

and any corresponding logistical changes to the on-going study, can be implemented as early 

as possible. Historically, completely arbitrary values, such as n1 = n0/2, have been chosen. 

Examining plots of power over a wide range of design parameters can be used to determine 

the smallest value of n1 which retains the desired benefits of an internal pilot.

The GLUMIP program is intended to aid in study planning when incorporating an internal 

pilot design. While the inclusion of the N2CALC facilitates study implementation, the current 

software does not fully support study analysis. However, with GLUMIP and careful use of 

other standard software, analysis can be implemented as follows.

1. Use GLUMIP to explore possible design parameters with respect to 

sample size, power, and type I error rate properties in order to determine 

appropriate design.

2. Use software such as POWERLIB (Johnson et al. 2008) to determine 

necessary fixed study sample size

3. Sample subjects needed for first stage according to design

4. Use N2CALC to calculate necessary second stage sample size according 

to sample size update rule (RULE) chosen at design stage

5. Perform usual analysis at final stage using desired variance estimate and 

testing procedure (TEST) chosen at design stage

Step 5 is straightforward with the unadjusted (TEST=0) or bounding 

(TEST=3) tests since they use the usual test statistic and critical value 

calculations involve only traditional forms using either the preplanned α 
(TEST=0) or the adjusted α* predetermined using the RUN _FINDADJ; 

command (TEST=3 in GLUMIP; see examples in Section 3.2). 

Implementation for the other three testing methods included for planning 

purposes in GLUMIP 2.0 (TEST=1, TEST=2 or TEST=4) is more difficult. 
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Since they do not use the usual test statistic in final analysis, the correct 

variance and degree of freedom components must be carefully picked off 

from appropriate locations and combined to create the necessary statistic 

and critical values. These testing methods would have the most to gain 

from the availability of additional analysis software.

Although we provide valid arguments for utilizing the GLUMIP 2.0 software for internal 

pilot designs, users must be cautioned that this is still a work in progress. The user should 

consult the appropriate articles in the reference list to understand the limitations of the 

program.

There are several ways in which we hope to improve the software in the future:

• The current version includes only a subset of proposed methods for 

controlling the type I error rate in internal pilot designs. The versatility of 

the package will continue to grow by incorporating alternative methods 

into the software. This would especially include methods employing 

blinded sample size re-estimation techniques that have great appeal when 

mitigation of potential bias is crucial.

• The software (and internal pilot results in general) are limited somewhat in 

that they have only been studied in the univariate setting. We are currently 

exploring ways to extend the internal pilot results to the repeated measures 

setting. As these methods are developed and published, we envision that a 

more general version of the software will become available with the 

univariate algorithms occurring as special cases.

• The GLUMIP program does not currently perform full data analysis for 

internal pilot designs. We plan to simplify this task by including additional 

software for data analysis under an internal pilot in later versions of 

GLUMIP.

• Allow additional flexibility of designs. For one example, the program 

could allow for potential changes in variance over time.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Program inputs (with notation from Coffey and Muller 2001).

GLUMIP Symbol Dimensions Description

Required design parameters:

ESSENCEX Es (X+) g × q Essence design matrix

ALPHAT α t 1 × 1 Target type I error rate

POWERT Pt 1 × 1 Target power

C C a × q Contrast matrix

BETA_PLN β * q × 1 Primary parameters for power calculations

SIGMAO σ0
2

1 × 1 Planning variance estimate

Required fixed parameters:

GAMLIST γ 1 × h List of gamma values: γ = σ2 σ0
2

BETA_ALT β q × 1 True primary parameters

Required internal pilot rules:

N1 n 1 1 × 1 Internal pilot sample size

NPLUSMIN n +,min 1 × 1 Minimum final sample size

RULE 1 × 1 Sample size re-estimation rule

TEST 1 × 1 Testing method

Optional inputs:

WEIGHTS g × 1 Weights for rows of Es (X+) per replication

NPLUSMAX n +,max 1 × 1 Maximum final sample size

ROUND 1 × 1 Places to round N+ pdf relative to αt (1-10)
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