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ABSTRACT

How host-virus co-evolutionary relationships manifest is one of the most intriguing issues in
virology. To address this topic, the mammal-lentivirus relationship can be considered as an interplay
of cellular and viral proteins, particularly apolipoprotein B mRNA editing enzyme catalytic
polypeptide-like 3 (APOBEC3) and viral infectivity factor (Vif). APOBEC3s enzymatically restrict
lentivirus replication, whereas Vif antagonizes the host anti-viral action mediated by APOBEC3. In
this study, the focus was on the interplay between feline APOBEC3 proteins and two feline
immunodeficiency viruses in cats and pumas. To our knowledge, this study provides the first evidence
of non-primate lentiviral Vif being incapable of counteracting a natural host's anti-viral activity

mediated via APOBECS3 protein.
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Shedding light on the co-evolutionary history of viruses
and hosts is one of the most intriguing topics in the field
of virology. However, because viruses have usually
become highly diversified through their high evolution-
ary rates and cross-species swapping, accessing the
co-evolutionary history of viruses and hosts has been
challenging. Focusing on interactions between viral and
cellular proteins is a potential strategy for investigating
the evolutionary arms race between viruses and hosts,
particularly lentiviruses and mammals (1-3). In
particular, the interaction between Vif and APOBEC3
represents a microcosm of the co-evolutionary
relationship (1).

HIV-1, which causes AIDS in humans, is the most
studied lentivirus (4). HIV-1 replication is robustly
restricted by an intrinsic anti-viral APOBEC3 family
protein, APOBEC3G (5). APOBECS3 proteins, including
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APOBEC3G, are incorporated into nascent viral
particles and enzymatically introduce G-to-A substitu-
tions in the newly synthesized viral DNA, which results
in the abrogation of viral replication (6, 7). To counteract
APOBEC3-mediated anti-viral action, Vif, an HIV-1-
encoding protein, induces degradation of APOBEC3
proteins via a ubiquitin/proteasome-dependent path-
way (8, 9).

In contrast to the effects of HIV-1 infection in
humans, it is known that several lineages of OWMs
residing in Africa do not develop any AIDS-like
disorders when naturally infected with SIVs, another
lineage of lentiviruses (10, 11). Interestingly, the
functional interaction between a various lineage of SIV
Vif proteins and OWM APOBEC3G proteins has
been elucidated (1, 12, 13), possibly providing a
clue to understanding the history of co-evolution and
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co-divergence of SIVs and monkeys in the Old World.
Furthermore, it has been demonstrated that OWM
APOBEC3G can be the barrier that restricts lentiviral
cross-species infection (14, 15).

Another lentivirus, FIV, was first isolated in 1987 from
domestic cats (Felis catus) with chronic AIDS-like
disorders (16). Subsequent studies revealed that several
lineages of felids are infected with FIV (17-19).

The puma (Puma concolor; also commonly known as
the cougar, panther, or mountain lion) is a felid that
resides in the New World (20). An FIV that has been
designated FIVpco (also known as PLV), circulates
among pumas in the wild (21). The prevalence of FIVpco
in wild pumas differs between the geographical areas
investigated and/or the epidemiological studies re-
ported (17, 21-23). Interestingly, because of its lower
genetic diversity (22), it has been assumed that FIVpco
has not undergone any selective pressures from the host
and that wild pumas are naturally infected (i.e., with little
or no pathogenicity), as is true for SIV infection in
OWMs in Africa (24). However, prominent G-to-A
substitutions, the mutation signature mediated by
APOBEC3, have reportedly been detected in proviral
DNA isolated from wild pumas naturally infected with
FIVpco (25). Therefore, it is assumed that endogenous
puma APOBECS3 protein(s) are resistant to FIVpco Vif-
mediated degradation, which would affect the replica-
tion kinetics of FIVpco in pumas.

To elucidate the mechanism of inter-species viral
transmission, domestic cats have been experimentally
infected with FIVpco (26-29). However, PLV1695, a
prototypic infectious molecular clone of FIVpco (30),
replicates poorly in domestic cats, usually being
eradicated around 100 days post-infection without any
treatment (30, 31). FIVpco expands in cultures of
PBMCs from pumas in vitro, whereas it only replicates
very little in in vitro cultures of domestic cat PBMC:s (26).
These observations suggest that a barrier inhibits cross-
species transmission of FIVpco into domestic cats.
Particularly noteworthy, G-to-A hypermutation in
proviral DNA, which is the signature of APOBEC3-
mediated mutation, has been observed in cultures of
domestic cat PBMCs infected with FIVpco (30).

The fact that human APOBEC3G robustly limits HIV-
1 replication in the absence of Vif both in vitro (8, 5) and
in vivo (32-34), is convincing evidence that human
APOBECS3G confers intrinsic immunity restricting HIV-
1 replication. Similar to what occurs in HIV-1 infection
in humans, certain APOBEC3 proteins from domestic
cats exhibit strong anti-FIV activity, whereas this anti-
viral action is counteracted by the Vif protein of FIV
in domestic cats (FIVfca) (35-37). The presence of
the vif gene in FIV strongly suggests that there was

co-evolutionary interplay between feline APOBEC3 and
FIV Vif proteins. In fact, as described above, one study
has suggested that feline APOBECS3 is the barrier that
inhibits cross-species transmission of FIVpco (strain
PLV1695) into domestic cats (30). However, the
counteracting activity of FIVpco Vif against APOBEC3
proteins from both domestic cats and pumas has not
been elucidated. To address these issues, we herein
focused on the role of FIVpco Vif in antagonizing
APOBECS3 proteins from domestic cats and pumas.
We set out to compare the amino acid sequences of
APOBEC3s from domestic cats and pumas and those of
Vifs from FIVfca and FIVpco. Human APOBEC3s and
HIV-1 Vif, respectively, were used as the putative
outgroups. It should be noted that domestic cats and
pumas express five different APOBEC3 proteins; namely
APOBEC3Z2a, APOBEC3Z2b, APOBEC3Z2c, APO-
BEC3Z3 and APOBEC3Z2Z3 (35-38), whereas humans
encode seven APOBECS3 proteins (APOBEC3A, B, C, D,
F, G and H) (7, 8). As shown in Figure 1, we found that
puma APOBEC3Z2 (Fig. 1a) and APOBEC3Z3 (Fig. 1b)
are similar to cat orthologs rather than human orthologs.
On the other hand, although FIVpco Vif are more closely
related to FIVfca Vif than to HIV-1 Vif (Fig. 1c), the
values for identity and similarity of FIVpco Vif to FIVfca
Vif are relatively low compared to those for puma
APOBEC3s to cat APOBEC3s (Fig. 1a,b). These results
indicate that lentiviral vif is relatively diversified in
comparison with host APOBEC3 proteins. Moreover, we
compared the FIV Vif sequences from various felids;
namely FIVfca in cats, FIVpco in pumas, FIVple in lions
(Panthera leo) and FIVoma in Pallas' cats (Otocolobus
manul). As shown in Figure 1d, FIV wvif is highly
diversified but forms a cluster in the same lineage. This
figure also shows that the sequence of PLV1695 vif is
close to that of the vif of the other FIVpco from wild
pumas (Fig. 1d), suggesting that the use of PLV1695 Vif
in our subsequent experiments is biologically relevant.
Next, we used an in vitro cell culture system to
evaluate whether FIVpco Vif can degrade feline
APOBEC3 proteins. For this assay, we obtained the
FLAG-tagged codon-optimized open reading frames of
FIVfca Vif strain Petaluma (39), FIVfca strain C36 (40)
and FIVpco strain PLV1695 (26) from GeneArt Gene
Synthesis service (Life Technologies, Carlsbad, CA,
USA) (the GenBank accession numbers are presented
in the legend of Figure 1, and the codon-optimized
sequences are available on request). The obtained DNA
fragments were inserted the BarmHI-Sall site of pDON-
Al plasmid (Takara, Kyoto, Japan). The expression
plasmids for HA-tagged APOBEC3Z3 and APO-
BEC3Z2Z3 from domestic cats (35) and pumas (37)
were kindly provided by Dr. Carsten Miunk (Heinrich
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Fig. 1. Comparison of APOBEC3 and Vif sequences. The identity and similarity of amino acid sequences of (a) APOBEC3Z2, (b) APOBEC3Z3
and (o) Vif. Unrooted phylogenetic trees are shown on the right of the respective matrix. The sequences of human APOBEC3 (a, b) and HIV-1 Vif
(c) were used as the outgroups. The identity and similarity of amino acid sequences were analyzed using GENETYX v 9.0. The following
sequences were used in this analysis; GenBank accession numbers are indicated in parentheses: domestic cat, APOBEC3Z2a (EU109281),
APOBEC3Z3 (EU011792); puma, APOBEC3Z2 (GU097659), APOBEC3Z3 (GU097659); human, APOBEC3Z2 (NM_014508), APOBEC3Z3
(NM_001166002); FIVfca Vif strain Petaluma (M25381), strain C36 (AY600517); FIVpco strain PLV1695 (DQ192583) and HIV-1 strain NL4-3
(M19921). Note that human APOBEC3Z2 and APOBEC3Z3 are identical to APOBEC3C and APOBEC3H, respectively (55). A3Z2, APOBEC3Z2;
A3Z3, APOBEC3Z3. (d) Unrooted phylogenetic tree of FIV vif reconstructed by the maximum likelihood method. The common names of the hosts
of each FIV are provided below each illustration. The names of the cognitive FIV lineage of each host are shown in parentheses. The FIV strains
used in the experiments, the results of which are shown in Figures 2 and 3, are shown in bold. Note that the bootstrap values on the nodes of
respective FIV lineages (FIVfca, FIVpco, FIVoma, and FIVple) are more than 80 (indicated with asterisks). The scale bar indicates an evolutionary
distance of 0.1 nucleotide substitutions per site. We used the following 23 FIV strains to construct this phylogenetic tree (GenBank accession
numbers in parentheses): FIVfca, Petaluma (M25381), TM219 (M59418), C36 (AY600517), Shizuoka (LC079040), PPR (M36968), BM3070
(AF474246); FIVoma, pOma3 (AY713445); FIVpco, PLV1695 (DQ192583), Gc34 (EF455603), Mc350 (EF455604), Mc100 (EF455605), Mc121
(EF455606), YM29 (EF455607), YF16 (EF455608), JIMO1 (EF455609), JF6 (EF455610), YM137 (EF455611), YF125 (EF455612), SR631 (EF455613),
SR631B (EF455614), ColLV (EF455615); FIVple, 27B (EU117991) and 1027 (EU117992).

Heine University, Disseldorf, Germany). To produce
FIV-based lentivirus vector, pFP93 (pFIVgagpol Avif; we
used a replication-incompetent vif-deficient FIV pack-
aging construct derived from clone FIV 34TF10
(GenBank accession no. M25381; 430 ng) (41), pTiger-
luc (pFIVW-luc) (430ng; Addgene, Cambridge, MA,
USA), and pMD.G (pVSVg, a VSVg expression plasmid,;
150ng). We co-transfected these plasmids into
HEK293T cells by using PEI Max (Polysciences,
Warrington, PA, USA) and harvested the cells and viral
particles from culture supernatants at 48 hr post-
transfection. The harvested samples were used for

SDS-PAGE/western blotting or lentiviral reporter assays
as previously described (32, 39, 42, 43). Briefly, we used
the following antibodies for western blotting: an anti-
FLAG polyclonal antibody (Sigma, St Louis, MO, USA),
an anti-HA antibody (3F10; Roche, Indianapolis, IN,
USA), an anti-FIV p27CapSid antibody (PAK3-2C1; Santa
Cruz Biotechnology, Santa Cruz, CA, USA); an anti-a-
tubulin antibody (DMI1A; Sigma) and an anti-VSVg
antibody (P5DA; Roche). For FIV reporter assays, we
used HEK293T cells for the target cells (44).

It is known that feline (i.e., both cats and pumas)
APOBEC3Z3 and APOBEC3Z2Z3 can impair FIV
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Fig. 2. Resistance of domestic cat APOBEC3Z3 to FIVpco Vif. The plasmids expressing FLAG-tagged FIV Vif (800 ng) and HA-tagged domestic
cat APOBEC3Z3 or APOBEC3Z2Z3 (0, 50, 100 and 290 ng) were co-transfected with the plasmids for producing FIV-based lentiviral vector (see
the main text for detail) into HEK293T cells. The cell extracts and viral particles from culture supernatants were analyzed by (a, b) western
blotting and (c, d) FIV-based reporter assay. The assays were performed in triplicate. Representative results of western blotting are shown in (a)
and (b). In panels (a) and (b); gray arrowheads indicate non-specific bands. (c) and (d) show the percentages of viral infectivity compared to the
value without APOBEC3 expression. The error bars indicate SDs. *, P< 0.05 versus “No Vif” by Student's t-test. A3Z3, APOBEC3Z3; A37273,
APOBEC37273; NS, no statistically significant difference compared to the values for “No Vif”.

infection (36, 37, 39). Consistent with these previous
observations, we incorporated domestic cat APO-
BEC3Z3 (Fig. 2a) and APOBEC3Z2Z3 (Fig. 2b) into
the released virions and found that the packaged
APOBEC3 proteins decreased FIV infectivity in a
dose-dependent manner (Fig. 2c,d). Also, FIVfca Vif
(strains Petaluma and C36) significantly augmented viral
infectivity by impairing the incorporation of these
proteins into released virions (Fig. 2).

We then assessed the ability of FIVpco Vif to degrade
feline APOBEC3 proteins. Although FIVpco Vif
degraded domestic cat APOBEC3Z2Z3, as in the case
of FIVfca Vif (Fig. 2b), it was of interest that FIVpco Vif
was unable to degrade domestic cat APOBEC3Z3
(Fig. 2a). The undegraded cat APOBEC3Z3 proteins
were efficiently incorporated into the released viral
particles (Fig. 2a,b, bottom panels) and suppressed viral

infectivity (Fig. 2c,d). These findings suggest that
domestic cat APOBEC3Z3 is resistant to FIVpco Vif-
mediated degradation.

Next, we analyzed the functional relationship between
puma APOBECS3 and FIV Vif proteins. As in the case of
domestic cat APOBEC3 proteins, puma APOBEC3Z3
and APOBEC3Z2Z3 proteins suppressed viral infec-
tivity in a dose-dependent manner (Fig. 3). We also
found that the anti-viral action of puma APOBEC3
proteins is significantly antagonized by FIVfca Vif
(Fig. 3). However, although puma APOBEC3Z2Z3 is
counteracted by FIVpco Vif (Fig. 3b,d), we found that
FIVpco Vif is unable to degrade the APOBEC3Z3
protein of the puma, its natural host (Fig. 3a), and that
viral infectivity is suppressed by the packaged
APOBEC3Z3 protein as in the case of an absence of
Vif expression (Fig. 3c).
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Fig. 3. Resistance of puma APOBEC3Z3 to FIVpco Vif. The plasmids expressing FLAG-tagged FIV Vif (800ng) and HA-tagged puma
APOBEC3Z3 or APOBEC3Z7273 (0, 50, 100 and 290 ng) were co-transfected with the plasmids for producing FIV-based lentiviral vector (see the
main text for detail) into HEK293T cells. The cell extracts and viral particles from culture supernatants were analyzed by (a, b) western blotting
and (c, d) FIV-based reporter assay. The assays were performed in triplicate. Representative results of western blotting are shown in (a) and (b);
gray arrowheads indicate non-specific bands. (c) and (d) show the percentages of viral infectivity compared to the value without APOBEC3
expression. The error bars indicate SDs. *, P<0.05 versus “No Vif” by Student's t-test. A3Z3, APOBEC3Z3; A3Z727Z3, APOBEC3Z273; NS, no

statistically significant difference compared to the values of “No Vif".

In this study, we found that FIVpco Vif is unable to
degrade domestic cat APOBEC3Z3. This finding raises
the possibility that anti-FIV activity of feline
APOBEC3Z3 is not crucial for FIV replication and
that the antagonizing ability of FIV Vif against feline
APOBEC3Z3 is dispensable for FIV. However, here we
also demonstrated that feline APOBEC3Z3 proteins
significantly attenuate FIV infectivity (Fig. 2). Moreover,
it has been reported that Vif is a prerequisite for FIV
replication in both in vitro cell culture systems (45, 46)
and in vivo (47). Taken together, these observations
argue against the possibility described in the second
sentence of this paragraph.

Rather, we found that FIVpco Vif is incapable of
counteracting the APOBEC3Z3 protein of pumas, its
natural host (Fig. 3a,c). Even in the case of SIVs naturally
infected with OWMSs in Africa, SIV Vif proteins

counteract the APOBEC3G proteins of their natural
hosts (13). Therefore, to the best of our knowledge, this is
the first report demonstrating that a non-primate
lentiviral Vif protein is unable to degrade an anti-viral
APOBECS3 protein of its natural host (Fig. 3a,c). FIVpco
strain PLV1695, which we used this study and which is
the only infectious clone of FIVpco reported so far, is
able to replicate in puma PBMCs (26), and pumas in the
wild are naturally infected with FIVpco (17, 21-23).
However, as described above, a previous study has
demonstrated that G-to-A mutations, which are
presumably mediated by endogenous APOBEC3, are
detectable in the proviral DNA of wild pumas naturally
infected with FIVpco (25). Therefore, taken together
with our findings, puma APOBEC3Z3 may partially
suppress, but not completely prevent, FIVpco
replication.
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As described above, several lentiviruses have been
identified in mammals and most of them encode Vif (48,
49). This fact strongly suggests that there are various
patterns of cross-species transmissions and evolutionary
histories between lentiviruses and their hosts. For
instance, Etienne and colleagues have recently reported
that chimpanzee APOBECS3 proteins play a pivotal role
as the barrier that protects interspecies transmission of
OWM lentiviruses (50). In addition, D'arc and
colleagues have reported that gorilla APOBEC3G is
resistant to the degradation mediated by the Vif protein
of SIV in chimpanzee (51). In contrast, here we found
that FIVfca Vif degrades anti-viral APOBEC3 proteins
(i.e., APOBEC3Z3 and APOBEC3Z2Z3) of both cat and
puma (Figs 2,3). These results suggest that FIVfca Vif has
a potent and broader ability to counteract the anti-viral
actions of various feline APOBEC3 proteins. In this
regard, it is known that a predator-prey system is one of
the triggers leading to the interspecies transmission of
viruses (52). In fact, previous studies have reported that
pumas and domestic cats are sympatric in North
America and share certain pathogens such as feline
leukemia virus (53, 54), strongly supporting the
possibility that FIVfca-infected domestic cats can be
puma’s prey and that FIVfca can be transmitted to puma.

In summary, our observations suggest that the
evolutionary interplay between viruses and hosts,
particularly Vif and APOBEC3, is more complicated
than expected. Clarifying the interplay between lentiviral
Vif and mammalian APOBEC3 may a provide clues to
elucidating the evolutionary bottleneck of emerging/re-
emerging viruses, including lentiviruses.
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