JOURNAL OF CLINICAL ONCOLOGY

Extramedullary Disease in Adult Acute Myeloid Leukemia Is Common but Lacks Independent Significance: Analysis of Patients in ECOG-ACRIN Cancer Research Group Trials, 1980-2008

Chezi Ganzel, Judith Manola, Dan Douer, Jacob M. Rowe, Hugo F. Fernandez, Elisabeth M. Paietta, Mark R. Litzow, Ju-Whei Lee, Selina M. Luger, Hillard M. Lazarus, Larry D. Cripe, and Martin S. Tallman

ABSTRA

C

Т

Author affiliations appear at the end of this article.

Published online ahead of print at www.jco.org on August 29, 2016.

Written on behalf of the ECOG-ACRIN Cancer Research Group.

Supported by Grants No. CA180820, CA21115, CA180794, CA23318, CA66636, CA17145, CA49883, CA73590, CA13650, CA15488, CA14548, CA14958, CA180791, CA189859, CA180853, CA180790, and CA180795 from the National Cancer Institute of the National Institutes of Health.

Presented as an oral abstract at the American Society of Hematology annual meeting, New Orleans, LA, December 7-10, 2013.

The content of this study is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health, nor does mention of trade names, commercial products, or organizations imply endorsement by the US government.

Authors' disclosures of potential conflicts of interest are found in the article online at www.jco.org. Author contributions are found at the end of this article.

Corresponding author: Chezi Ganzel, MD, Hematology Department, Shaare Zedek Medical Center, Byte. 12, Jerusalem, Israel 91031; e-mail: ganzelc@szmc.org.il.

© 2016 by American Society of Clinical Oncology

0732-183X/16/3429w-3544w/\$20.00

DOI: 10.1200/JCO.2016.67.5892

Purpose

Extramedullary disease (EMD) at diagnosis in patients with acute myeloid leukemia (AML) has been recognized for decades. Reported herein are results from a large study of patients with AML who were treated in consecutive ECOG-ACRIN Cancer Research Group frontline clinical trials in an attempt to define the incidence and clinical implications of EMD.

Methods

Patients with newly diagnosed AML, age 15 years and older, who were treated in 11 clinical trials, were studied to identify EMD, as defined by physical examination, laboratory findings, and imaging results.

Results

Of the 3,522 patients enrolled, 282 were excluded, including patients with acute promyelocytic leukemia, incorrect diagnosis, or no adequate assessment of EMD at baseline. The overall incidence of EMD was 23.7%. The sites involved were: lymph nodes (11.5%), spleen (7.3%), liver (5.3%), skin (4.5%), gingiva (4.4%), and CNS (1.1%). Most patients (65.3%) had only one site of EMD, 20.9% had two sites, 9.5% had three sites, and 3.4% had four sites.

The median overall survival was 1.035 years. In univariable analysis, the presence of any EMD (P = .005), skin involvement (P = .002), spleen (P < .001), and liver (P < .001), but not CNS (P = .34), nodal involvement (P = .94), and gingival hypertrophy (P = .24), was associated with a shorter overall survival. In contrast, in multivariable analysis, adjusted for known prognostic factors such as cytogenetic risk and WBC count, neither the presence of EMD nor the number of specific sites of EMD were independently prognostic.

Conclusion

This large study demonstrates that EMD at any site is common but is not an independent prognostic factor. Treatment decisions for patients with EMD should be made on the basis of recognized AML prognostic factors, irrespective of the presence of EMD.

J Clin Oncol 34:3544-3553. @ 2016 by American Society of Clinical Oncology

INTRODUCTION

One of the known manifestations of acute myeloid leukemia (AML) is extramedullary disease (EMD). The overall incidence of EMD reported in the literature is not clearly established, ranging from $2.5\%^1$ to 30%,² and varies among different types of AML; patients with monocytic AML³ and those with t(8;21)^{4,5} have a relatively higher incidence. The prognostic impact of EMD is unfavorable in some reports^{2,5} but not in others.⁶⁻⁸ Reports on the prognosis of specific EMD sites, such as the CNS, are also contradictory.^{9,10}

The current analysis evaluated a large cohort of patients with newly diagnosed AML from 11 consecutive clinical trials conducted by the ECOG-ACRIN Cancer Research Group.¹¹⁻²⁰ The objectives were to describe the demographic, clinical, and biologic characteristics of patients with newly diagnosed AML with EMD and to evaluate how the presence, extent, and characteristics of EMD may affect response to treatment and outcome.

		Table 1. A	Acute Myeloid Leukemia Protocols In	cluded in the Analysis		
Protocol No.	Clinical Trial Phase	Induction	Consolidation	Maintenance	Activation- Termination Dates	Final Accrual (patients included)
E1479 ¹¹	111	One or two courses of: dauno 60 mg/m ² /d, days 1-3; ARA-C 25 mg/m ² IV push followed by continuous IV 200 mg/m ² /d, days 1-5; and PO 6-TG 100 mg/m ² \times 2/d, days 1-5 (DAT).	Randomly assigned to either: a) two courses of consolidation therapy followed by maintenance, or b) begin maintenance immediately. A consolidation course consisted of dauno 45 mg/m ² , days 1 and 2; ARA-C 100 mg/m ² IV push; and PO 6-TG 100 mg/m ² × 2/d, days 1-5.	PO 6-TG 40 mg/m ² \times 2/d, 4 days, followed by SC ARA-C 60 mg/m ² on the fifth day. Duration: 2 years.	Feb 1980 to Apr 1982	318 (289)
E3480 ¹⁵	111	One or two courses of either: a) full DAT (above), or b) attenuated- dose DAT: dauno 50 mg/m ² /d on day 1, SC ARA-C 100 mg/m ² \times 2/d, days 1-5 and PO 6-TG 100 mg/m ² \times 2/d, days 1-5.		PO 6-TG 40 mg/m ² \times 2/d, 4 days, followed by SC ARA-C 60 mg/m ² on the fifth day. Duration: 2 years.	Jul 1981 to Nov 1982	45 (39)
E3483 ¹²	III	One or two courses of DAT.	Age < 41 years plus HLA-matched sibling: alloBMT. Others were initially randomly assigned to one of three arms: a) observation, b) maintenance, or c) one course of consolidation. After interim analysis, the observation arm was closed. Consolidation therapy: IV ARA-C, 3 g/m ² over 1 hour × 2/d, days 1-6, followed by IV amsacrine, 100 mg/m ² /d, days 7-9.	PO 6-TG 40 mg/m ² × 2/d, for 4 days, followed by SC ARA-C 60 mg/m ² on the fifth day. Duration: 2 years.	Mar 1984 to Jan 1988	534 (445)
PC486 ¹³	II	One or two courses of DAT.	Patients in CR: a) age < 41 years and HLA identical sibling: alloBMT, and b) all others: autoBMT.		Apr 1987 to Apr 1990	123 (98)
E3489 ¹⁴	III	One or two courses of idarubicin 12 mg/m²/d, days 1-3; and ARA-C 25 mg/m² IV push, followed by continuous IV 100 mg/m²/d, days 1-7.	Idarubicin 12 mg/m ² /d, days 1 and 2; and ARA-C 25 mg/m ² IV push, followed by continuous IV 100 mg/m ² /d, days 1-5. a) Patients with an HLA-matched or single- mismatched family member: alloBMT. All others were randomly assigned to b) autoBMT, or c) a single course of IV ARA-C 3 g/m ² over 3 hours × 2/d, days 1-6.		Feb 1990 to Feb 1995	808 (753)
E1490 ¹⁶	111	One or two courses of dauno 60 mg/m ² /d, days 1-3; ARA-C 25 mg/m ² IV push followed by continuous IV 100 mg/m ² /d, days 1-7; plus GM-CSF <i>v</i> placebo from day 11.	A single course of IV ARA-C 1.5 g/m ² over 1 hour \times 2/d, days 1-6, plus GM-CSF ν placebo from day 11.		Sep 1990 to Nov 1992	124 (115)
E3993 ¹⁷	111	GM-CSF <i>v</i> placebo as priming, ARA-C continuous IV 100 mg/m ² /d, days 1-7. Patients were randomly assigned to receive either: a) dauno 45 mg/m ² /d, days 1-3; b) mitox 12 mg/m ² /d, days 1-3; or c) idarubicin 12 mg/m ² /d, days 1-3.	$\begin{array}{l} \mbox{Age} < 70 \mbox{ years: IV ARA-C} \\ 1.5 \mbox{ g/m}^2 \mbox{ over 1 hour } \times 2/d, \mbox{ days} \\ 1-6, \mbox{ plus GM-CSF from day 5}. \\ \mbox{ Age} > 70 \mbox{ years: IV ARA-C} \\ 1.5 \mbox{ g/m}^2 \mbox{ over 1 hour } \times 2/d, \mbox{ days} \\ 1-3, \mbox{ plus GM-CSF from day 5}. \end{array}$		Apr 1993 to Feb 1997	362 (343)
E4995 ²¹	II	Two cycles of: dauno 45 mg/m ² /d, days 1-3; ARA-C continuous IV 100 mg/m ² /d, days 1-7; and ARA-C 2 g/m ² over 75-90 min × 2/d, days 8-10.	Age < 51 years plus HLA-matched sibling: alloPBSCT. Others: two courses of ARA-C 3 g/m ² over 3 hours × 2/d, days 1, 3, 5, and then autoPBSCT.		Aug 1996 to Feb 1997	66 (59)
E3997 ¹⁸	II	Dauno 45 mg/m ² /d, days 1-3; ARA-C continuous IV 100 mg/m ² /d, days 1-7; and ARA-C 2 g/m ² over 60-90 min x 2/d, days 8-10 plus rhIL-11 and GM-CSF from days 11 to 12.	Two courses of: ARA-C 3g/m ² over 3 hours \times 2/d, days 1, 3, 5 plus rhIL-11 and GM-CSF from day 6.		Jun 1998 to Apr 1999	36 (35)
			(continued on following page	ge)		

Ganzel et al

Protocol No.	Clinical Trial Phase	Induction	Consolidation	Maintenance	Activation- Termination Dates	Final Accrua (patients included)
E3999 ¹⁹	111	One or two courses of dauno 45 mg/m²/d, days 1-3; ARA-C continuous IV 100 mg/m²/d, days 1-7; and zosuquidar v placebo.	1) ARA-C 1.5 g/m ² over 1 hour, days 1-6: age < 70 years, × 2/d; age > 70 years, × 1/d. 2) A course identical to the induction regimen, including either zosuguidar or placebo.		Jul 2002 to Sep 2005	449 (421)
E1900 ²⁰	III	Dauno 45 v 90 mg/m²/d, days 1-3; ARA-C continuous IV 100 mg/m²/d, days 1-7.	Unfavorable/intermediate risk cytogenetic profile or a WBC count > 100,000/ μ L at diagnosis plus HLA-matched sibling: alloHSCT. All others: 1) two courses of ARA-C 3 g/m ² over 3 hours × 2/d, days 1, 3, and 5; 2) random assignment: GO 6 mg/m ² ν no GO; and 3) autoHSCT.		Dec 2002 to Nov 2008	657 (644)

Abbreviations: allo, allogeneic; ARA-C, cytarabine; auto, autologous; BMT, bone marrow transplantation; CR, complete remission; d, day; DAT, daunorubicin plus ARA-C plus 6-TG; dauno, daunorubicin; GM-CSF, granulocyte-macrophage colony-stimulating factor; GO, gemtuzumab ozogamicin; HSCT, hematopoietic stem-cell transplantation; IV, intravenous; mitox, mitoxantrone; PBSCT, peripheral blood stem-cell transplantation; PO, orally; rhIL-11, recombinant human interleukin 11; SC, sub-cutaneous; 6-TG, thioguanine.

METHODS

Patient Population

Between 1980 and 2008, 3,522 patients age 15 years and older with untreated AML were enrolled in 11 consecutive, phase II and III, ECOG-ACRIN–led clinical trials.¹¹⁻²⁰ The treatment protocols, their activation dates, and accrual numbers are summarized in Table 1.

Patients were excluded from the current analysis if they had a diagnosis other than AML, had no documented EMD ascertainment at baseline, withdrew from the study before treatment had begun, or had no survival follow up. Patients with acute promyelocytic leukemia were included in the older AML studies but are excluded from the analysis as a result of the unique behavior and treatment of this disease. Each protocol was approved by an institutional review board. All patients signed a written informed consent.

Cytogenetic Risk Classification

Cytogenetic risk was classified as favorable, intermediate, unfavorable, or undetermined after central review by the ECOG-ACRIN Cytogenetics Committee, according to the definitions established by the Southwest Oncology Group and ECOG-ACRIN.²² The favorable risk category included patients with inv(16)/t(16;16)/del(16q) or t(8;21), with or without other chromosomal abnormalities. The intermediate risk category included patients characterized by +8; -Y; +6; del(9q); del(12p), or normal karyotype. The unfavorable risk category was defined by the presence of one or more of -5/del(5q); -7/del(7q); inv(3q)/t(3;3); deletion 20q or 21q; translocation involving 11q23, t(6;9); t(9;22); deletion 17p; or complex karyotype, defined as three or more chromosomal abnormalities. Minimal cytogenetic information was available for patients enrolled in the following earlier protocols: E1479, E1490, E3480, E3483, or PC486.

Flow Cytometry

The diagnosis of AML was confirmed by multiparameter flow cytometry for patients in protocols E3489, E1490, E3993, E3997, E4995, PC486, E3999, and E1900. Three adhesion molecules (CD11a, CD11b, and CD56) were evaluated for their association with EMD.

EMD Assessment and Treatment

In all 11 trials, bone marrow (BM) leukemic involvement was an eligibility criterion; thus patients with an isolated extramedullary myeloid

sarcoma without BM involvement are not included. The presence of EMD was recorded at baseline. EMD in these studies was defined clinically by physical examination and radiology without necessarily requiring a biopsy. A lumbar puncture (LP) was mandatory (five trials), recommended for patients with high blast count (two trials) or if CNS signs or symptoms were present (three trials).

The treatment of CNS involvement was on the basis of intrathecal methotrexate in seven trials, high-dose cytarabine in two trials where this was part of the induction protocol, or physician's choice.

Individual EMD sites were first evaluated as a whole group, then separately by site and finally, by classifying them as three organ-based subgroups: hematopoietic (lymph nodes [LNs], spleen, or liver), nonhematopoietic (skin or gingiva with or without EMD in hematopoietic sites), and rare areas of involvement (CNS, bone, lung, or myeloid sarcoma with or without EMD in previous sites).

Hematopoietic Stem-Cell Transplantation

Among the 11 studies, hematopoietic stem-cell transplantation (HSCT) was part of the treatment regimen in five (E3483, E3489, PC486, E4995, and E1900), and patients were classified according to the type of transplantation received. In most cases, HSCT was done as part of protocol treatment. However, if a patient's record had a definitive comment indicating that the patient received HSCT off-protocol, this information was applied. All other patients were classified as no transplantation.

Statistical Analysis

Descriptive statistics were used to characterize patients and their disease. A *t* test was used to explore potential differences in continuously parameterized disease and patient characteristics between patients with and without EMD. χ^2 tests or Fisher's exact tests were used to test for differences in categorical features. A two-sided *P* value of .05 was considered statistically significant for these tests.

Univariable analyses of potential prognostic factors were done. The method of Kaplan and Meier was used to estimate median overall survival (OS) within each prognostic category. Differences were assessed using a one-sided log-rank test. Cox proportional hazards models were used to examine the effect of one-unit increases in continuous variables on OS.

Multivariable models were built using backward selection. First, factors (or groups of factors) significant at the .10 level in univariable analyses were included in the model. Factors were dropped one at a time by comparing nested models using the Schwarz-Bayesian criterion and -2 log-likelihood. The final model is the one that minimized these criteria. To minimize the effect of missing data, indicator variables for missing values were included.

RESULTS

Incidence and Sites

Of the 3,522 enrolled patients, 282 were excluded, because of diagnosis of acute promyelocytic leukemia (n = 168) or

leukemia other than AML (n = 29), no EMD evaluation at baseline (n = 41), retrospective central review ineligibility (n = 24), or no survival data (n = 20). The overall incidence of EMD was 23.7% (769 of 3,240 patients). The involved sites were LNs, 11.5% (374 patients); spleen, 7.3% (238); liver, 5.3% (173); skin, 4.5% (146); gingiva, 4.4% (143); CNS, 1.1% (36); peripheral nervous system and myeloid sarcoma, 0.2% (8) each; and other sites, 1.1% (35). Most patients with EMD (n = 502, 65.3%) had only one site of EMD, 161 (20.9%) had two sites, 73

	Table 2. Pa	tient Characteristics:	: Categorical Factors				
	Patients Extramedull (n = 2	Without ary Disease 2,472)	Patien Extramedu (n =	its With Ilary Disease : 769)	Total (n = 3,240)		
Factor	No.	%	No.	%	No.	%	
Sex, <i>P</i> = .005							
Male	1,284	52.0	445	57.9	1,729	53.4	
Female	1,185	48.0	324	42.1	1,509	46.6	
Unknown	2		—		2		
Race/ethnicity, $P = .27$	0 100	00 F	670	00.0	0.070	00.4	
Hispanio	2,193	89.5	0/9	89.3	2,872	89.4	
Black	1/3	2.0 5.8	50	2.2	103	2.7	
Asian	20	0.8	2	0.0	22	0.0	
Other	26	1 1	12	1.6	38	12	
Unknown	20		9		29		
ECOG performance status, $P < .001$							
0	914	37.3	198	25.9	1,112	34.6	
1	1,194	48.7	387	50.5	1,581	49.2	
2	265	10.8	128	16.7	393	12.2	
3	67	2.7	40	5.2	107	3.3	
4	11	0.5	13	1.7	24	0.8	
Unknown	20		3		23		
FAB class, $P < .001$	50	0.0	7	0.0	<u></u>	0.0	
	56	2.3	/	0.9	63	2.0	
M1	489	19.9	116	15.1	605	18.8	
1012	630	28.0	127	10.0	010	25.3	
M5	166	20.0	299	39.0 15 Q	288	29.1	
M6	100	4 1	12	16	112	3.5	
M7	12	0.5			12	0.4	
RAEB-T	12	0.5	3	0.4	15	0.5	
AML, NOS	129	5.2	45	5.9	174	5.4	
Other	169	6.9	35	4.6	204	6.3	
Unknown	11		3		14		
Cytogenetics, $P = .61$							
Favorable	174	12.9	26	10.7	200	12.5	
Intermediate	492	36.3	84	34.4	576	36.1	
Unfavorable	316	23.3	59	24.2	375	23.5	
Undetermined	372	27.5	75	30.7	447	28.0	
Unknown Response to induction R 77	1,117		525		1,642		
CB	1 /72	60.0	451	59.0	1 923	59.7	
PB	3	0.1	401	0.1	1,525	0.1	
SD	687	28.0	227	29.7	914	28.4	
PD	131	5.3	34	4.4	165	5.1	
Unevaluable	161	6.6	52	6.8	213	6.6	
Unknown	17		4		21		
Underwent transplantation, $P = .07$							
No	1,614	82.1	538	85.3	2,152	82.8	
Yes	353	18.0	93	14.7	446	17.2	
Unknown	504		138		642		

Abbreviations: AML, acute myelogenous leukemia; CR, complete remission; ECOG, Eastern Cooperative Oncology Group; FAB, French-American-British; NOS, not otherwise specified; NR, not reached or not estimable; OS, overall survival; PD, progressive disease; PR, partial response; RAEB-T, refractory anemia with excessive blasts in transformation; SD, stable disease.

(9.5%) had three sites, 26 (3.4%) had four sites, and seven (0.9%) had five or six sites.

EMD Assessment

There were several versions of case report forms in use over the time interval, and the diagnosis method was characterized in four different ways. In general, multiple methods of diagnosis were not captured. Among 308 extramedullary sites identified for studies E1479 and E3480, 89.6% were identified by physical examination, 2.6% by biopsy, and 7.8% by other, which included x-ray, scan, or chemical means. For no other studies was there a distinction between physical examination and imaging as a basis for diagnosis. There were 92 distinct sites noted on study E3999, 94.6% by being clinically involved and 5.4% by being pathologically involved. For study E1900, no details about the method of diagnosis were captured. For all other studies, among 735 distinct sites, 92.9% were diagnosed clinically and 7.1% pathologically. Thus, the vast majority (> 90%) were diagnosed by physical examination rather than by biopsy, but the role of scans is unclear (Appendix Table A1, online only).

Characteristics of Patients With EMD

Patients with EMD, compared with those without EMD, were younger (median age, 45.7 v 52.9 years; P < .001) and males (57.9% v 52%; P = .006). They had a poorer performance status (PS; 76.4% with Eastern Cooperative Oncology Group PS 0-1 v 86%; P < .001) and higher WBC count (median, 41.6/µL v 10.2/µL; P < .001). The median percentage of blasts in the BM and in the peripheral blood was higher in the EMD group. Other characteristics did not differ significantly by EMD status (Tables 2 and 3).

FAB Category and EMD

The proportion of patients classified as French-American-British (FAB) M4 and M5 was higher among those with EMD (39% and 15.9%, respectively) compared with others (26% and 6.8%, respectively). In every EMD subgroup, the most common FAB category was M4 (approximately 40% of the patients in every subgroup, compared with 26% of the non-EMD patients). Among 815 patients with FAB M2, 15.6% had EMD and among the 98 patients with recorded t(8;21), only 10.2% had EMD.

Responses

The complete remission (CR) rate for all patients was 59.7% and was similar for patients with or without EMD (59% and 60%, respectively). The CR rate was similar for patients with individual EMD sites except for those with splenic and gingival involvement, who had a nonsignificant lower CR rate compared with the whole cohort (P = .06 and .08, respectively).

Survival

The median OS was 1.035 years. There were 2,625 deaths among the 3,240 patients included in the analysis. In univariable analysis (Table 4), EMD was associated with a shorter OS (P = .005; Fig 1A). Among individual EMD sites, the analysis revealed that skin (P = .002), spleen (P < .001; Fig 1B), and liver (P < .001), but not CNS (P = .34; Fig 1C), nodal involvement (P = .94), and gingival hypertrophy (P = .24), were associated with shorter OS.

A greater number of EMD-involved sites, both as a categorical variable (1 $\nu \ge 2$) and as a continuous variable, was negatively associated with OS (P = .002 and P < .001, respectively). Each additional site of EMD conferred a 9.5% increase in the risk of death. Among EMD subgroups (hematopoietic, nonhematopoietic, and rare), the rare areas of involvement had an OS advantage compared with the other two subgroups (median OS of 12.4 ν 11.2 and 10.9 months, respectively; P = .01).

Parameters associated with longer OS were good PS, female sex, M2 FAB category, favorable cytogenetic risk group, undergoing HSCT, achieving CR postinduction, younger age, later year of registration, lower WBC count at diagnosis, higher platelet count, and low percentage of blasts in the BM.

A multivariable model (Table 5) was constructed to examine the effect of EMD on OS after adjusting for known prognostic factors. Earlier year of registration, older age, high WBC count, low platelet count, worse PS (compared with Eastern Cooperative Oncology Group PS 0), high cytogenetic risk status, and not achieving a CR were associated with shorter OS. Neither the presence of EMD, the number of extramedullary sites, nor any EMD-specific site, including the CNS, contributed prognostic significance to the multivariable models.

			Table 3.	Patient Cha	racteristic	s at Bas	eline: Conti	nuous Facto	rs				
	No Extramedullary Disease						Extramedullary Disease			Total			
Factor	Р	No.	Mean	Median	SD	No.	Mean	Median	SD	No.	Mean	Median	SD
Age (years)	< .001	2,469	51.4	52.9	15.9	769	46.4	45.7	16.6	3,238	50.2	51.1	16.2
Hemoglobin (g/dL)	.001	2,448	9.2	9.1	2.1	754	9.5	9.4	2.3	3,202	9.2	9.2	2.1
Platelets	.90*	2,449	80.4	54.0	92.1	764	79.0	53.5	95.0	3,213	80.0	54.0	92.8
WBC	< .001*	2,459	25.2	8.6	39.4	765	52.4	31.7	65.1	3,224	31.6	12.0	48.2
Blasts, marrow (%)	< .001	2,287	61.2	63.0	24.9	699	69.6	76.0	24.4	2,986	63.1	68.0	25.0
Blasts, PB (%)	< .001	2,357	34.6	26.0	31.1	739	44.6	44.0	32.9	3,096	37.0	30.0	31.8
CD11a	.04	992	63.2	79.0	35.7	108	70.5	86.5	32.1	1,100	63.9	80.0	35.4
CD11b	< .001	1,175	24.8	9.0	32.0	133	38.2	29.0	36.0	1,308	26.1	10.0	32.6
CD56	.46	980	13.3	0.0	28.0	108	15.5	0.5	29.8	1,088	13.5	0.0	28.2

Abbreviations: PB, peripheral blood; SD, standard deviation.

*t test done on log-transformed values.

Extramedullary Disease in Newly Diagnosed Acute Myeloid Leukemia

	Table 4. U	Inivariate Analyses: Ove	erall Survival		
Categorical Variable	No.	No. of Deaths	Median OS (months)	95% CI (months)	Log-Rank P
EMD No Yes	2,471 769	1,972 653	12.7 11.3	12.1 to 13.7 10.4 to 12.8	.005
EMD category* Hematopoietic Nonhematopoietic Rare	398 208 164	329 183 141	10.9 11.2 12.4	9.8 to 12.9 9.4 to 12.9 10.3 to 14.8	.01
No. of EMD sites 0 1 2-5	2,471 502 267	1,972 420 233	12.7 12.2 10.2	12.1 to 13.7 10.6 to 13.5 9.2 to 12.0	.002
CNS involvement No Yes	3,204 36	2,593 32	12.4 10.5	11.9 to 13.1 7.2 to 17.7	.34
Liver involvement No Yes	3,067 173	2,470 155	12.6 9.7	12.0 to 13.3 8.1 to 11.9	< .001
Splenic involvement No Yes	3,002 238	2,418 207	12.7 9.5	12.1 to 13.4 7.8 to 11.2	< .001
Nodal involvement No Yes	2,866 374	2,317 308	12.5 11.3	11.9 to 13.2 10.2 to 13.5	.94
Skin involvement No Yes	3,094 146	2,496 129	12.6 10.1	12.0 to 13.4 8.1 to 12.3	.002
Gingival involvement No Yes	3,097 143	2,500 125	12.4 12.0	11.9 to 13.1 10.5 to 16.4	.24
Lung involvement No Yes	3,217 23	2,605 20	12.4 9.2	11.9 to 13.1 4.4 to 16.0	.34
Bone involvement No Yes	3,232 8	2,619 6	12.4 12.8	11.8 to 13.1 0.3 to NR	.92
Myeloid sarcoma No Yes	3,232 8	2,618 7	12.4 14.1	11.8 to 13.1 8.4 to 26.2	.93
No Yes	3,205 35	2,595 30	12.4 10.5	11.9 to 13.1 7.2 to 14.7	.29
Performance status 0 1 2-4	1,112 1,581 524	841 1,297 466	16.3 12.0 8.1	14.6 to 18.3 11.0 to 12.8 7.1 to 9.3	< .001
Sex Male Female	1,729 1,509	1,441 1,182	11.7 13.4	10.8 to 12.4 12.5 to 14.5	< .001
Race/ethnicity White Hispanic Black Asian Other	2,872 86 193 22 38	2,335 64 161 14 29	12.4 12.9 11.4 28.2 13.8	11.7 to 13.1 8.9 to 20.6 10.2 to 14.2 12.2 to NR 8.7 to 29.8	.17
FAB class (log-rank test for each class v all others) M0 M1 M2 M4 M5 M6 M7 Other	63 605 815 938 288 112 12 393	59 480 631 760 241 98 8 335	10.7 12.3 14.5 12.8 10.7 9.2 14.2 11.4	8.6 to 15.3 11.1 to 14.0 12.9 to 15.8 11.6 to 14.1 9.8 to 12.5 7.7 to 10.2 2.9 to NR 9.9 to 13.2	.03 .44 < .001 .50 .06 .009 .42 01
	(co	ontinued on following p	age)		

Categorical Variable	No.	No. of Deaths	Median OS (months)	95% CI (months)	Log-Rank <i>P</i>
Cytogenetic risk category					
Favorable	200	101	94.2	42.2 to 167.6	< .001
Intermediate	576	430	16.9	14.3 to 20.8	
Unfavorable	375	357	6.8	6.1 to 8.0	
Undetermined	447	376	11.0	9.9 to 12.9	
Received transplantation					
No	2,152	1,906	9.4	8.8 to 10.0	< .001
Yes	446	259	40.6	33.2 to 65.0	
Response to induction					
CR	1,923	1,393	22.3	20.7 to 24.0	< .001
PR	4	4	4.1	3.3 to NR	
SD	914	845	6.0	5.3 to 6.5	
PD	165	164	3.1	2.3 to 4.6	
Unevaluable	213	200	2.2	1.3 to 5.2	

NOTE. The No. of extramedullary sites was a continuous variable. Total No., 3,240; No. of deaths, 2,625; hazard ratio, 1.095; 95% Cl, 1.043 to 1.148; Wald P < .001. Abbreviations: CR, complete remission; EMD, extramedullary disease; FAB, French-American-British; NR, not reached or not estimable; OS, overall survival; PD, progressive disease; PR, partial response; SD, stable disease.

*EMD category: none = no site of EMD disease; hematopoietic = EMD in nodes, liver, spleen only; nonhematopoietic = EMD in skin or gingiva with or without EMD in hematopoietic sites; rare = CNS, bone, lung, or myeloid sarcoma with or without EMD in previous sites.

EMD Throughout the Years of Registration

The year of registration was found to be a significant statistical variable in most of the different multivariable models that were performed (P = .043 to < .001). Among patients registered before 2002, the presence of EMD did not affect OS. Patients enrolled before 1990 had median survival of approximately 12.5 months and it was 12.8 months among those enrolled between 1990 and 1999, regardless of EMD status. Among patients enrolled after 2002, survival continued to improve over time among patients without EMD (median survival, 14.1 months; P < .001), but not among patients with EMD (median survival, 8.3 months; P = .353). The negative impact of EMD on outcome was seen predominantly among older patients with EMD enrolled in E3999, but not with younger patients enrolled in E1900 during the same time period.

EMD and Cytogenetics

Cytogenetic data were available in 49% of the study cohort. Of these, 200 patients had known favorable cytogenetics, and EMD was present in only 26 patients (13%). No significant difference in OS was found between the groups, but the numbers are too small for a definitive assessment (Fig 1D). The incidence of EMD among those patients with other than favorable cytogenetics was 15.1%, similar to that in patients with favorable cytogenetics. Although both the presence of EMD and other than favorable cytogenetic risk were significant predictors of poor survival (by pairwise survival estimates and hazard ratios) compared with no-EMD and favorable cytogenetic risk, respectively, the interaction of these factors was not significant (P = .61).

EMD and Adhesion Molecules

There was a higher incidence of CD11b-positive AML among patients with EMD (29%) than patients without EMD (9%; P < .001). The percentage of CD11a and CD56-positive blasts was comparable between the two groups.

EMD and HSCT

Data about transplantation, in studies where this was not part of the protocol, are limited. The percentage of patients who underwent a transplantation was slightly lower among the EMD group compared with the others (14.7% v 18%, respectively; P = .07). The median OS of the 446 patients who underwent HSCT was 40.6 months, compared with 9.4 months of the 2,152 patients who did not (P < .001). Nevertheless, undergoing transplantation was not found to be a significant variable in a multivariable analysis.

DISCUSSION

On the basis of data from 11 consecutive ECOG-ACRIN clinical trials, the presence of EMD at diagnosis does not have independent prognostic value. This observation is clinically meaningful, given that the incidence of EMD in adults with newly diagnosed AML was approximately 24%. The rate of EMD reported in the literature has a broad range related to definitions and method of evaluation. Some define EMD as organ involvement, not including liver, spleen, and LNs.⁶ Using the terms myeloid sarcoma or chloroma, some imply a discrete mass of myeloblasts, not including cases of organ infiltration.¹

We and others² used clinical assessment of EMD without requiring a biopsy, whereas others established the diagnosis of EMD only if pathologically confirmed.^{1,23} LNs, spleen, and gingiva are likely to be considered as EMD sites by physical examination, but usually would not be biopsied and therefore not be considered as pathologically proven EMD. With more sensitive diagnostic tools, such as positron emission tomography (PET), the rate of presumed EMD at diagnosis is likely to be even higher.²⁴ For example, in 26 patients with newly diagnosed AML, Cribe et al²⁵ demonstrated that ¹⁸F-labeled fluorodeoxyglucose PET testing doubled the rate of EMD, from 31% by clinical examination to 65%. It is possible that many patients with AML have clusters of leukemic cells in different organs, in addition to the blood and marrow, and the only question is the resolution of the test used for

Fig 1. Differences in overall survival by (A) presence of extramedullary disease, (B) presence of splenic involvement, (C) presence of CNS involvement, and (D) combination of cytogenetic risk and presence of extramedullary involvement. *P* values are from the log-rank test. Cyto, cytogenetic; EMD, extramedullary disease; fav, favorable; intermed, intermediate; pts, patients; unfav, unfavorable.

assessment. However, it is neither ethical nor practical to biopsy every suspected EMD site, and it would be prohibitively costly to perform PET-computed tomography for every patient with AML. Therefore, despite its limitations, clinical evaluation remains the main assessment method for EMD in routine practice.

To the best of our knowledge, this is the largest study of EMD with information on the distribution of EMD among different sites. LNs and spleen were the most common sites reported, with incidences of 11.5% and 7.3%, respectively, followed by liver (5.3%), skin (4.5%), and gingiva (4.4%), whereas CNS involvement was observed in only 1.1%. The low incidence of CNS involvement is the only variable that is consistent in early studies^{24,26} as well as contemporary studies.²⁷ Rozovski et al⁹ recently reported a 3.3% incidence of CNS involvement among 1,412 patients with newly diagnosed AML who did not undergo a routine LP compared with 19% of 42 patients who underwent a routine LP. We did not observe such a difference; therefore, the rarity of the reported CNS involvement supports not performing a routine LP in patients with AML unless neurologically indicated.

The number of involved sites is usually not reported in the literature. In our study, 35% of patients with EMD had more than one involved site; 9.5% had three sites and some patients even had five and six involved sites. The relatively high rate of multiple-site EMD involvement suggests that the development of EMD is an intrinsic feature of the leukemic cells and depends on factors such as the expression of cell surface adhesion molecules.^{2,28} In our cohort, the median percentage of CD11b-positive blasts was significantly higher among the patients with EMD but, in contrast to the report by Chang et al,² CD56 was not.

In the multivariable model, earlier year of registration, older age, high WBC count, low platelet count, poor PS, high cytogenetic risk status, and not achieving a CR were associated with a shorter OS. However, EMD as a group, as well as every individual EMD site, had no independent effect on prognosis. It is possible that individual sites of EMD are in fact associated with poorer prognosis; however, these patients also have other unfavorable prognostic factors, such as high WBC count and unfavorable cytogenetics, whereas EMD has no independent prognostic effect. Indeed, patients with EMD, in this series and in others,^{2,29,30} had higher WBC

Ganzel et al

Factor	Parameter Estimate	Standard Error	Р	Hazard Ratio	95% HR Confidence Limits
Presence of extramedullary disease	-0.038	0.090	.671	0.963	0.807 to 1.148
No. of extramedullary sites	0.277	0.187	.138	1.320	0.915 to 1.903
Year registered to study	-0.022	0.003	.000	0.978	0.973 to 0.983
Age	0.023	0.001	.000	1.024	1.021 to 1.026
Log WBC	0.068	0.015	.000	1.070	1.040 to 1.102
Log platelets	-0.059	0.023	.010	0.943	0.902 to 0.986
Hemoglobin	-0.022	0.010	.024	0.978	0.960 to 0.997
PS 1*	0.128	0.045	.005	1.136	1.039 to 1.242
PS 2-4*	0.193	0.062	.002	1.213	1.075 to 1.368
Male	0.067	0.040	.094	1.070	0.988 to 1.158
Extramedullary site: gingiva	-0.118	0.211	.576	0.888	0.587 to 1.345
Extramedullary site: nodes	-0.237	0.199	.235	0.789	0.534 to 1.166
Extramedullary site: spleen	-0.157	0.201	.436	0.855	0.576 to 1.268
Extramedullary site: liver	-0.204	0.203	.314	0.815	0.548 to 1.213
CNS involvement	-0.331	0.286	.247	0.718	0.410 to 1.257
Extramedullary site: skin	-0.098	0.213	.648	0.907	0.597 to 1.378
Extramedullary site: lung	-0.087	0.303	.774	0.917	0.507 to 1.659
Extramedullary site: bone	-0.277	0.448	.537	0.758	0.315 to 1.826
Myeloid sarcoma	-0.433	0.426	.309	0.648	0.281 to 1.494
FAB intermediate risk*	0.024	0.049	.619	1.025	0.931 to 1.128
FAB high risk*	0.185	0.089	.038	1.203	1.010 to 1.433
FAB other*	0.087	0.069	.207	1.091	0.953 to 1.248
Achieved CR to induction	-1.132	0.042	.000	0.322	0.297 to 0.350

counts at diagnosis. The similar outcome of patients with CNS involvement to others may also be explained in a different way. CNS is the only EMD site that mandates a specific therapeutic approach, intrathecal methotrexate and/or high-dose cytarabine, which may overcome the potential negative effect of CNS involvement.

The median age of the patients was 51.1 years. Patients with EMD, compared with those without EMD, were younger (median age, 45.7 v 52.9 years; P < .001). There was a statistically significant decline in the incidence of extramedullary disease with increasing age, and a statistically significant decline in survival with increasing age among patients both with and without EMD. Nevertheless, the interaction of age-by-EMD status was not statistically significant, so the effect of age on survival was similar in both groups (Appendix Table A2, online only).

We classified the patients with EMD into three subgroups: hematopoietic organs (lymph nodes, spleen, or liver), nonhematopoietic organs (skin or gingiva with or without EMD in hematopoietic sites), and rare areas of involvement (CNS, bone, lung, or myeloid sarcoma with or without EMD in previous sites). The rationale for this division was that every subgroup might develop in a different context. The first subgroup is probably influenced by the time from first symptoms to diagnosis and treatment of AML. The second depends on specific subtypes of AML, mainly those with a monocytic component.³ The third subgroup is composed of rare sites and the context of development is unknown. Interestingly, the third group had better survival compared with the two others.

By stratifying patients with available cytogenetic data (approximately 50% of the cohort) into favorable and other than favorable cytogenetics, we thought that the effect of EMD on prognosis might appear significant, particularly in the patients with favorable cytogenetics. Indeed, the median OS among the favorable cytogenetic group was 32.9 versus 94.2 months, with and without EMD, respectively (Fig 1D). However, the number of patients was small and the difference was not significant (P = .145). Nevertheless, the question of the effect of EMD among patients with favorable cytogenetics needs to be studied in larger cohorts.

In conclusion, this large study demonstrates that EMD is more common than previously reported and frequently occurs in multiple sites, although CNS involvement is rare. Perhaps surprisingly, EMD at presentation does not have independent prognostic significance. Importantly, the presence of EMD should not affect the choice of postremission therapy.

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Disclosures provided by the authors are available with this article at www.jco.org.

AUTHOR CONTRIBUTIONS

Conception and design: Chezi Ganzel, Dan Douer, Jacob M. Rowe, Elisabeth M. Paietta, Martin S. Tallman

Collection and assembly of data: Judith Manola, Elisabeth M. Paietta, Ju-Whei Lee

Data analysis and interpretation: Chezi Ganzel, Judith Manola, Jacob M. Rowe, Hugo F. Fernandez, Elisabeth M. Paietta, Mark R. Litzow, Selina M. Luger, Hillard M. Lazarus, Larry D. Cripe, Martin S. Tallman Manuscript writing: All authors

Final approval of manuscript: All authors

Accountable for all aspects of the work: All authors

REFERENCES

1. Muss HB, Moloney WC: Chloroma and other myeloblastic tumors. Blood 42:721-728, 1973

2. Chang H, Brandwein J, Yi QL, et al: Extramedullary infiltrates of AML are associated with CD56 expression, 11q23 abnormalities and inferior clinical outcome. Leuk Res 28:1007-1011, 2004

 Tallman MS, Kim HT, Paietta E, et al: Acute monocytic leukemia (French-American-British classification M5) does not have a worse prognosis than other subtypes of acute myeloid leukemia: A report from the Eastern Cooperative Oncology Group. J Clin Oncol 22:1276-1286, 2004

4. Tallman MS, Hakimian D, Shaw JM, et al: Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 11:690-697, 1993

5. Byrd JC, Weiss RB, Arthur DC, et al: Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21)(q22;q22): Results from Cancer and Leukemia Group B 8461. J Clin Oncol 15:466-475, 1997

6. Kobayashi R, Tawa A, Hanada R, et al: Extramedullary infiltration at diagnosis and prognosis in children with acute myelogenous leukemia. Pediatr Blood Cancer 48:393-398, 2007

 Oestgaard LSG, Sengeloev H, Holm MS, et al: Extramedullary leukemia and myeloid sarcoma in AML: Results from a population-based registry study of 2261 patients. 53rd American Society of Hematology Annual Meeting and Exposition, December 10-13, 2011

8. Tsimberidou AM, Kantarjian HM, Wen S, et al: Myeloid sarcoma is associated with superior eventfree survival and overall survival compared with acute myeloid leukemia. Cancer 113:1370-1378, 2008

9. Rozovski U, Ohanian M, Ravandi F, et al: Incidence of and risk factors for involvement of the central nervous system in acute myeloid leukemia. Leuk Lymphoma 56:1392-1397, 2015

10. Cheng CL, Li CC, Hou HA, et al: Risk factors and clinical outcomes of acute myeloid leukaemia with central nervous system involvement in adults. BMC Cancer 15:344, 2015

11. Cassileth PA, Begg CB, Bennett JM, et al: A randomized study of the efficacy of consolidation therapy in adult acute nonlymphocytic leukemia. Blood 63:843-847, 1984

12. Cassileth PA, Lynch E, Hines JD, et al: Varying intensity of postremission therapy in acute myeloid leukemia. Blood 79:1924-1930, 1992

13. Cassileth PA, Andersen J, Lazarus HM, et al: Autologous bone marrow transplant in acute myeloid leukemia in first remission. J Clin Oncol 11:314-319, 1993

14. Cassileth PA, Harrington DP, Appelbaum FR, et al: Chemotherapy compared with autologous or allogeneic bone marrow transplantation in the management of acute myeloid leukemia in first remission. N Engl J Med 339:1649-1656, 1998

15. Kahn SB, Begg CB, Mazza JJ, et al: Full dose versus attenuated dose daunorubicin, cytosine arabinoside, and 6-thioguanine in the treatment of acute nonlymphocytic leukemia in the elderly. J Clin Oncol 2:865-870, 1984

16. Rowe JM, Andersen JW, Mazza JJ, et al: A randomized placebo-controlled phase III study of granulocyte-macrophage colony-stimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: A study of the Eastern Cooperative Oncology Group (E1490). Blood 86: 457-462, 1995

17. Rowe JM, Neuberg D, Friedenberg W, et al: A phase 3 study of three induction regimens and of priming with GM-CSF in older adults with acute myeloid leukemia: A trial by the Eastern Cooperative Oncology Group. Blood 103:479-485, 2004

18. Cripe LD, Rader K, Tallman MS, et al: Phase II trial of subcutaneous recombinant human interleukin 11 with subcutaneous recombinant human granulocytemacrophage colony stimulating factor in patients with acute myeloid leukemia (AML) receiving high-dose cytarabine during induction: ECOG 3997. Leuk Res 30:823-827, 2006

19. Cripe LD, Uno H, Paietta EM, et al: Zosuquidar, a novel modulator of P-glycoprotein, does not improve the outcome of older patients with newly diagnosed acute myeloid leukemia: A randomized, placebo-controlled trial of the Eastern Cooperative Oncology Group 3999. Blood 116:4077-4085, 2010 **20.** Fernandez HF, Sun Z, Yao X, et al: Anthracycline dose intensification in acute myeloid leukemia. N Engl J Med 361:1249-1259, 2009

21. Cassileth PA, Lee SJ, Litzow MR, et al: Intensified induction chemotherapy in adult acute myeloid leukemia followed by high-dose chemotherapy and autologous peripheral blood stem cell transplantation: An Eastern Cooperative Oncology Group trial (E4995). Leuk Lymphoma 46:55-61, 2005

22. Slovak ML, Kopecky KJ, Cassileth PA, et al: Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: A Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075-4083, 2000

23. Pileri SA, Ascani S, Cox MC, et al: Myeloid sarcoma: Clinico-pathologic, phenotypic and cyto-genetic analysis of 92 adult patients. Leukemia 21: 340-350, 2007

24. Dekker AW, Elderson A, Punt K, et al: Meningeal involvement in patients with acute nonlymphocytic leukemia. Incidence, management, and predictive factors. Cancer 56:2078-2082, 1985

25. Cribe AS, Steenhof M, Marcher CW, et al: Extramedullary disease in patients with acute myeloid leukemia assessed by ¹⁸F-FDG PET. Eur J Haematol 90:273-278, 2013

26. Stewart DJ, Keating MJ, McCredie KB, et al: Natural history of central nervous system acute leukemia in adults. Cancer 47:184-196, 1981

 Schlenk RF, Döhner K, Krauter J, et al: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med 358: 1909-1918, 2008

28. Byrd JC, Edenfield WJ, Shields DJ, et al: Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: A clinical review. J Clin Oncol 13:1800-1816, 1995

29. Bisschop MM, Révész T, Bierings M, et al: Extramedullary infiltrates at diagnosis have no prognostic significance in children with acute myeloid leukaemia. Leukemia 15:46-49, 2001

30. Hiçsönmez G, Cetin M, Tuncer AM, et al: Children with acute myeloblastic leukemia presenting with extramedullary infiltration: The effects of high-dose steroid treatment. Leuk Res 28:25-34, 2004

Affiliations

Chezi Genzel and Jacob M. Rowe, Shaare Zedek Medical Center, Jerusalem, Israel; Chezi Ganzel, Dan Douer, and Martin S. Tallman, Memorial Sloan Kettering Cancer Center; Elisabeth M. Paietta, Montefiore Medical Center, New York, NY; Judith Manola and Ju-Whei Lee, Dana-Farber Cancer Institute, Boston, MA; Hugo F. Fernandez, H. Lee Moffitt Cancer Institute, Tampa, FL; Mark R. Litzow, Mayo Clinic, Rochester, MN; Selina M. Luger, University of Pennsylvania, Philadelphia, PA; Hillard M. Lazarus, University Hospitals Case Medical Center, Cleveland, OH; and Larry D. Cripe, Indiana University Cancer Center, Indianapolis, IN

Ganzel et al

AUTHORS' DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

Extramedullary Disease in Adult Acute Myeloid Leukemia Is Common but Lacks Independent Significance: Analysis of Patients in ECOG-ACRIN Cancer Research Group Trials, 1980-2008

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO's conflict of interest policy, please refer to www.asco.org/rwc or jco.ascopubs.org/site/ifc.

Chezi Ganzel No relationship to disclose

Judith Manola No relationship to disclose

Dan Douer Consulting or Advisory Role: Pfizer, Amgen, Sigma-Tau/Baxalta, Gilead Sciences Speakers' Bureau: Jazz Pharmaceuticals Research Funding: Incyte, Gilead Sciences, Bristol-Myers Squibb

Jacob M. Rowe No relationship to disclose

Hugo F. Fernandez Consulting or Advisory Role: Chimerix Speakers' Bureau: Sanofi Elisabeth M. Paietta No relationship to disclose

Mark R. Litzow No relationship to disclose

Ju-Whei Lee No relationship to disclose

Selina M. Luger No relationship to disclose

Hillard M. Lazarus No relationship to disclose

Larry D. Cripe No relationship to disclose

Martin S. Tallman No relationship to disclose

Acknowledgment

We thank Martin M. Oken, MD, and Peter A. Cassileth, MD (deceased), for their significant contributions to this manuscript.

Appendix

			Table	A1. Extramed	dullary Disea	ase Asses	sment					
		E3999 (n = 422)			E1900 (n = 644)		Others (n = 1,847)					
Site	No.	PE	BX	Other	No.	С	Ρ	No.	Inv	No.	С	Ρ
CNS	324	7	0	3	—	—	—	644	6	—	—	_
Peripheral nervous system	327	6	0	2	_	_	_	644	0	_	_	_
Leukemic meningitis	—	—	—	_	397	0	0	—	—	1,399	5	11
Liver	326	41	0	11	416	9	0	_	_	1,748	112	0
Spleen	326	56	0	4	412	23	0	644	3	1,745	151	0
Nodes	325	68	4	0	_	_	_	_	_	_	_	_
Mediastinal nodes/mass	_	—	—	—	398	5	0	644	2	1,740	14	0
Peripheral nodes	_	—	—	—	415	15	1	_	_	1,796	247	10
Gingival hypertrophy*	322	55			411	17	0	642	32	—	—	—
Cranial nerve palsy	_	—	—	—	411	0	0	_	_	_		
Skin	325	28	2	0	416	11	2	643	7	1,810	75	21
Other	285	15	2	4	367	7	2	622	15	1,199	79	10

NOTE. Dashes indicate terms not appearing on forms. Abbreviations: BX, biopsy; C, clinically positive or involved; Inv, involved; No., number of responses to the question on the form; Other, x-ray, scan, or chemical; P, pathologically positive or involved; PE, physical examination. *For E1479 and E3480, gingival hypertrophy appeared as a symptom and not as a site of extramedullary disease; shown is the number of patients with symptoms present. For other studies in particular, comments were reviewed to elicit details about extramedullary disease coded as other; these were recoded in the appropriate category where possible.

		Age Category (years)								
Variable	< 37	37-50	51-63	> 63						
Patients	804	816	809	809						
Patients with EMD	267	195	160	147						
Percent	33.2	23.9	19.8	18.2						
Median survival, no EMD (months)	22.6	16.7	11.9	7.7						
IQR (months)	9.9 to NR	7.5 to 157.0	5.0 to 32.3	1.9 to 19.1						
Median survival, EMD (months)	16.2	13.2	10.5	4.9						
IQR (months)	7.9 to 159.8	7.7 to 38.5	2.8 to 21.1	1.0 to 10.8						

Abbreviations: EMD, extramedullary disease; IQR, interquartile range; NR, not reached.