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Calibrating random forests for
probability estimation
Theresa Dankowskia and Andreas Zieglera,b,c,d*†

Probabilities can be consistently estimated using random forests. It is, however, unclear how random forests
should be updated to make predictions for other centers or at different time points. In this work, we present
two approaches for updating random forests for probability estimation. The first method has been proposed by
Elkan and may be used for updating any machine learning approach yielding consistent probabilities, so-called
probability machines. The second approach is a new strategy specifically developed for random forests. Using
the terminal nodes, which represent conditional probabilities, the random forest is first translated to logistic
regression models. These are, in turn, used for re-calibration. The two updating strategies were compared in a
simulation study and are illustrated with data from the German Stroke Study Collaboration. In most simulation
scenarios, both methods led to similar improvements. In the simulation scenario in which the stricter assump-
tions of Elkan’s method were not met, the logistic regression-based re-calibration approach for random forests
outperformed Elkan’s method. It also performed better on the stroke data than Elkan’s method. The strength of
Elkan’s method is its general applicability to any probability machine. However, if the strict assumptions under-
lying this approach are not met, the logistic regression-based approach is preferable for updating random forests
for probability estimation. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
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1. Introduction

Accurate estimation of outcome probabilities for individuals is important in medical practice. Appli-
cations are, for example, diagnosis, decision on therapy, or prognosis. If a predictive model is applied
in other centers or at different time points, it is necessary to assess its generalizability, that is, its abil-
ity to provide accurate predictions in a new sample of patients [1]. Validation data may also be used
to update the model, thus to improve its predictive performance in the new sample. Effective updating
strategies are available for logistic regression, which is the standard approach for probability estimation.
One such approach is re-calibration. Here, the intercept of the logistic regression model is re-estimated,
while the other coefficients are kept unchanged [2]. This means that we understand calibration as a way
to correct too low or too high predicted probabilities [1], not to find a mapping from score vectors to
probability vectors [3]. To guarantee consistent probability estimates, the logistic regression model needs
to be correctly specified. The correct model specification is, however, challenging in case of nonlinear
effects, high-dimensional data, and collinearity between independent variables. One approach to over-
come these challenges is the use of nonparametric machine learning methods, such as random forests for
probability estimation.
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Random forests were introduced by Breiman for classification problems [4], and they are an extension
of classification and regression trees (CART) [5]. Advantages of the CART algorithm are its simple
interpretation, implementation, and application. However, random forests are generally preferable over
CART. For specific versions of random forests, it has been shown that the variance of random forests is
smaller than the variance of a single tree [6]. Random forests can also have a faster convergence rate than
single CART [6]. The convergence rate of random forests may even be faster than the standard minimax
rate of nonparametric regression [7]. Finally, and most importantly for probability estimation, random
forests allow consistent estimation of individual probabilities [8, 9], while probability estimation trees
generally yield biased estimates [10].

It is, however, unclear how random forests for probability estimation should be updated to another pop-
ulation or a more recent time period. One approach for updating probability estimates has been described
by Elkan [11]. This method can be applied to any probability machine, that is, any machine learning
method yielding consistent individual probability estimates. The broad applicability of this approach
comes at the cost of strict assumptions regarding the distribution of the covariates in the data sets used
for model development and updating.

In this work, we propose a logistic regression-based updating approach for random forests, which
has weaker assumptions than Elkan’s approach. A random forest is estimated first and next translated to
logistic regression models. These estimates are then updated using re-calibration for logistic regression.
We compare the two updating strategies in a simulation study and illustrate their usage with data from
the German Stroke Study Collaboration.

2. Random forests for probability estimation

Random forests are generated by drawing bootstrap samples from the original data, and one tree is built
from each bootstrap sample. A tree is constructed by introducing recursive binary splits to the data based
on the covariates. To lower the correlation between trees, not all covariates are made available at all nodes
for splitting. Only a subset of covariates of predefined size mtry is randomly selected at each node.
At each parent node, the data are split into exactly two child nodes using the covariate minimizing the
variances within child nodes and maximizing the variance between the two child nodes. The tree-building
process is stopped when the sample size in a terminal node is below a predefined threshold [8, 12]. In
contrast to the CART algorithm, trees of a random forest are not pruned back.

Class probabilities for a terminal node are estimated by the relative frequency of the class of interest
in that terminal node. If, for example, a terminal node contains six cases and two control individuals, the
probability estimate for being a case is 6∕8 = 75% in that terminal node. The probability estimate of the
tree for a new subject is the class probability of the corresponding terminal node. Results are aggregated
for the random forest by averaging the probability estimates for the new subject over all trees.

The approach that trees are not grown to purity, that is, until all terminal nodes contain only observa-
tions of one class, differs from Breiman’s original random forest algorithm for classification, in which
trees are grown to purity of the terminal nodes. However, the convergence properties of random forests
depend on a proper balance between terminal node size and sample size [13–15]. Thus, trees should not
be grown to purity. In fact, if nodes are pure, the probability estimate is either 0 or 1 in a terminal node
[16]. As a result, a larger number of trees might be required to obtain consistent probability estimates. If
trees are too small, probability estimates might be imprecise [12]. Therefore, as a default value, the ter-
minal node size is generally 10% of the total sample size. Alternatively, the optimal terminal node size
may be tuned [12].

The performance of the random forest for probability estimation is generally measured using the Brier
score (BS), which is the mean-squared difference between patient status and predicted probability [17].
It thus measures the same characteristics as the mean-squared error (MSE) measures for a continuous
forecast. The BS is estimated by B̂S = 1

n

∑n
i=1

(
yi − P̂

(
yi = 1

))2
for a dichotomous outcome yi with

i = 1,… , n independent observations. The statistical properties of the BS have been studied recently.
For example, it has been shown that the BS is a proper score, that is, it cannot be improved by system-
atically predicting probability values other than the best estimate [18]. Furthermore, it can be estimated
consistently if the probabilities are estimated consistently [8]. Finally, the sampling variances of BS have
been derived [19]. Because coverage probabilities of the corresponding asymptotic confidence intervals
showed deficiencies [19], we prefer the use of bootstrapped confidence intervals for the BS.
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3. Updating methods

3.1. Elkan’s general updating approach for probability estimates

Elkan [11] proposed a general approach for updating probability estimates for a binary outcome y to a
population with a different unconditional event probability, termed base rate. Let b = P(y = 1) be the
base rate in the population on which the model has been developed and assume the availability of a model
for which the probabilities P(y = 1|x) can be estimated for observations with characteristics x. In order
to obtain updated probability estimates P′(y = 1|x) for observations from another population with base
rate b′ = P′(y = 1), it is assumed that the change in the base rate is the only difference between the two
populations. In particular, it is assumed that the distribution of individual characteristics stays the same in
both classes, that is, P(x|y = 0) = P′(x|y = 0) and P(x|y = 1) = P′(x|y = 1). Under these assumptions,
P′(y = 1|x) can be expressed as a function of P(y = 1|x), b and b′ [11]

P′(y = 1|x) = b′P(y = 1|x) − bb′P(y = 1|x)
b′P(y = 1|x) + b − bP(y = 1|x) − bb′

. (1)

If both base rates are known or estimates are available for the base rates, the formula may be
easily applied.

Because no assumptions are made regarding the probability machine, Elkan’s [11] approach can be
used for updating probability estimates from any method, in particular, from random forests. However,
the applicability of Elkan’s approach is limited by the assumption of equal covariate distributions in
both data sets. If the covariate distributions are unequal, Elkan’s approach (1) might lead to inconsistent
probability estimates after calibration. Suppose, for example, that the probability for an event is higher
in the population for calibration than in the development population for equal values of the covariates.
If the covariate distributions are equal in both populations, base rate b′ > b, and Elkan’s method gives
updated probabilities P′(y = 1|x) > P(y = 1|x) as expected. However, if values of the covariates with
lower event probabilities are more frequent in the population for calibration, this may lead to base rates
b′ < b. In this case, Elkan’s approach yields lower calibrated probabilities P′(y = 1|x) < P(y = 1|x),
although they should be higher. Again, the reason is that only the base rates are taken into account and
not the actual covariate values.

3.2. Logistic regression-based approach for updating random forests for probability estimation

In this section, we propose an updating approach that has been specifically tailored for random forests.
It borrows from re-calibration for logistic regression [2]. In brief, the procedure is a four-step approach,
where in the first step, a random forest is grown as described in Section 2. In the second step, each tree of
the random forest is translated so that a logistic regression model can be fitted for each tree. In the third
step, a logistic regression model is estimated for each tree. In the final step, each fitted logistic regression
model is re-calibrated. We now describe this procedure in greater detail.

The core of the approach is that each tree of the random forest is translated into a logistic regression
model. We illustrate the transformation for a single tree using the following simple example. Suppose
we are interested in estimating the probability for the dichotomous outcome y given covariates x1 and
x2, and a random forest has been built. An example tree having terminal nodes t1, t2, and t3 is displayed
in Figure 1.

For each terminal node, the probability estimate of the tree is the relative frequencies of subjects hav-
ing the event in that terminal node. For example, for terminal node t1, the conditional probability to be
estimated is

P(y = 1|x1 ⩽ c1, x2 ⩽ c2) ,

where c1 and c2 are the split points in the tree.
The conditional probabilities can be estimated using a logistic regression model. To this end, a dummy

variable is generated for each terminal node to indicate whether a subject resides in this terminal node
or not. Specifically, a dummy variable d1 is created for the terminal node t1, and this dummy variable
takes values

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3949–3960
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Figure 1. Example of a probability estimation tree for a dichotomous outcome y given covariates x1 and x2. Split
points are c1 and c2, and the terminal nodes are labeled t1, t2, and t3.

d1 =
{

1 if x1 ⩽ c1, x2 ⩽ c2
0 else .

Dummy variables d2 and d3 are defined for terminal nodes t2 and t3 accordingly:

d2 =
{

1 if x1 ⩽ c1, x2 > c2
0 else

and d3 =
{

1 if x1 > c1
0 else

.

One of the three dummy variables d1, d2, d3 is taken as reference category, and we recommend choosing
the one with the largest terminal node size. For each former tree, a logistic regression model is fitted, and
the logistic regression model to be fitted for this tree is logit P(y = 1|d1, d2) = 𝛼 + 𝛽1d1 + 𝛽2d2 if d3 is
used as reference category. The logistic regression model can be fitted either using the bootstrap sample
drawn for this tree or using the entire training data. However, the results can be expected to be similar
because the diversity of the models is already obtained from the bootstrap samples used for creating the
random forest. We therefore decided to fit the logistic regression model on the entire training data for
sake of simplicity. The conditional probabilities can be obtained for each terminal node from this logistic
regression model.

All trees of the random forest are translated to a logistic regression model in the same way. The random
forest can then be updated to a calibration data set by updating each of the logistic regression models
using re-calibration. For re-calibration, the intercept of the logistic regression model is re-estimated, while
the other coefficients are kept unchanged [2]. One assumption underlying this re-calibration procedure
is that the relative strength of the predictor variables is approximately similar in the two data sets. This
means that the relative strength of combinations of variables represented by the dummy variables is
approximately similar in both data sets. The procedure is summarized in Figure 2.

3.3. On the theoretical foundation of the two updating approaches

The mathematical basis for the validity of the two approaches differ: Elkan’s approach relies on a for-
mal argument using the Bayes formula. In contrast, the logistic regression-based updating approach
makes use of the fact that each terminal node represents a conditional probability, which can be
estimated using logistic regression by providing the appropriate covariate. The idea of translat-
ing trees into a different form to obtain further improvements has been used before. For example,
Seyedhosseini et al. [20] proposed to write the single trees as disjunctive normal forms. These can be
optimized and result in disjunctive normal random forests with an improved performance compared with
conventional random forests.

4. Simulation study

4.1. Data generation

To compare the two calibration methods in a simulation study, data were generated from two populations
with different disease prevalences. Data from the first population were used for model building, and they
are termed model-building data. Data from the second population were split into training data and test
data. These are named cal-training data and cal-test data, respectively.
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Figure 2. Steps in logistic regression-based updating approach for random forests.

Data sets were generated by means of logistic regression models. Covariates x1,… , xp were generated
according to predefined probability distributions. Regression coefficients 𝛽1,… , 𝛽p and the intercept 𝛼
were set to specific values. With these values, the probability for a positive event was estimated using the
logistic regression model

logit P
(
y = 1|x1,… , xp

)
= 𝛼 + 𝛽1x1 +…+ 𝛽pxp .

The class of the outcome variable y was then assigned using a Bernoulli distribution with the previously
calculated probability for a positive event.

In this simulation study, nine different scenarios were considered. In all simulation scenarios, the inter-
cept was set to 0 for the model-building data, and the intercept was set to 1 for the calibration data sets.
The settings are summarized in Table I. Continuous variables were generated according to a standard
normal distribution, except for simulation scenarios 6 an 7. In these scenarios, the distribution of the con-
tinuous variable differed between the model-building data and the calibration data. The five categorical
variables in simulation scenarios 3 and 4 had k = 2, 2, 3, 4, 5 equally probable categories. The regression
coefficients were identical in the model-building data and the calibration data sets for all covariates in
simulation scenarios 1–7. In simulation scenarios 8 and 9, the regression coefficient was 1 in the model-
building data. In the calibration data sets, the regression coefficients were 2 and 3, respectively. Noise
variables without influence on the outcome were only simulated in simulation scenarios 2 and 4. They
were continuous and generated from a standard normal distribution. In all simulation scenarios except
simulation scenario 5, the number of observations in the model-building data, the cal-training data, and
the cal-test data was 1000 each. In scenario 5, the cal-training data set was smaller and comprised only
100 observations. One hundred replications were generated for each simulation scenario.

For all random forests, 200 trees were grown with a terminal node size of 10% of the total sample size.
Default settings were used for all other parameters. First, a random forest for probability estimation was
grown using the model-building data (RF). Second, the RF was translated to logistic regression models,
which were fitted using the model-building data (RF + LogReg). These were then updated by re-
estimating the intercept [2] using the cal-training data (RF + LogReg + Cal). Fourth, the probability
estimates of RF were updated using Elkan’s method with base rates calculated from the model-building
data and the cal-training data (RF + CalElkan). Fifth, a random forest for probability estimation was
grown using the cal-training data (RF onCalData). Sixth, a logistic regression model was fitted using
the model-building data and re-calibrated using the cal-training data (LogReg + Cal). All models
were compared on the cal-test data. We used the statistical software R for analysis [21] and the R package
ranger for building the random forests [22].

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3949–3960
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Table I. Main settings in the simulation scenarios.

Scenario Cont Cat Noise Distinctive feature

1 2 0 0 –
2∗ 2 0 8 –
3∗ 5 5 0 –
4 5 5 90 –
5 2 0 0 Smaller calibration data set for training
6 1 0 0 Unequal covariate distribution: MB N(0, 1), Cal N(−0.75, 0.5)
7 1 0 0 Unequal covariate distribution: MB N(1, 1), Cal N(−1, 1)
8 1 0 0 Unequal coefficients: MB 𝛽 = 1, Cal 𝛽 = 2
9 1 0 0 Unequal coefficients: MB 𝛽 = 1, Cal 𝛽 = 3

Cont, number of continuous covariates; Cat, number of categorical covariates; Noise, number of noise
variables; MB, model-building data; Cal, calibration data; Distinctive feature, additional distinctive
feature, if applicable.
∗Results shown in Supporting Information.

Figure 3. True versus predicted probabilities for simulation scenario 1. RF: random forest built on model-
building data; RF + LogReg: RF translated to logistic regression models; RF + LogReg + Cal: RF +
LogReg updated using re-calibration; RF + CalElkan: probabilities from RF updated using Elkan’s method;
RF onCalData: random forest built on cal-training data; LogReg + Cal: logistic regression fitted using

model-building data and updated using re-calibration.

4.2. Results

Figure 3 displays true versus predicted probabilities for simulation scenario 1. First of all, we note that
both random forest-based calibration approaches work. As expected, random forests did not perform as
good as logistic regression because data were generated according to a logistic regression model with
linear main effects only without interactions. However, for other simulated data sets, random forests
outperformed logistic regression [9]. One such example is data generated according to the Mease [23]
model (Figure S1).

Elkan’s method and the logistic regression-based approach decreased the MSE in simulation scenario
1 compared with the initial random forest (Figure 4). The MSEs were comparable. Results were similar
for simulation scenarios 2 and 3 (Figure S9) and for the random forest-based approaches in simulation
scenario 4. The re-calibrated logistic regression performed worse in simulation scenario 4, in which
many noise variables were present. In scenarios 1–4, the covariate distributions and coefficients were
identical in the model-building data and the calibration data. In simulation scenarios 1–4, the MSEs of
both updating approaches were similar to the MSE of the random forest built on the cal-training data.
However, in simulation scenario 5, both updating approaches performed better than the random forest
built on the cal-training data (Figure 5) because the cal-training data were substantially smaller than in
the other simulation scenarios.
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Figure 4. Mean-squared errors between true and predicted probabilities in the simulation study. RF: random for-
est built on model-building data; RF + LogReg: RF translated to logistic regression models; RF + LogReg
+ Cal: RF + LogReg updated using re-calibration; RF + CalElkan: probabilities from RF updated
using Elkan’s method; RF onCalData: random forest built on cal-training data; LogReg + Cal: logistic

regression fitted using model-building data and updated using re-calibration.

Figure 5. Mean-squared errors between true and predicted probabilities in simulation scenario 5, where the cali-
bration data for training were substantially smaller than in the other simulation scenarios. RF: random forest built
on model-building data;RF + LogReg:RF translated to logistic regression models;RF + LogReg + Cal:
RF + LogReg updated using re-calibration; RF + CalElkan: probabilities from RF updated using Elkan’s
method; RF onCalData: random forest built on cal-training data; LogReg + Cal: logistic regression fitted

using model-building data and updated using re-calibration.

Figure 6 displays true versus predicted probability estimates and shows that Elkan’s method did not
adequately update probabilities in simulation scenario 6. Figure 4 depicts the corresponding MSEs, which
are substantially larger for Elkan’s method than the MSE for the logistic regression-based re-calibration
approach. In fact, the covariate distribution was unequal for the model-building data and calibration
data in simulation scenario 6. The assumptions underlying Elkan’s method were thus not met. Unequal
covariate distributions were also generated in simulation scenario 7. However, the ranges of the covariate
differed substantially between both data sets in this extreme scenario. As a result, Elkan’s method failed
in this simulation scenario 7. The probability estimates updated using Elkan’s method were even further
away from the ideal line than the probability estimates of the initial random forest (Figure S6). The logistic
regression-based updating approach seemed to perform well. However, for some trees, the corresponding
logistic regressions did not converge in this extreme scenario. The MSEs for the logistic regression-
based updating approach and the random forest built on the cal-training data were similar for simulation
scenarios 6 and 7.

Finally, the effect sizes of the covariate differed between the model-building data and the calibration
data in simulation scenarios 8 and 9. Both updating approaches for random forest and the re-calibrated
logistic regression did not perform as good as the random forest built on the cal-training data. However,

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3949–3960
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Figure 6. True versus predicted probabilities for simulation scenario 6. RF: random forest built on model-
building data; RF + LogReg: RF translated to logistic regression models; RF + LogReg + Cal: RF +
LogReg updated using re-calibration; RF + CalElkan: probabilities from RF updated using Elkan’s method;
RF onCalData: random forest built on cal-training data; LogReg + Cal: logistic regression fitted using

model-building data and updated using re-calibration.

the difference was moderate in simulation scenario 8, and it was substantially larger in simulation scenario
9. Here, the effect size varied considerably between the model-building and the calibration data sets.

For sensitivity analysis, we performed the same analyses with random forests grown with a terminal
node size of 5% and 15% of the total sample size. Results were comparable (Figures S10 and S11).

5. Real data analysis: predicting functional outcome after stroke

The two updating approaches were also applied to real data for prognosis 90 days after stroke. The
study has been described in detail elsewhere [24–26]. In brief, the training data comprising 1754 subjects
with ischemic stroke was prospectively collected from 23 neurology departments in 1998 and 1999. All
participating hospitals had an acute stroke unit. Patients for validation were enrolled during 2001 and
2002. Nine hospitals participated in the validation study only, allowing for a combined temporal and
external validation in a sample of 874 patients. Four additional hospitals also participated in the initial
study, and these provided data for temporal validation from 596 patients. Patients were informed about
study participation, and all patients gave informed consent if their personal data were to be transferred
to the data management center. The study was approved by the Ethics Committee of the University of
Essen, Germany. Prior to analysis, missing values were imputed using mean or mode imputation.

The aim was to construct a model for complete restitution versus incomplete restitution or mortality.
The Barthel index (BI) [27] assesses functional independence. It measures individual abilities related to
feeding, dressing, mobility, and personal hygiene. Complete restitution was assumed for individuals with
BI ⩾ 95 and incomplete restitution for individuals with BI < 95. As before [24], we used all 34 variables
for prediction that were available for the training data and the validation data. Descriptive statistics of
the variables that were previously identified by logistic regression models using the same data [25] are
summarized in Table II. This table indicates that the distribution differs between the training data and the
temporal and external validation data for some covariates, such as fever.

A random forest for probability estimation was built using the stroke training data. The number of
trees ntree was set to 200, the terminal node size nodesize was set to 10%, and the number of vari-
ables available for splitting at a node was set to mtry = 9. Default settings were used for all other
parameters. We used 10-fold cross-validation when we updated the random forest to the validation data
for both random forest-based re-calibration methods. Specifically, we compared the probability predic-
tions for the validation data of the initial random forest (RF), the random forest updated using Elkan’s
method (RF + CalElkan), and the random forest updated using the logistic regression-based approach
(RF + LogReg + Cal). Calibration curves were used for evaluation. To this end, the average
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Table II. Patient characteristics in the stroke data. n (%) are displayed for dichotomous variables,
mean and standard deviation (SD) for continuous variables.

Variable Training data Temporal validation External validation

Barthel index after 90 days: ⩾ 95 1025 (58.4%) 337 (56.5%) 494 (56.5%)
Survival after 90 days: Yes 1588 (90.5%) 546 (91.6%) 811 (92.8%)
Prior stroke: Yes 353 (20.1%) 137 (23.0%) 172 (19.7%)
Diabetes mellitus: Yes 436 (24.9%) 165 (27.7%) 229 (26.2%)
Lenticulostriate arteries infarction: Yes 188 (10.7%) 31 (5.2%) 64 (7.3%)
Fever: Yes 220 (12.5%) 51 (8.6%) 54 (6.2%)
Neurological complications: Yes 73 (4.2%) 26 (4.4%) 37 (4.2%)
Gender: Female 716 (40.8%) 270 (45.3%) 357 (40.8%)

Age at event (in years) 68.1 (12.7) 68.0 (12.4) 67.8 (12.4)
NIHSS left arm 0.6 (1.2) 0.6 (1.1) 0.6 (1.2)
NIHSS right arm 0.7 (1.2) 0.5 (1.1) 0.6 (1.1)
NIHSS total score 6.9 (6.2) 6.1 (5.7) 6.6 (6.1)
Rankin Scalea 3.1 (1.4) 2.4 (1.6) 2.5 (1.6)

NIHSS: National Institutes of Health Stroke Scale.
aOverall functional impairments as rated on the Modified Rankin Scale 48–72 h after admission.

Figure 7. Calibration curves for external stroke validation data. RF: random forest built on training data; RF +
CalElkan: probabilities from RF updated using Elkan’s method; RF + LogReg + Cal: RF translated to

logistic regression models and updated using re-calibration.

number of observations per group was set to 50 for grouped proportions. The analyses were carried out
using R [21], the R package ranger for building the random forests [22] and the R package rms for
plotting the calibration curves [28].

The probability estimates of the random forest updated using the logistic regression-based updating
approach were closer to the ideal line than the probability estimates from the initial random forest and
the probability estimates updated by Elkan’s method for the external validation data (Figure 7). The
Brier score with 95% bootstrap confidence intervals (in brackets) after 2000 bootstrap draws was 0.169
[0.154; 0.183] for the probability estimates of the initial random forest. It was slightly decreased to 0.167
[0.153; 0.181] by updating using Elkan’s method, and it was lowered to 0.163 [0.151; 0.176] for the
probability estimates updated using the logistic regression-based approach.

These findings were confirmed by the temporal validation data (Figure S12). The Brier scores were
0.157 [0.140; 0.174] for the initial random forest, 0.156 [0.138; 0.172] for Elkan’s method, and 0.150
[0.135; 0.164] for the logistic regression-based updating approach. The calibration curves for a logis-
tic regression and a re-calibrated logistic regression model (Figures S13 and S14) look similar to the
calibration curves for the initial random forest and the random forest updated using the logistic
regression-based approach.

© 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. Statist. Med. 2016, 35 3949–3960
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6. Discussion

Elkan’s method for updating random forests and the logistic regression-based updating approach for ran-
dom forests are both valid for re-calibration. The latter method is preferable to Elkan’s method when the
covariate distribution is unequal in the two data sets. This became apparent in simulation scenario 6 as
well as in the real data analysis. In the real data example, some covariates differed in their distribution
between the training and the validation data, and the calibration curves and Brier scores indicated a bet-
ter performance of the logistic regression-based approach than of Elkan’s method. In simulation scenario
6, the probability estimates updated using Elkan’s method were worse compared with the probability
estimates updated using the logistic regression-based updating approach. In this simulation scenario, the
covariate distribution differed between the model-building data and the calibration data. Elkan’s method
only takes the base rates into account, and this may explain the differences. For equally distributed covari-
ates, the base rate in the calibration data would have been larger than in the model-building data. However,
in simulation scenario 6, the model-building data had a higher frequency of covariate values with higher
event probabilities than the calibration data. As a result, the difference in base rates was smaller, and the
probability estimates were not adequately calibrated using Elkan’s approach.

Updating an existing predictive model is advantageous compared with completely new estimation if
only a small data set is available for calibration. Both approaches performed similarly in this case, and
both re-calibration methods performed well (Figure 5). One reason for this is that information from the
model-building data is still used in addition to the calibration data set. This is especially meaningful if
only a small calibration data set is available [2, 29]. However, updating a previously developed model
is not always possible. Especially if a large calibration data set is available, it might be better to discard
a poorly performing model [2, 30]. Compared with the use of both updating approaches, it might also
be preferable to completely re-estimate a model if the relative strength of the predictor variables varies
considerably between the training and the calibration data sets (simulation scenario 9).

Once the logistic regressions have been fitted, the set of logistic regressions can be converted back to
a random forest. Each logistic regression was estimated on the basis of a single tree in the random forest.
The class probability of each terminal node obtained from the logistic regression is used as new class
probability for that terminal node in the tree. This conversion of the logistic regression back to a random
forest might save computation time for probability estimation because subjects just need to be dropped
down a tree to obtain the final estimate in a tree.

Our simulation studies have several limitations. Specifically, we neither investigated the effect of the
terminal node size on the performance of the two re-calibration methods comprehensively, nor the effect
of the number of trees nor the number of variables available for splitting at a parent node in the random
forest. In fact, the terminal node size could be tuned as described elsewhere [12]. Similarly, the optimal
number of covariates available for splitting could be tuned [31]. Finally, the optimal number of trees
could be determined in a two-step procedure [32]. However, all these approaches are computer processor
time-intensive. For sensitivity analysis, we repeated the analysis with two different terminal node sizes
yielding similar results. Furthermore, the simulation studies have demonstrated that both approaches for
re-calibrating random forests are valid if the underlying assumptions are met.

For both the simulated data and the stroke data, it was reasonable to use re-calibration for updating the
logistic regression models of the translated random forests. This approach relies on the assumption that
the effect of predictors is approximately similar in the model-building and calibration data. More exten-
sive updating strategies, allowing for adjustments of relative effects, relax this assumption [2]. However,
for the simulated data and the stroke data, it was plausible to assume similar effects of the predictors in
the two data sets. We stress that re-calibration is especially useful if only a small data set is available for
calibration. In this case, more extensive updating approaches may even harm predictive performance [2].

In summary, we have proposed a new logistic regression-based updating approach for random forests
for probability estimation that has weaker assumptions than Elkan’s method. Elkan’s approach has the
advantage that it can be applied to any probability machine. In contrast, the logistic regression-based
approach is especially designed for updating random forests for probability estimation. Both approaches
are simple to implement in standard software packages. R code is available in the Supporting Information
so that both methods can be used in applications.
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