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In this article, the convergence of quantum mechanical (QM)

free-energy simulations based on molecular dynamics simula-

tions at the molecular mechanics (MM) level has been investi-

gated. We have estimated relative free energies for the

binding of nine cyclic carboxylate ligands to the octa-acid

deep-cavity host, including the host, the ligand, and all water

molecules within 4.5 Å of the ligand in the QM calculations

(158–224 atoms). We use single-step exponential averaging

(ssEA) and the non-Boltzmann Bennett acceptance ratio

(NBB) methods to estimate QM/MM free energy with the

semi-empirical PM6-DH2X method, both based on interaction

energies. We show that ssEA with cumulant expansion gives

a better convergence and uses half as many QM calculations

as NBB, although the two methods give consistent results.

With 720,000 QM calculations per transformation, QM/MM

free-energy estimates with a precision of 1 kJ/mol can be

obtained for all eight relative energies with ssEA, showing

that this approach can be used to calculate converged QM/

MM binding free energies for realistic systems and large QM

partitions. VC 2016 The Authors. Journal of Computational

Chemistry Published by Wiley Periodicals, Inc.

DOI: 10.1002/jcc.24375

Introduction

One of the largest challenges for computational chemistry is

to develop methods to estimate binding energies of small

molecules to biomacromolecules. If such energies could be

accurately estimated, important parts of drug development

could be performed computationally. Consequently, many

methods have been developed with this aim, ranging from

fast scoring methods, over end-point methods, to strict free-

energy simulation (FES) methods.[1–3] Owing to the size of the

macromolecule, such calculations have typically been per-

formed at the molecular-mechanics (MM) level of theory. How-

ever, it is well-known that the MM force fields used for

biochemical molecules involve severe approximations, for

example, omitting polarisation, higher-order multipoles, charge

transfer, and charge penetration. All these effects are automati-

cally included in quantum-mechanical (QM) calculations. There-

fore, there have lately been quite some interest to improve

binding-affinity calculations by QM methods,[4–6] for example,

as a postprocessing of scoring calculations, improvement of

docking calculations, or as a component of end-point calcula-

tions.[7–15] Many different QM methods have been employed,

ranging from semiempirical QM (SQM) methods,[7,10,12] via

dispersion-corrected density-functional theory (DFT) meth-

ods,[13,14] and many-body perturbation theory,[11] to coupled-

cluster methods.[13,15] Some calculations involved only the

ligand in the QM calculations,[8,9] whereas other included also

the near-by groups,[11,13–15] or even the whole system.[7,10,12]

It would be even better if QM calculations could be com-

bined with the FES methods, which in principle should give

correct results, if used with a perfect energy function and

complete sampling of all relevant parts of the phase space.

Unfortunately, QM methods are extremely demanding in terms

of computational time and memory requirements. Currently, QM

energy calculations can be performed for a full protein at the

SQM level, whereas more accurate DFT calculations can be per-

formed on one or a few thousands of atoms, and very accurate

high-level QM calculations, such as the gold-standard CCSD(T)

method can only be applied to a few tens of atoms. Moreover,

FES methods are based on extensive sampling of the phase

space, typically involving 1072108 energy calculations in a molec-

ular dynamics or Monte Carlo simulation. Therefore, some sort of

approximation is needed to perform FES calculations at the QM

level. One approach is to use QM for only a small, but interesting,

part of the system (e.g., the ligand) and MM for the remainder,

the QM/MM approach. A few full FES ligand-binding studies have

been published with such a partitioning, treating only the ligand

by QM and using SQM calculations.[16–18]

Another approach is to perform the sampling at the MM level

and then evaluate QM/MM energies only for a restricted number
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of snapshots. Valid QM/MM free energies can be obtained either

by a MM!QM/MM FES calculation, employing the thermody-

namic cycle in Figure 1a,[19–21] or by reweighting of the MM

snapshots toward the QM/MM energy function (Figs. 1b and

1c).[22] Such approaches have been used for ligand binding,[13,23–25]

as well as for solvation free energies[26–31] and quite extensively for

enzyme reactions.[19–21,32–34] The challenge with this approach is

to obtain converged results for the MM!QM/MM perturbation,

which must be performed in a single step to avoid the need of

QM/MM sampling, that is, to ensure that the overlap of the MM

and QM/MM potentials is large enough (a few approaches involv-

ing QM/MM sampling have been suggested[24,26,34–36]). For

enzyme reactions, proper convergence has been obtained by

keeping the QM system fixed;[19–21] without this approximation,

very poor convergence has been observed, which could only

partly be decreased by employing SQM/MM sampling.[34] For

binding affinities, such an approximation seems inappropriate, as

the entropy and reorganisation of the ligand is expected to be

important for the binding.

Essex and coworkers have addressed this problem by consid-

ering only the electronic polarisation energy, which seems to

give converged single-step MM!QM/MM energies calculated

by exponential averaging (ssEA; i.e., using the Zwanzig free-

energy perturbation approach;[37] Fig. 1a) with �24,000 QM

calculations for flexible ligands bound to cyclooxygenase-2, as

well as for small molecules in water solution, in both cases with

only the ligand treated by QM.[23,28] However, they have also

obtained converged QM/MM solvation free energies for small

phenol analogues, including 200 water molecules in the QM cal-

culations, considering interaction energies with only 1080 QM

calculations.[27] By performing full QM simulations, they have

also shown that interaction energies (in contrast to total QM

energies) give converged and consistent free energies for the

MM!QM perturbation.[38]

K€onig et al. instead reweighted the MM snapshots with QM

energies, using the non-Boltzmann Bennett acceptance ratio

method (NBB; Fig. 1b).[22] With this approach, they have obtained

converged QM/MM hydration free energies using 4000–60,000

QM calculations, treating only the ligand by QM.[29,30]

On the other hand, Mulholland and coworkers used full QM/

MM Monte Carlo simulations, but employed the Metropolis–Hast-

ings approach to reduce the number of QM calculations

required.[26] They have studied the relative hydration energy of

water and methanol, as well as the binding of water molecules

to neuraminidase, treating only the ligand by QM.[24,39] Still, the

approach is very demanding, requiring 1.2–1.6�105 QM calcula-

tions. However, recently Skylaris and coworkers have used a simi-

lar approach to calculate hydration free energies with full QM

calculations, using QM/MM structures obtained by hybrid Monte

Carlo simulation from MD simulations as an intermediate

Figure 1. The various thermodynamic cycles employed in the ssEA, NBB4, and NBB13 methods to calculate binding free energies at the QM level. The

cycles apply for the ligand simulated both with and without the host, giving either DGQM
bound or DGQM

free in eq. (2) (indicated by DGQM
s in the figures). [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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stepping stone.[31] They obtained converged relative solvation

energies by only 6000 QM calculations for each state.

We have employed both the ssEA and NBB approaches to

calculate the relative binding affinities of nine cyclic carboxylic

acids to the octa-acid deep-cavity host molecule (Figs. 2 and

3a) and for two synthetic disaccharides binding to galectin-3,

using the full host, all protein groups, and water molecules

within 6 Å of the ligand in the QM calculations (287–312

atoms for the host–guest system and 744–748 atoms for

galectin-3) and dispersion-corrected density-functional theory

with large basis sets (quadruple or triple zeta quality, respec-

tively).[13,25] Unfortunately, it was not possible to obtain con-

verged MM!QM/MM free energies for either system using

3600 QM calculations for each transformation.

The full advantage of using QM calculations is not obtained

until both the ligand and at least the closest groups of the

receptor (4.5–6 Å[40–42]) are included in the QM calculations.

So far, no converged QM/MM binding affinities have been

obtained with such an approach, owing to the use of too

demanding QM methods.[13,25] Therefore, we in this article

turn to the cheaper (but more approximate) SQM methods

and study what is needed to obtain converged MM!QM/MM

free energies for the octa-acid host–guest system. The empha-

sis is on convergence and what method gives the best conver-

gence (we compare different variants of the ssEA and NBB

methods), not on reproducing experimental data. We show

that 720,000 QM calculations per transformation are required

to converge the MM!QM free energies to within 1 kJ/mol.

Methods

Simulated system

In this article, we study the binding of nine cyclic carboxylate

ligands to the octa-acid host, using experimental data from

the SAMPL4 challenge.[43,44] The ligands are shown in Figure 2

and the octa-acid host in Figure 3a. Starting structures for the

calculations were taken from our previous study of this sys-

tem.[13] To reduce the size and the large negative charge of

the host and reduce its flexibility, we deleted the four propio-

nate groups and also the four carboxylate groups on the rim

of the ring system, giving rise to a neutral cavitand (NOA) with

144 atoms, shown in Figure 3b. We will show below that this

truncation has only a minor effect on relative binding affinities

estimated at the MM level, but it improves the convergence of

the FES calculations.

The general Amber force field[45] was used for both the

NOA host and the ligands,[13] and the TIP3P force field was

used for water molecules.[46] Restrained electrostatic potential

(RESP) charges[47] for the ligands were taken from our previous

study[13] and those of NOA were estimated in the same way:

The host was optimized at the AM1 level[48] and the electro-

static potential was calculated at the Hartree–Fock/6-31G*

level at points sampled around the molecule according to the

Merz–Kollman scheme,[49] albeit at a higher-than-default den-

sity (10 layers with 17 points per unit area, giving �2000

points per atom), using the Gaussian 09 software.[50] The

charges were then fitted to these potentials using the ante-

chamber program in the Amber 14 suite.[51] It was ensured

that all symmetry-equivalent atoms had the same charges (giv-

ing only 16 unique charges). The force field used for NOA is

included in the Supporting Information, Table S1.

FES calculations at the MM level

All molecular dynamics (MD) simulations and FES calculations

were performed with the Amber 13 (pre-release) and 14

Figure 2. Guest molecules for the estimation of binding free energies to a

truncated octa-acid host. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 3. Structure of the full octa-acid host (a) and the neutralized host, NOA without the propionate and carboxylate groups (b).

FULL PAPERWWW.C-CHEM.ORG

Journal of Computational Chemistry 2016, 37, 1589–1600 1591

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/


softwares.[51] NOA and the ligands were solvated in a trun-

cated octahedral box of water molecules, extending at least 9

Å from the solute using the leap program in the Amber suite,

giving �4100 and �1800 atoms in total for the calculations

with and without the host, respectively. Fifteen independent

simulations were run for each ligand by solvating the systems

in 15 different TIP3P water boxes of explicit water molecules

and employing different random seeds for the starting veloc-

ities, to increase the difference between the independent sim-

ulations[52]). No counter-ions were used in the calculations

(implying that a neutralising plasma were added to the sys-

tems in the simulations), because we have previously shown

that they only have a minor influence on the calculated free-

energy differences.[13]

The relative binding free energy between two ligands, L0

and L1 (DDGbind), was calculated for eight transformations:

MeBz!Bz, EtBz!MeBz, pClBz!Bz, mClBz!Bz, Hx!Bz,

MeHx!Hx, Hx!Pen, and Hep!Hx (the names of the ligands

are defined in Fig. 2). The FES calculations were run with the

pmemd module of Amber,[51,53] using the dual topology

scheme with both ligands in the topology files. We employed

13 states with k 5 0.00, 0.05, 0.1, 0.2, . . ., 0.8, 0.9, 0.95, and

1.00, using a linear transformation of the potentials:

Vk5 1 – kð ÞV01kV1; (1)

where V0 is the potential of the larger ligand and V1 is the

potential of the smaller ligand. Electrostatic and van der Waals

interactions were perturbed concomitantly, using soft-core

potentials for both types of interactions.[54,55] The soft-core

potentials were used only for atoms differing between the two

guest molecules, that is, for the transformed CH3 !H or Cl!H

groups for the MeBz!Bz, EtBz!MeBz, pClBz!Bz, mClBz!Bz,

and MeHx!Hx transformations, but for all atoms in the ring

system for the Hx!Bz, Hx!Pen, and Hep!Hx transformations.

Test calculations have shown that using soft-core potentials for

the whole guest molecule also for the smaller transformations

does not change the results significantly.[13] To make the calcu-

lations comparable between the two versions of Amber, we

used the keyword tishake 5 1 for the Amber 14 calculations.

For each k value, we first performed 100 steps of minimisa-

tion, with the heavy atoms of the host and guest molecules

restrained toward the starting structure with a force constant of

418.4 kJ/mol/Å2. This was followed by 20 ps constant-volume

equilibration with the same restraints and 2 ns constant-

pressure equilibration without any restraints. Finally, an 8 ns

production simulation was run, during which structures were

sampled every 2 ps. In the MD simulations, bonds involving

hydrogen atoms were constrained with the SHAKE algorithm,[56]

allowing for a time-step of 2 fs. In all simulations, the tempera-

ture was kept constant at 300 K using Langevin dynamics[57]

with a collision frequency of 2 ps21, and the pressure was kept

constant at 1 atm using a weak-coupling isotropic algorithm[58]

with a relaxation time of 1 ps. Long-range electrostatics were

handled by particle-mesh Ewald (PME) summation[59] with a

fourth-order B spline interpolation and a tolerance of 1025. The

cut-off for Lennard–Jones interactions was set to 8 Å.

The relative binding free energies were estimated using a

thermodynamic cycle that relates DDGbind to the free energy

of alchemically transforming L0 into L1 when they are either

bound to the host, DGbound, or are free in solution, DGfree
[60]

DDGbind5 DGbind L1ð Þ2 DGbind L0ð Þ 5 DGbound 2 DGfree (2)

DGbound and DGfree can be estimated by the Bennett

acceptance-ratio method[61,62] (BAR). In this approach, an MD

simulation is run for each k, with the potential in eq. (1). For

each pair of neighboring k values, A and B, the free energy dif-

ference between the two states is estimated from

DGA!B5RT ln
hf VA2VB1Cð ÞiB
hf VB2VA2Cð ÞiA

� �
1C (3)

where f(x) 5 (1 1 exp(x/RT))21 is the Fermi function, R is the

gas constant, T is the temperature (which was 300 K through-

out this article), and C is a constant [if the number of samples

are different in the two simulations, nA 6¼ nB, a correction factor

ln(nA/nB) should be added to the right-hand side of eq. (3)].

An iterative procedure is applied to find a value of C that

makes the first term of the right-hand side of eq. (3) vanish.

Free energies were also calculated by multi-state BAR

(MBAR),[63] thermodynamic integration,[64] and exponential

averaging,[37] using the pymbar software.[63] Presented results

were obtained with MBAR.

SQM calculations

SQM single-point calculations were run on each of the MM

snapshots, both for the simulations with and without NOA. For

these calculations, water molecules were wrapped back into

the original periodic box, centred on the ligand with the ptraj

module. In the SQM calculations, the 48 water molecules clos-

est to the ligand were included in the calculations without

NOA, whereas the 19 water molecules closest to the C atom in

the carboxylate group were included for the calculations with

the ligand in NOA (in total 158–167 or 215–224 atoms, respec-

tively; Fig. 4). This represents all water molecules within �4.5

Å of the ligand and they were obtained in the same way as in

our previous study.[13]

The PM6-DH2X method[65] was employed for the SQM calcula-

tions, that is, including dispersion, hydrogen-bond, and halogen

corrections,[66–68] using the MOPAC software[69] (this was the

most accurate SQM method in this software when this investiga-

tion was started). The calculations employed the keyword Precise,

to enhance the energy convergence criterion to 4.2�1026 kJ/mol.

For each snapshot, interaction energies were obtained by sepa-

rate calculations for the complex, the guest, and the remainder

(i.e., water molecules with or without NOA):[13,39]

DEinteract5Ecomplex 2 Eguest 2 Eremainder (4)

MMfiQM free energies

Several different methods were tested to calculate the

MM!QM free energies. First, the QM interaction energies
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were used directly to calculate binding free energies for all k
values with the MBAR approach, that is, ignoring the fact that

the MD simulations were not performed at the QM level. This

will be called the QM-MBAR approach.

Second, we employed ssEA calculations.[13,19,20,23,27,28] In

these, we employ the thermodynamic cycle in Figure 1a,

showing that DDGbind is first estimated at the MM level and

then two single-step FEP calculations are used to calculate the

effect of changing the energy function from MM to QM, one

for each of the two ligands:

DGQM
s 5DGMM

s 1DGMM!QM
s;L1

2DGMM!QM
s;L0

(5)

where DGMM
s is the free energy of the transformation at the MM

level for either the bound or free states [subscript s; i.e., DGbound

or DGfree in eq. (2)], obtained by the standard MBAR approach,

and the other two terms are correction terms for going from the

MM potential to the QM potential. The latter corrections need to

be evaluated only at the endpoints of the transformation, that is,

for L0 in the k 5 0.00 snapshots and for L1 in the k 5 1.00 snap-

shots (for both the bound and free simulations). Each correction

was evaluated either using exponential averaging (ssEA)[37]:

DGMM!QM
s;Li

52RT ln
D

exp 2 EQM
Li

2EMM
Li

h i
=RT

� �E
s;Li

(6)

or by using the cumulant expansion to the second order

(DG5l2 r2

2RT, where l is the average and r the standard devia-

tion of the EQM
Li

2EMM
Li

distribution; ssEAc),[70,71] which is exact if

the energy differences follow a Gaussian distribution.

Third, we employed the NBB approach to reweight the snap-

shots.[22] This method evaluates the free energy according to:

DGA!B5RT

D
f
�

EQM
A 2EQM

B 1CÞexpðEbias
B =RTÞ

E
B

D
expðEbias

A =RTÞ
E

AD
f
�

EQM
B 2EQM

A 2CÞexpðEbias
A =RTÞ

E
A

D
expðEbias

B =RTÞ
E

B

0
B@

1
CA1C

(7)

where Ebias 5 EMM–EQM. This bias is a correction for the fact

that the simulations are performed at the MM level, but the

energies are calculated at the QM level. The advantage with

NBB is that the free energies are calculated with BAR, which

has better convergence properties than EA, especially when the

overlap is poor.[62] The disadvantage is that at least twice as

many QM calculations are needed, because BAR improves the

convergence by employing the information from both a for-

ward and backward calculation. Two different approaches to

obtain the net binding free energies were used, as is illustrated

in Figure 1. In the first, QM energies were calculated for all 13

k values in the perturbation (Fig. 1c). This approach will be

called NBB13 in the following. In the second approach, NBB

was used only for the first two and last two k values in the

perturbation (Fig. 1b), as has been suggested by K€onig and

coworkers.[29,30] Thus, the net binding energy was obtained

from

DGQM
s 5DGQM k50ð Þ!MM k50:05ð Þ

s 1DGMM k50:05!k50:95ð Þ
s

1DGMM k50:95ð Þ!QM k51ð Þ
s

(8)

and the MM!QM energies were obtained from

DGQM k50ð Þ!MM k50:05ð Þ
s

5RT

D
f ðEQM

k502EMM
k50:051CÞ

E
s;k50:05

D
expðEbias

k50=RTÞ
E

s;k50D
f ðEMM

k50:052EQM
k502CÞexpðEbias

k50=RTÞ
E

s;k50

0
B@

1
CA1C;

(9)

because the MM(k 5 0.05)!QM(k 5 0) perturbation is based on

the MM(k 5 0.05) simulations, which are not biased, whereas

the reverse transformation (QM(k 5 0)!MM(k 5 0.05)) is based

on the MM(k 5 0) simulations, rather than the correct QM(k 5 0)

simulations. It can be seen that QM calculations are needed

only for L0, but not for L1. A similar equation applies for

DG
MM k50:95ð Þ!QM k51ð Þ
s (for which QM calculations are needed

Figure 4. Example of structures used for the PM6-DH2X calculations, including 19 or 48 water molecules for the calculations with (a) and without (b) NOA,

respectively. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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for L1, but not for L0). This approach will be called NBB4.

All potential energies (EQM, EMM, and Ebias) in eqs. (6), (7),

and (9) [and also eqs. (10)–(12) below] were approximated

with the corresponding interaction energies, calculated by eq.

(4). Moreover, the QM potential energies in the equations

were calculated either for the isolated QM system (xQM; i.e.,

the isolated guest with 49 water molecules or the host–guest

complex with 19 water molecules) or for the full system with

a QM/MM approach:

EQM=MM5EQM xQMð Þ2EMM xQMð Þ1EMM xallð Þ (10)

For the ssEA method in eqs. (5) and (6), the two approaches

give the same result, because the energy difference in the

exponential in eq. (6) becomes in the QM/MM case

E
QM=MM
Li

xallð Þ2EMM
Li

xallð Þ5EQM
Li

xQMð Þ2EMM
Li

xQMð Þ
1EMM

Li
xallð Þ2EMM

Li
xallð Þ5EQM

Li
xQMð Þ2EMM

Li
xQMð Þ

(11)

which is the same as in eq. (6). However, for NBB4 Ebias
k505

EMM
k50 xQMð Þ2EQM

k50 xQMð Þ remains the same according to eq. (11),

but eq. (9) changes to

DGQM=MM k50ð Þ!MM k50:05ð Þ
s

5RT

D
f ðEQM=MM

k50 2EMM
k50:051CÞ

E
s;k50:05

D
expðEbias

k50=RTÞ
E

s;k50D
f ðEMM

k50:052E
QM=MM
k50 2CÞexpðEbias

k50=RTÞ
E

s;k50

0
B@

1
CA1C

(12)

with EQM/MM calculated from eq. (10) and the

DG
MM k50:05!k50:95ð Þ
s energy calculated with the full systems,

periodic boundary conditions, and total energies.

Uncertainties, quality estimates, and overlap measures

Reported uncertainties are standard errors, that is, standard

deviations divided by the square root of the number of sam-

ples, for example, the 15 sets of independent simulations. The

uncertainties of the free-energy estimates were obtained by

nonparametric bootstrap sampling (using 1000 samples) of the

potential-energy differences in the BAR or NBB calculations.

The quality of the binding-affinity estimates compared to

experimental data was quantified using the mean absolute

deviation (MAD), the root-mean-squared deviation (RMSD), the

correlation coefficient (r2), and the slope and intercept of the

best correlation line. In addition, Kendall’s rank correlation

coefficient was calculated for the eight transformations explic-

itly simulated (sr). The uncertainties of the quality estimates

were obtained by a parametric bootstrap (using 500 samples),

assuming the estimates follow a Gaussian distribution with the

mean equal to the estimate and the standard deviation equal

to the reported uncertainty.

To estimate the convergence of the various perturbations, six

different overlap measures were employed.[72] We calculated

the Bhattacharyya coefficient for the energy distribution overlap

(X),[73] the Wu & Kofke overlap measures of the energy proba-

bility distributions (KAB) and their bias metrics (P),[74,75] the

weight of the maximum term in the exponential average

(wmax),[20] the difference of the forward and backward exponen-

tial average estimate (DDGEA), and the difference between the

BAR and TI estimates (DDGTI, although this difference may also

reflect the integration error in TI[76]).[72] We used wmax also to

estimate the convergence of the ssEA and NBB4 calculations. In

the former case, wmax is the weight of the maximum term in

the average in eq. (6). In the latter case, wmax was calculated for

each of the three averages in eq. (9) after convergence of C and

the largest of these three values is reported. However, calcu-

lated in this way and using the same data, wmax for ssEA and

NBB4 is identical, because the latter is always dominated by the�
exp Ebias

k50=RT
� ��

term in eq. (9), which is the same as in eq. (6).

Result and Discussion

Binding affinities at the MM level

In this article, we study the binding of nine carboxylate ligands to

the octa-acid (OA) host molecule, shown in Figures 2 and 3a. We

calculate the relative binding energies of the ligands with FES

methods and our goal is to obtain converged relative binding

energies at the QM/MM level, without performing sampling at

the QM/MM level, but including all groups within �4.5 Å of the

ligand in the QM calculations (not only the ligand as in most pre-

vious studies[23,24,28–30,39]). Our previous investigation of this sys-

tem as well as the binding of two ligands to galectin-3 failed to

give converged QM/MM binding energies with 3600 QM calcula-

tions at the DFT level.[13,25] Therefore, we employ here the much

faster SQM PM6-DH2X method, so that we can perform enough

QM calculations to ensure converged results. Moreover, we have

removed the propionate and benzoate groups of the octa-acid

host (yielding NOA, shown in Fig. 3b), because our previous study

showed that it was hard to obtain a proper sampling of the dihe-

dral angles of the propionate groups within a typical simulation

time (4 ns).[13] Moreover, the large negative charge (28) of the

host molecule sometimes gave problems in the QM calculations.

To check that the truncation of the host does not affect the

results significantly, we first calculated DDGbind for the NOA

host at the MM level. From the results in Table 1, it can be seen

that the calculations with NOA gave almost the same results as

for the full octa-acid host[13]: For five of the transformations, the

two hosts gave results that agreed within 1 kJ/mol, whereas for

the remaining three transformations (EtBz!MeBz, Hx!Bz, and

Hep!Hx), the results differed by 2–3 kJ/mol. However, owing

to the high precision of both calculations, the difference is stat-

istically significant for all except two of the transformations

(MeBz!Bz and Hx!Pen) at the 95% level.

The results of the NOA calculations are appreciably more pre-

cise than the OA calculations (0.02–0.08, compared to 0.05–0.73

kJ/mol). This is partly owing to the longer simulations (8 ns vs.

4 ns) and the larger number of independent simulations (15 vs.

10). However, there are also clear indications that the NOA cal-

culations are better converged than the previous calculations:

The overlap measures in Table 2 show a perfect overlap for all

the eight transformations with NOA with all X 5 1.00,

KAB� 1.03, P� 2.5, wmax� 0.03, DDGEA� 0.08 kJ/mol, and
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DDGTI� 0.06 kJ/mol (X goes from 0, no overlap to 1, perfect

overlap[73]; KAB goes from 0 – no overlap, via 1 – full overlap, to

2 – the first distribution is completely inside the second distri-

bution[74,75]; a negative P indicates poor overlap[74,75]; 1/wmax

indicates how many snapshots contribute significantly to the EA

estimate; DDGEA is the hysteresis in the forward and backward

EA estimates; and DDGTI indicates the difference between the

BAR and TI estimates). In fact, all free-energy measures esti-

mated by PYMBAR (TI, TIcubic EAforward, EAbackward, BAR, and

MBAR) agree within 0.06–0.19 kJ/mol for the eight transforma-

tions, and the most accurate BAR and MBAR results agree

within 0.05 kJ/mol, indicating extremely well-converged results.

For our previous OA simulations[13] (also listed in Table 2), the

convergence was appreciably worse with X down to 0.93, KAB

down to 0.79, P down to 20.1, wmax up to 0.95, and DDGEA up to

16 kJ/mol, whereas DDGTI� 0.3 kJ/mol was good. In particular,

Hx!Pen and Hep!Hx transformation gave negative P values

and wmax> 0.38, which indicates that more k values or longer sim-

ulations should have been used. This is also reflected by the larger

standard error of these two estimates (0.7 kJ/mol). Moreover, the

MeHx!Hx transformation gave wmax 5 0.95 and DDGEA 5 16 kJ/

mol, which indicates that the overlap was poor also for this trans-

formation. A large part of the improvement for NOA can be attrib-

uted to the longer simulations (60,000 snapshots instead of 4000).

However, if we instead consider the worst values in the 15 inde-

pendent simulations of NOA, each based on 4000 snapshots, NOA

still gives converged results (X 5 0.99, KAB� 0.93, P� 1.7,

wmax� 0.27, DDGEA� 0.9 kJ/mol, and DDGTI� 0.06 kJ/mol,

although both wmax and DDGEA have increased by a factor of 6–

17). This shows that the removal of the flexible propionate groups

has strongly improved the sampling for the NOA host.

Affinities at the SQM level

Next, we tried to estimate binding affinities also at the SQM/

MM level using 60,000 snapshots for each k value (in practice,

we first did the calculations on 4000 snapshots and based on

those results, we decided how many independent simulations

were needed to converge the results to a precision of 1 kJ/

mol). As detailed in the Methods section, we employed several

different approaches to calculate the MM!SQM free energies.

First, we tried to use the full NBB13 approach with SQM

Table 1. Results for the eight perturbations (DDGbind in kJ/mol) obtained at the MM level (using MBAR) for the NOA host.

Transformation OA Exp.[44] NOA MM calc. OA[13] MM calc. NOA SQM/MM

MeBz!Bz 9.060.5 15.7160.02 15.9460.05 2.061.3

EtBz!MeBz 1.760.5 3.2860.02 1.0260.08 3.861.0

pClBz!Bz 12.660.2 18.6060.02 19.0660.09 6.861.0

mClBz!Bz 6.460.3 6.8160.03 6.1160.12 4.561.0

Hx!Bz 7.960.4 15.6060.05 13.1460.32 0.061.1

MeHx!Hx 8.360.4 14.8160.01 15.3560.15 5.061.1

Hx!Pen 7.960.4 8.3360.04 7.4860.73 0.061.0

Hep!Hx 4.160.3 7.3560.07 5.5060.66 7.260.9

MAD 4.0760.13 3.5660.17 4.960.4

RMSD 4.9560.14 4.6160.16 5.460.4

r2 0.7960.03 0.8460.04 0.0060.03

slope 1.5060.07 1.7760.09 0.060.1

inter 0.4160.60 22.4060.75 3.960.9

sr 1.0060.00 1.0060.00 1.060.2

For comparison, calculated (BAR)[13] and experimental[44] results obtained with the full octa-acid (OA) host are also included. For both NOA and OA, the

presented calculated results are the average and standard error over the 15 or 10 independent simulations. In the last column, the SQM/MM results for

the NOA host, obtained with ssEAc and 15 independent calculations are included. The six last rows give quality measures describing how well the cal-

culations reproduce the experimental data of OA in the first column: The mean absolute deviation (MAD in kJ/mol), the root-mean-squared deviation

(RMSD in kJ/mol), the correlation coefficient, the slope and intercept of the best correlation line, and Kendall’s ranking correlation coefficient for only

the eight considered transformations (sr).

Table 2. Overlap measures for the eight perturbations of NOA and OA,

performed at the MM level, based on 60,000 (NOA) or 4000 (OA) snap-

shots. Each measure is the minimum (X, KAB, and P) or maximum (wmax,

DDGEA, and DDGTI) value over the 26 k values for the simulations with

and without the host.

X KAB P wmax DDGEA DDGTI

NOA

MeBz!Bz 1.00 1.03 2.9 0.003 0.02 0.04

EtBz!MeBz 1.00 1.04 2.7 0.004 0.03 0.03

pClBz!Bz 1.00 1.03 2.9 0.002 0.02 0.04

mClBz!Bz 1.00 1.03 2.8 0.002 0.06 0.02

Hx!Bz 1.00 1.03 2.5 0.004 0.06 0.02

MeHx!Hx 1.00 1.03 2.8 0.017 0.05 0.01

Hx!Pen 1.00 1.04 2.5 0.026 0.08 0.04

Hep!Hx 1.00 1.04 2.5 0.009 0.05 0.06

OA

MeBz!Bz 0.99 1.01 2.3 0.010 0.20 0.13

EtBz!MeBz 1.00 1.02 2.1 0.024 0.23 0.03

pClBz!Bz 1.00 1.02 2.5 0.009 0.12 0.14

mClBz!Bz 0.99 1.02 2.2 0.019 0.24 0.02

Hx!Bz 0.99 1.00 1.2 0.106 0.94 0.21

MeHx!Hx 0.93 0.79 1.1 0.947 16.19 0.34

Hx!Pen 0.95 0.85 0.0 0.716 1.69 0.06

Hep!Hx 0.98 0.93 20.1 0.377 6.42 0.03

The measures are the Bhattacharyya coefficient for the energy distribu-

tion overlap (X),[73] the Wu & Kofke overlap measures of the energy

probability distributions (KAB) and their bias metrics (P)[74,75] the weight

of the maximum term in the EA (wmax),[20] the difference of the forward

and backward EA estimate (DDGEA in kJ/mol), and the difference

between the BAR and TI estimates (DDGTI in kJ/mol). Values indicating

poor overlap or bad convergence are marked in bold face (X< 0.7,

KAB< 0.7, P< 0.5, wmax> 0.2, DDGEA> 4 kJ/mol, or DDGTI> 1 kJ/

mol).[72,74,75]
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calculations for all k values (Fig. 1c). However, this is very

demanding, requiring 60,000 � 13 � 2 � 5 5 7,800,000 QM calcu-

lations for each transformation (60,000 snapshots, 13 k values,

two sets of simulations, that is, with or without the host, cal-

culations with both L0 and L1, and three calculations for each

geometry to get interaction energies from eq. (4), but

Eremainder is the same for the two ligands). Moreover, the calcu-

lations gave many numerical problems and highly uncertain

results. The reason for this is partly that the MM calculations

employ soft-core potentials, which increase the difference

between QM and MM and therefore deteriorates the conver-

gence of the MM!QM perturbation. Therefore, this approach

was only attempted for the MeBz!Bz transformation and for

4000 snapshots, giving DDGNBB13
bind 5 29 6 14 kJ/mol.

We also tried to calculate the binding free energies directly

with MBAR calculations based on the QM results (QM-MBAR;

using the same data as NBB13), ignoring the fact that the

snapshots were obtained with MD simulations at the MM,

rather than the QM level.[25] However, the results based on

only 4000 snapshots for the MeBz!Bz transformation was

poor (23.9 6 0.1 kJ/mol), with large differences between esti-

mates obtained with different methods (BAR, TI, and EA) and

many overlap estimates indicating poor overlap, for example,

P down to 22.0, wmax up to 1.0, and DDGEA up to 949 kJ/

mol. Therefore, this approach was not further pursued.

Instead, we tested the NBB4 approach suggested by K€onig

and coworkers.[29,30] In this approach, NBB is used to estimate

the free energy of going from k 5 0.00 with QM to k 5 0.05 with

MM (and similar between k 5 0.95 and 1.00), whereas the differ-

ence between k 5 0.05 and 0.95 is estimated at the MM level, as

is illustrated in Figure 1b. NBB4 requires 60,000 � 4 � 2 �
3 5 1,440,000 QM calculations (i.e., only for k 5 0.00 and 0.05

with L0, and for k 5 0.95 and 1.00 with L1), which is 5.4 times

fewer than with NBB13.

The NBB4 results are collected in Table 3. Two sets of results

are presented: The first is for an NBB4 calculation including

the concatenated results of all 60,000 snapshots with the

standard error estimated by bootstrapping. The second is the

average over the 15 individual independent calculations with

4000 snapshots in each and the standard error calculated from

the standard deviation over the 15 sets. It can be seen that

the uncertainty of the former approach is somewhat larger

than for the latter, 2–7 vs. 2–3 kJ/mol. The opposite is nor-

mally observed, which indicates that the results strongly

depend on a few snapshots, that is, that the calculations are

still poorly converged. In most cases, the results of the two

sets of calculations agree within the estimated statistical

uncertainty, with differences of 1–8 kJ/mol. However, for the

mClBz!Bz transformation, the difference is 20 kJ/mol, show-

ing that the NBB4 estimates do not fully show the expected

statistical behavior.

Therefore, we instead tried to estimate the MM!QM free

energy by the ssEA approach. A direct application of ssEA [i.e.,

with the full exponential averaging in eq. (6)], gave an uncer-

tainty similar to that for NBB4, 2–6 kJ/mol (third column in

Table 3). Moreover, wmax 5 0.36–0.96 (last column in Table 3),

showing that the exponential average is dominated by one or

a few terms (snapshots).

More stable results could be obtained by using a cumulant

expansion to the second order[70,71] (which is equivalent of

assuming a Gaussian distribution; ssEAc). With such an

approach, the uncertainty was reduced to 0.9–1.0 kJ/mol for

all eight transformations (based on calculations on all 60,000

snapshots and bootstrapped uncertainties; column four in

Table 3). Closely similar results were obtained by averaging

the results from the 15 independent simulations (with 4000

snapshots in each; column five in Table 3): The two

approaches gave results that agreed within 0.2 kJ/mol and the

uncertainties (estimated from the standard deviation over the

15 simulations) also agreed within a factor of 0.9–1.3. More-

over, the average standard errors for the individual calculations

based on 4000 snapshots were 3.1–4.2 times larger than the

standard errors for the calculations based on 60,000 snapshots,

that is, close to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60000=4000

p
5

ffiffiffiffiffi
15
p

5 3.9, following the

expected
ffiffiffi
n
p

dependence of a normal distribution (in fact, we

selected the final number of snapshots based on such an

extrapolation). Figure 5 shows how the predictions converge

and the precision improves with the number of snapshots.

The results of the ssEA and ssEAc methods agree within 1–14

kJ/mol, which is inside the 95% confidence interval

Table 3. NBB4, ssEA, ssEAc, and ssPA results for the eight transformations (DDGbind or DDGMM!QM in kJ/mol).

Quantity DDGbind DDGMM!QM DDGbind wmax

Method NBB4 ssEA ssEAc ssPA ssEAc ssEA

Averaging all 15 indep all all 15 indep all 15 indep all

MeBz!Bz 22.464.1 21.162.9 216.764.1 213.861.0 213.761.3 211.660.16 3.161.3 0.76

EtBz!MeBz 21.564.0 24.563.2 25.063.9 0.661.0 0.561.0 22.860.17 4.461.0 0.87

pClBz!Bz 11.463.9 13.062.8 210.764.0 211.861.0 211.861.0 25.960.17 9.561.0 0.85

mClBz!Bz 31.967.2 9.663.8 11.964.9 22.461.0 22.461.0 22.260.17 5.061.0 0.90

Hx!Bz 3.966.2 23.762.2 214.366.3 215.561.0 215.661.1 229.960.17 3.561.1 0.92

MeHx!Hx 21.465.1 5.662.9 217.565.4 210.060.9 29.861.1 23.860.16 6.861.1 0.96

Hx!Pen 21.762.8 22.463.3 27.862.9 28.461.0 28.361.0 24.560.16 0.561.0 0.55

Hep!Hx 17.462.2 11.162.8 9.362.2 20.160.9 20.260.9 20.560.16 8.160.9 0.36

Results are shown for either all 60,000 snapshots in a single calculation with standard errors obtained with bootstrapping (all) or as the average over

15 independent simulations with 4000 snapshots each, obtaining standard errors from the standard deviation over these 15 results, divided by
ffiffiffiffiffi
15
p

(15

indep). In the last column, wmax is given for the ssEA–all calculation.
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(dominated by the uncertainty of ssEA) for all transformations,

except mClBz!Bz and Hep!Hx, indicating that the ssEA

results are not fully well-behaving. In Figure S1 in the Support-

ing Information, distribution and normal-probability plots are

given for three of the MM!QM perturbations. It can be seen

that all EQM–EMM distributions are very close to normal, except

in the low-probability ends. The two first examples show typi-

cal results for simulations with and without the host, respec-

tively, for which the distribution is Gaussian beyond 0.001

probability, whereas the last row shows the poorest results, for

which deviations from Gaussian distribution start to emerge at

0.02 probability.

Three of the ligands are involved in more than one pertur-

bation (Bz, MeBz, and Hx). Therefore, we have 2–4 estimates of

DGMM!QM for these for the simulations with or without the

host, and these estimates are collected in Supporting Informa-

tion Table S2. In most cases, the results of these calculations

agree, for example, 290.1 to 290.8 kJ/mol for Bz with the

host (average 290.7 6 0.3 kJ/mol), in agreement with the esti-

mated uncertainty of 0.4 kJ/mol for the individual estimates.

However, in three cases, one of the simulations gives deviating

results by 5–9 kJ/mol. This indicates that the ssEAc results still

are somewhat sensitive to rare events in the simulations and

occasionally the estimated precision is too high.

Finally, we also tried to estimate the MM!QM free energy

with the pure average (ssPA), instead of the exponential aver-

age in the ssEA approach. This gave well-converged results

with a standard error of 0.2 kJ/mol, reflecting that a pure aver-

age has much better convergence properties than the expo-

nential average (sixth column in Table 3). However, the pure

average is an approximation to the true exponential average,

an approximation that is valid only if the variation in the EQM–

EMM energy differences is small, which is not the case. There-

fore, the pure average converged to results that were different

from those obtained with ssEAc. For the DDGMM!QM correc-

tions in Table 3, the difference between the ssPA and ssEAc

results for the various transformations was up to 14 kJ/mol (5

kJ/mol on average), a difference that is statistically significant

for five of the transformations. However, DDGMM!QM is

obtained as the difference of the results for the calculations

with and without the NOA host, which each are the difference

of the results obtained with L0 and L1 [eq. (2) and (5)]. For

these four contributions to DDGMM!QM, the difference

between ssPA and ssEAc was much larger, 59–237 kJ/mol. This

clearly shows that pure averages cannot be used if you aim at

an accuracy better than �10 kJ/mol, especially as there is no

useful estimate of the true uncertainty of the approach.

The NBB and ssEA results discussed so far are not compara-

ble, because the former are full DGbind free energies, whereas

the latter only includes the MM!QM free-energy correction

(DDGMM!QM in Table 3). Thus, to compare the results, we need

to add DDGMM
bind, obtained for the isolated QM system at the

MM level. This is done in the penultimate column in Table 3. It

can be seen that the NBB4 and ssEAc results agree within 1–9

kJ/mol (based on averages of the 15 independent simulations),

which is reasonable, considering the quite large uncertainty of

the NBB4 results.

All SQM results discussed up to this point have been based

on calculations of the isolated QM system. More realistic ener-

gies can be obtained by a QM/MM approach. As discussed in

the Methods section, QM and QM/MM energies give the same

results for ssEA, so we easily reach a final result by adding the

MM!QM ssEAc free-energy corrections in Table 3 (column five)

to the DDGbind free energies, obtained at the MM level for the

full periodic system from the second column in Table 1, giving

the results in last column of Table 1. These results differ slightly

from the results in the penultimate column in Table 3, because

the latter employ MM DDGMM
bind binding free energies obtained

for only the QM system and using interaction energies instead

of total potential energies (to make the results directly compa-

rable with the NBB4 results in Table 3 which use the same MM

DDGMM
bind free energies). The two results differ by up to 3.5 kJ/

mol (1.5 kJ/mol on average), showing that already the small QM

system gives reasonable DDGMM
bind free-energy estimates.

From Figure 6, it can be seen that all MM!QM corrections

are in the correct direction (assuming that NOA should give

the same results as OA), that is, reducing the relative affin-

ities, except in the EtBz!MeBz case, for which the MM!QM

correction is close to zero. Unfortunately, the corrections are

too large in six of the cases, giving too small relative binding

affinities. Consequently, the SQM/MM results reproduce the

experimental OA results appreciably worse than the MM

results, as is shown in Table 1. For example, MAD increases to

4.9 6 0.4 kJ/mol and r2 vanishes. Of course, this is somewhat

Figure 5. a) Convergence of the ssEAc predictions of DDGMM!QM with

respect to the number of considered snapshots for the eight transforma-

tions. Pane b) shows the corresponding standard error of the calculations,

based on 1000 bootstraps.
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disappointing after performing almost 6 million SQM calcula-

tions. However, this result is much better than previous

attempts to obtain QM/MM FES binding free energies for the

same system, which gave MADs of 17–26 kJ/mol and no con-

vergence for the MM ! QM perturbation.[13] It is also much

better than approaches based on optimized structures and

energies calculated by dispersion-corrected DFT methods or

even CCSD(T) calculations, giving MADs of 8–37 kJ/mol.[13–15]

Moreover, our aim has been to find out what is required to

converge the MM!QM/MM, not to reproduce the experi-

mental results. Therefore, we have selected a rather cheap

method, PM6-D2HX, which is among the best available SQM

methods, although it is appreciably worse than dispersion-

corrected DFT methods.[77]

Thus, at least for this data, ssEAc with the cumulant expan-

sion gave a lower uncertainty than NBB4. A possible reason

for this is again the use of soft-core potentials in the MM cal-

culations, which increases the difference between QM and

MM: In the ssEA approach, only the k 5 0.00 and 1.00 states

are considered, for which the soft-core potentials are not

active. However, NBB4 considers also the k 5 0.05 and 0.95

states, for which the soft-core is active. The ssEA approach

also has the advantage of using only 60,000 � 2 � 2 �
3 5 720,000 QM calculations (i.e., only for L0 at k 5 0.00 and L1

at k 5 1.00), that is, half as many as for NBB4. Moreover, the

reweighting in NBB is often badly conditioned, essentially pick-

ing out a single energy (snapshot) in the second average in

the nominator of eq. (9). In fact, wmax calculated for this

method is exactly the same as for ssEA (shown in the last col-

umn in Table 3), that is, 0.36–0.96, indicating that the esti-

mated free energies are completely dominated by one or a

few QM energies (and that the use of numerous QM calcula-

tions is only a way of finding these values). This explains the

rather poor convergence of both these methods. On the other

hand, with the cumulant expansion, all QM values are used to

estimate the average and standard deviation of the Gaussian

distribution (but both values are still somewhat dominated by

a few values).

All results in Table 3 were obtained using interaction ener-

gies [eq. (4)] rather than total energies. This has the advantage

of making the EQM–EMM energy difference smaller and less

varying by ignoring the difference in the two energy functions

for the internal interactions within the ligand or the host. On

the other hand, this is an approximation. At the MM level, it is

a good approximation: For seven of the perturbations, DDGbind

calculated with interaction energies (and without periodicity

and Ewald summation) reproduce the results in Table 1 (based

on total energies) within 0.6 kJ/mol (MAD 0.3 kJ/mol). How-

ever, for the Hx!Bz perturbation, the difference is slightly

larger, 2.7 kJ/mol. On the other hand, using total energies for

the MM!QM perturbation increases the variation in EQM–EMM

by a factor of �2, making the convergence much worse. As a

consequence, DDGMM!QM estimated by ssEAc changes by 1–

12 kJ/mol (5 kJ/mol on average; pure averages change by 1–4

kJ/mol) and the bootstrapped precision estimates become

very large, illustrating that these results are far from con-

verged. This shows that interaction energies strongly improve

the convergence of the MM!QM perturbations, in agreement

with other studies.[38,78]

Conclusions

In this article, we have studied what is needed to obtain con-

verged QM/MM relative binding free energies, performing

sampling only at the MM level and including a significant sur-

rounding of the ligand in the QM calculations (158–224

atoms). Previous studies with such an approach have given

poorly converged results both for a host–guest system and a

full protein, probably owing to the use of too few QM calcula-

tions (3600 per transformation).[13,25]

Therefore, we have here employed a system for which we

can perform many more QM calculations: First, we used the

octa-acid host–guest system, which is smaller and simpler

than a protein. Second, we removed all eight carboxylate

groups on the host molecule to further reduce the size of the

system, to remove possible problems of the extensive net

charge of the host, and to reduce the flexibility of the host

and therefore improve the sampling of the phase space. Third,

we employed the SQM PM6-DH2X method, which is computa-

tionally much cheaper than the DFT methods we have used in

our previous studies. On the other hand, this means that we

cannot strictly compare to any experimental results and that

we use a QM method with an appreciably lower accuracy than

dispersion-corrected DFT methods.[77]

We first showed that the truncation of the host gave rather

restricted changes in relative binding free energies, as esti-

mated at the MM level, up to 3 kJ/mol. Moreover, the new cal-

culations were much more precise than those based on the

full OA host, with a precision of 0.02–0.08 kJ/mol. This was

partly an effect of the longer simulations (120 ns per k value),

but there were also clear indications that the sampling has

been improved. In particular, our overlap measures clearly

showed that the simulations were perfectly converged, in var-

iance to the original simulations.

Figure 6. Comparison of the MM and SQM/MM (ssEAc) results for NOA,

compared to the experimental relative affinities[44] for the eight considered

transformations. The black line shows the perfect correlation. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]
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Next, we tested six different methods to calculate relative

binding free energies at the QM level. We showed that

approaches based on QM calculations for all 13 k values (both

NBB13 and QM-MBAR) were very expensive and gave poorly

converged results. On the other hand, NBB4 and ssEA gave

promising results, although a full convergence could not be

obtained even with 1,440,000 or 720,000 QM calculations per

transformation, respectively. Instead, the results indicated that

3–50 times more QM calculations are needed for convergence

and this is most likely an underestimate owing to the bad con-

ditioning of these methods (they strongly depend on one or

very few of the calculated values).

However, the ssEAc approach with the cumulant expansion

gave nicely converged results with a standard error of 1 kJ/

mol using 720,000 QM calculations per k transformation for all

eight studied relative free energies. Moreover, it showed the

expected square-root dependence of the standard error with

respect to the number of calculations. It also required half as

many QM calculations as the NBB4 approach. Pure averages

for the MM!QM perturbation also gave converged free ener-

gies, but the results differed from those obtained by ssEAc by

up to 14 kJ/mol, because this is only an approximate method

that strictly should not work when the variation in the MM–

QM energy differences is large.

The required number of QM calculations is of a comparable

magnitude to what has been used in previous QM/MM-FES

studies by Mulholland and coworkers,[24,26] especially as they

included only a single rigid water molecule in the QM system.

K€onig et al. also had to perform 20,000–60,000 QM calcula-

tions to obtain an uncertainty of up to 2 kJ/mol, again includ-

ing only a small solute in the QM system.[30] However, Skylaris

et al. have included the solute and 200 water molecules in the

QM calculations, calculating the free energies by ssEA, based

on interaction energies.[27] Still, they claim to obtain con-

verged relative solvation free energies (within 4 kJ/mol) with

only 1080 QM calculations per transformation. The reason for

this seems to be a smaller difference between the QM and

MM potentials (although they use the same GAFF/TIP3P MM

method as we do): They report a range for the EQM–EMM

energy difference of �55 kJ/mol, whereas it is almost four

times larger in our study, 181–211 kJ/mol. The convergence of

FES strongly depend on this range—in the well-converged FES

calculations at the MM level (with 13 k values), the range is

typically �10 kJ/mol with a maximum of 38 kJ/mol. The rea-

son for the lower range in the studies by Skylaris et al. is prob-

ably that they study only simple and rigid phenol derivatives.

In a recent study with more flexible (but smaller) molecules,

they employed more QM calculations and included also an

intermediate QM/MM step to improve the convergence with

only the solute in the QM, performing QM/MM MD simula-

tions.[31] Finally, it should also be noted that K€onig et al. have

in two studies suggested that NBB4 gives better convergence

than ssEA (for absolute solvation free energies).[29,30] However,

they did not employ the cumulant expansion for ssEA, which

strongly improves the convergence in this study. In fact, very

recently they published a study of hydration free energies of

20 organic molecules, in which they come to conclusions very

similar to ours:[78] With a cumulant expansion, they obtain a

slightly better convergence of the QM/MM free energies with

ssEAc than with NBB4, both analytically and in practice. This

shows that our conclusions apply also to other types of

systems.

Consequently, we recommend the ssEAc method to obtain

converged QM/MM binding free energies. Still, our results show

that a very large number of QM calculations are needed to

obtain strict QM/MM FES binding free energies, 720,000 per per-

turbation. This provides a useful guide for future studies of QM/

MM binding free energies: The QM method and the size of the

QM system have to be selected to allow for such an amount of

QM calculations. Moreover, it provides a firm basis for compari-

son with alternative methods. It has recently been shown that

reasonable binding free energies can be obtained with single

structures optimized with dispersion-corrected DFT methods for

host–guest systems;[77,79] in fact, relative energies for ligands

binding to the same host were reproduced with a MAD of 5 kJ/

mol. Such an approach requires only a few hundred QM energy

calculations. Unfortunately, the approach worked appreciably

worse for the OA system, with MADs of 5–10 kJ/mol, probably

owing to the larger flexibility and the high charge of this

host.[13,14] Alternatively, full QM/MM MD simulation could be per-

formed; 720,000 QM calculations correspond to 0.36–1.4 ns simu-

lations, depending on the time step, which may give converged

FES results. Thus, it might be better to spend the QM calcula-

tions on true FES calculations with sampling at the QM/MM level

instead. This is currently investigated in our group.
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