
Minimax Rate-optimal Estimation of High-dimensional 
Covariance Matrices with Incomplete Data*

T. Tony Cai [Dorothy Silberberg Professor of Statistics] and
Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA 
(tcai@wharton.upenn.edu)

Anru Zhang [Assistant Professor]
University of Wisconsin-Madison, Madison, WI (anruzhang@stat.wisc.edu).

Abstract

Missing data occur frequently in a wide range of applications. In this paper, we consider 

estimation of high-dimensional covariance matrices in the presence of missing observations under 

a general missing completely at random model in the sense that the missingness is not dependent 

on the values of the data. Based on incomplete data, estimators for bandable and sparse covariance 

matrices are proposed and their theoretical and numerical properties are investigated.

Minimax rates of convergence are established under the spectral norm loss and the proposed 

estimators are shown to be rate-optimal under mild regularity conditions. Simulation studies 

demonstrate that the estimators perform well numerically. The methods are also illustrated through 

an application to data from four ovarian cancer studies. The key technical tools developed in this 

paper are of independent interest and potentially useful for a range of related problems in high-

dimensional statistical inference with missing data.

Keywords

Adaptive thresholding; bandable covariance matrix; generalized sample covariance matrix; 
missing data; optimal rate of convergence; sparse covariance matrix; thresholding

1 Introduction

The problem of missing data arises frequently in a wide range of fields, including 

biomedical studies, social science, engineering, economics, and computer science. Statistical 

inference in the presence of missing observations has been well studied in classical statistics. 

See, e.g., Ibrahim and Molenberghs [18] for a review of missing data methods in 

longitudinal studies and Schafer [26] for literature on handling multivariate data with 
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missing observations. See Little and Rubin [20] and the references therein for a 

comprehensive treatment of missing data problems.

Missing data also occurs in contemporary high-dimensional inference problems, whose 

dimension p can be comparable to or even much larger than the sample size n. For example, 

in large-scale genome-wide association studies (GWAS), it is common for many subjects to 

have missing values on some genetic markers due to various reasons, including insufficient 

resolution, image corruption, and experimental error during the laboratory process. Also, 

different studies may have different volumes of genomic data available by design. For 

instance, the four genomic ovarian cancer studies discussed in Section 4 have throughput 

measurements of mRNA gene expression levels, but only one of these also has microRNA 

measurements (Cancer Genome Atlas Research Network [11], Bonome et al. [4], Tothill et 

al. [27] and Dressman et al. [15]). Discarding samples with any missingness is highly 

inefficient and could induce bias due to non-random missingness. It is of significant interest 

to integrate multiple high-throughput studies of the same disease, not only to boost statistical 

power but also to improve the biological interpretability. However, considerable challenges 

arise when integrating such studies due to missing data.

Although there have been significant recent efforts to develop methodologies and theories 

for high dimensional data analysis, there is a paucity of methods with theoretical guarantees 

for statistical inference with missing data in the high-dimensional setting. Under the 

assumption that the components are missing uniformly and completely at random (MUCR), 

Loh and Wainwright [21] proposed a non-convex optimization approach to high-dimensional 

linear regression, Lounici [23] introduced a method for estimating a low-rank covariance 

matrix and Lounici [22] considered sparse principal component analysis. In these papers, 

theoretical properties of the procedures were analyzed. These methods and theoretical 

results critically depend on the MUCR assumption.

Covariance structures play a fundamental role in high-dimensional statistics. It is of direct 

interest in a wide range of applications including genomic data analysis, particularly for 

hypothesis generation. Knowledge of the covariance structure is critical to many statistical 

methods, including discriminant analysis, principal component analysis, clustering analysis, 

and regression analysis. In the high-dimensional setting with complete data, inference on the 

covariance structure has been actively studied in recent years. See Cai, Ren and Zhou [7] for 

a survey of recent results on minimax and adaptive estimation of high-dimensional 

covariance and precision matrices under various structural assumptions. Estimation of high-

dimensional covariance matrices in the presence of missing data also has wide applications 

in biomedical studies, particularly in integrative genomic analysis which holds great 

potential in providing a global view of genome function (see Hawkins et al. [17]).

In this paper, we consider estimation of high-dimensional covariance matrices in the 

presence of missing observations under a general missing completely at random (MCR) 

model in the sense that the missingness is not dependent on the values of the data. Let 

X1, . . . , Xn be n independent copies of a p dimensional random vector X with mean μ and 

covariance matrix Σ. Instead of observing the complete sample {X1, . . . , Xn, one observes 
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the sample with missing values, where the observed coordinates of Xk are indicated by a 

vector Sk ∈ {0, 1}p, k = 1, . . ., n. That is,

(1)

Here Xjk and Sjk are respectively the jth coordinate of the vectors Xk and Sk. We denote the 

incomplete sample with missing values by . The major goal of the 

present paper is to estimate Σ, the covariance matrix of X, with theoretical guarantees based 

on the incomplete data X* in the high-dimensional setting where p can be much larger than 

n.

This paper focuses on estimation of high-dimensional bandable covariance matrices and 

sparse covariance matrices in the presence of missing data. These two classes of covariance 

matrices arise frequently in many applications, including genomics, econometrics, signal 

processing, temporal and spatial data analyses, and chemometrics. Estimation of these high-

dimensional structured covariance matrices have been well studied in the setting of complete 

data in a number of recent papers, e.g., Bickel and Levina [2, 3], Karoui [16], Rothman et al. 

[24], Cai and Zhou [10], Cai and Liu [5], Cai et al. [6, 9] and Cai and Yuan [8]. Given an 

incomplete sample X* with missing values, we introduced a “generalized” sample 

covariance matrix, which can be viewed as an analog of the usual sample covariance matrix 

in the case of complete data. For estimation of bandable covariance matrices, where the 

entries of the matrix decay as they move away from the diagonal, a blockwise tridiagonal 

estimator is introduced and is shown to be rate-optimal. We then consider estimation of 

sparse covariance matrices. An adaptive thresholding estimator based on the generalized 

sample covariance matrix is proposed. The estimator is shown to achieve the optimal rate of 

convergence over a large class of approximately sparse covariance matrices under mild 

conditions.

The technical analysis for the case of missing data is much more challenging than that for 

the complete data, although some of the basic ideas are similar. To facilitate the theoretical 

analysis of the proposed estimators, we establish two key technical results, first, a large 

deviation result for a sub-matrix of the generalized sample covariance matrix and second, a 

large deviation bound for the self-normalized entries of the generalized sample covariance 

matrix. These technical tools are not only important for the present paper, but also useful for 

other related problems in high-dimensional statistical inference with missing data.

A simulation study is carried out to examine the numerical performance of the proposed 

estimation procedures. The results show that the proposed estimators perform well 

numerically. Even in the MUCR setting, our proposed procedures for estimating bandable, 

sparse covariance matrices, which do not rely on the information of the missingness 

mechanism, outperform the ones specifically designed for MUCR. The advantages are more 

significant under the setting of missing completely at random but not uniformly. We also 

illustrate our procedure with an application to data from four ovarian cancer studies that 

have different volumes of genomic data by design. The proposed estimators enable us to 

estimate the covariance matrix by integrating the data from all four studies and lead to a 
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more accurate estimator. Such high-dimensional covariance matrix estimation with missing 

data is also useful for other types of data integration. See further discussions in Section 4.4.

The rest of the paper is organized as follows. Section 2 considers estimation of bandable 

covariance matrices with incomplete data. The minimax rate of convergence is established 

for the spectral norm loss under regularity conditions. Section 3 focuses on estimation of 

high-dimensional sparse covariance matrices and introduces an adaptive thresholding 

estimator in the presence of missing observations. Asymptotic properties of the estimator 

under the spectral norm loss is also studied. Numerical performance of the proposed 

methods is investigated in Section 4 through both simulation studies and an analysis of an 

ovarian cancer dataset. Section 5 discusses a few related problems. Finally the proofs of the 

main results are given in Section 6 and the Supplement.

2 Estimation of Bandable Covariance Matrices

In this section, we consider estimation of bandable covariance matrices with incomplete 

data. Bandable covariance matrices, whose entries decay as they move away from the 

diagonal, arise frequently in temporal and spatial data analysis. See, e.g., Bickel and Levina 

[2] and Cai et al. [7] and the references therein. The procedure relies on a “generalized” 

sample covariance matrix. We begin with basic notation and definitions that will be used 

throughout the rest of the paper.

2.1 Notation and Definitions

Matrices and vectors are denoted by boldface letters. For a vector , we denote the 

Euclidean q-norm by , i.e., . Let  be 

the singular value decomposition of a matrix , where D = diag{λ1(A),...} with 

λ1 (A) ≥ · · · ≥ 0 being the singular values. For 1 ≤ q ≤ ∞, the Schatten-q norm ∥A∥q is 

defined by . In particular,  is the Frobenius 

norm of A and will be denoted as ∥A∥F; ∥A∥∞ = λ1(A) is the spectral norm of A and will be 

simply denoted as ∥A∥. For 1 ≤ q ≤ ∞ and , we denote the operator  norm of A 

by  which is defined as . The following are well known 

facts about the various norms of a matrix A = (aij),

(2)

and, if A is symmetric, . When R1, R2 are two subsets of {1,..., p1}, 

{1,..., p2} respectively, we note AR1 × R2 = (aij)i∈R1,j∈R2 as the sub-matrix of A with indices 

R1 and R2. In addition, we simply write AR1 × R1 as AR1.
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We denote by X1,..., Xn a complete random sample (without missing observations) from a p-

dimensional distribution with mean μ and covariance matrix Σ. The sample mean and 

sample covariance matrix are defined as

(3)

Now we introduce the notation related to the incomplete data with missing observations. 

Generally, we use the superscript “*” to denote objects related to missing values. Let S1, . . ., 

Sn be the indicator vectors for the observed values (see (1)) and let  be 

the observed incomplete data where the observed entries are indexed by the vectors S1, . . ., 

Sn ∈ {0, 1}p. In addition, we define

(4)

Here  is the number of vectors  in which the ith and jth entries are both observed. For 

convenience, we also denote

(5)

Given a sample  with missing values, the sample mean and sample 

covariance matrix can no longer be calculated in the usual way. Instead, we propose the 

“generalized sample mean”  defined by

(6)

where Xik is the ith entry of Xk, and the “generalized sample covariance matrix”  defined 

by

(7)

As will be seen later, the generalized sample mean  and the generalized sample 

covariance matrix  play similar roles as those of the conventional sample mean and 

sample covariance matrix in inference problems, but the technical analysis can be much 

more involved. Some distinctions between the generalized sample covariance matrix  and 

the usual sample covariance matrix  are that  is in general not non-negative definite, and 
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each entry  is the average of a varying number  of samples, which create additional 

difficulties in the technical analysis.

Regarding the mechanism of missingness, the assumption we use for the theoretical analysis 

is missing completely at random. This is a more general setting than the one considered 

previously by Loh and Wainwright [21] and Lounici [22].

Assumption 2.1 (Missing Completely at Random (MCR)) S = {S1, . . . , Sn} is not dependent 

on the values of X. Here S can be either deterministic or random, but independent of X.

We adopt Assumption 1 in Chen et al. [13] and assume that the random vector X is sub-

Gaussian satisfying the following assumption.

Assumption 2.2 (Sub-Gaussian Assumption) X = {X1, . . . , Xn}. Here the columns Xk are 

i.i.d. and can be expressed as

(8)

where μ is a fixed p-dimensional mean vector,  is a fixed matrix with q ≥ p so that 

ΓΓ⊤ = Σ, Zk = (Zik, . . . , Zmk)⊤ is an m-dimensional random vector with the components 

mean 0, variance 1, and i.i.d. sub-Gaussian, with the exception of i.i.d. Rademacher. More 

specifically, each Zik satisfies that , and there exists 

τ > 0 such that EetZik ≤ exp(τt2/2) for all t > 0.

Note that the exclusion of the Rademacher distribution in Assumption 2.2 is only required 

for estimation of sparse covariance matrices. See Remark 3.3 for further discussions.

2.2 Rate-optimal Blockwise Tridiagonal Estimator

We follow Bickel [2] and Cai et al. [9] and consider estimating the covariance matrix Σ over 

the parameter space  where

(9)

Suppose we have n i.i.d. samples with missing values  with covariance matrix 

. We propose a blockwise tridiagonal estimator  to estimate Σ. We 

begin by dividing the generalized sample covariance matrix  given by (7) into blocks of 

size k × k for some k. More specifically, pick an integer k and let N = ⌈p/k⌉. Set Ij = {(j – 1)k 
+ 1, . . ., jk} for 1 ≤ j ≤ N – 1, and IN = {(N – 1)k + 1, . . ., p} For 1 ≤ j, j′ ≤ N and A = 

(ai1,i2)p×p, define
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and define the blockwise tridiagonal estimator  by

(10)

That is, , is estimated by its sample counterpart of and only j and j′ differ by at most 

1. The weight matrix of the blockwise tridiagonal estmator  is illustrated in Figure 1.

Theorem 2.1 Suppose Assumptions 2.1 and 2.2 hold. Then, conditioning on S, the 

blockwise tridiagonal  with  satisfies

(11)

where C is a constant depending only on M, M0, and τ from Assumption 2.2.

The optimal choice of block size k depends on the unknown “smoothness parameter” α. In 

practice, k can be chosen by cross-validation. See Section 4.1 for further discussions. 

Moreover, the convergence rate in (11) is optimal as we also have the following lower bound 

result.

Proposition 2.1 For any n0 ≥ 1 such that p ≤ exp(γn0) for some constant γ < 0, conditioning 
on S we have

Remark 2.1 (Tapering and banding estimators) It should be noted that the same rate of 

convergence can also be attained by tapering and banding estimators with suitable choices of 

tapering and banding parameters. Specifically, let  and  be respectively the tapering 

and banded estimators proposed in Cai et al. [9] and Bickel and Levina [2] with

(12)

where  and  are the weights defined as
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(13)

Then the estimators  and  with  attains the rate given in (11).

The proof of Theorem 2.1 shares some basic ideas with that for the complete data case (See, 

e.g. Theorem 2 in Cai et al. [9]). However, it relies on a new key technical tool which is a 

large deviation result for a sub-matrix of the generalized sample covariance matrix under the 

spectral norm. This random matrix result for the case of missing data, stated in the following 

lemma, can be potentially useful for other, related high-dimensional missing data problems. 

The proof of Lemma 2.1, given in Section 6, is more involved than the complete data case, 

as in the generalized sample covariance matrix each entry, , is the average of a varying 

number of samples.

Lemma 2.1 Suppose Assumptions 2.1 and 2.2 hold. Let  be the generalized sample 

covariance matrix defined in (7) and let A and B be two subsets of {1, . . ., p}. Then, 

conditioning on S, the submatrix  satisfies

(14)

for all x > 0. Here C > 0 and c > 0 are two absolute constants.

3 Estimation of Sparse Covariance Matrices

In this section, we consider estimation of high-dimensional sparse covariance matrices in the 

presence of missing data. We introduce an adaptive thresholding estimator based on 

incomplete data and investigate its asymptotic properties.

3.1 Adaptive Thresholding Procedure

Sparse covariance matrices arise naturally in a range of applications including genomics. 

Estimation of sparse covariance matrices has been considered in several recent papers in the 

setting of complete data (see, e.g., Bickel and Levina [3], El Karoui [16], Rothman et al. 

[24], Cai and Zhou [10] and Cai and Liu [5]). Estimation of a sparse covariance matrix is 

intrinsically a heteroscedastic problem in the sense that the variances of the entries of the 

sample covariance matrix can vary over a wide range. To treat the heteroscedasticity of the 
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sample covariances, Cai and Liu [5] introduced an adaptive thresholding procedure which 

adapts to the variability of the individual entries of the sample covariance matrix and 

outperforms the universal thresholding method. The estimator is shown to be simultaneously 

rate optimal over collections of sparse covariance matrices.

In the present setting of missing data, the usual sample covariance matrix is not available. 

Instead we apply the idea of adaptive thresholding to the generalized sample covariance 

matrix . The procedure can be described as follows. Note that  defined in (7) is a nearly 

unbiased estimate of Σ, we may write it element-wise as

where zi is approximately normal with mean 0 and variance 1, and θij describes the 

uncertainty of estimator  to σij such that

We can estimate θij by

(15)

Lemma 3.1 given at the end of this section shows that  is a good estimate of θij.

Since the covariance matrix Σ is assumed to be sparse, it is natural to estimate Σ by 

individually thresholding  according to its own variability as measured by . Define the 

thresholding level λij by

where δ is a thresholding constant which can be taken as 2.

Let Tλ be a thresholding function satisfying the following conditions,

(1). |Tλ(z)| ≤ cT|y| for all z, y such that |z – y| ≤ λ;

(2). Tλ(z) = 0 for |z| ≤ λ;

(3). |Tλ(z) – z| ≤ λ, for all .

These conditions are met by many well-used thresholding functions, including the soft 

thresholding rule Tλ(z) = sgn(z)(z – λ)+, where sgn(z) is the sign function such that sgn(z) = 

1 if z > 0, sgn(z) = 0 if z = 0, and sgn(z) = −1 if z < 0, and the adaptive lasso rule Tλ(z) = z(1 
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– |λ/z|η)+ with η ≤ 1 (see Rothman et al. [24]). The hard thresholding function does not 

satisfy Condition (1), but our analysis also applies to hard thresholding under similar 

conditions.

The covariance matrix Σ is estimated by  where  is the thresholding 

estimator defined by

(16)

Note that here each entry  is thresholded according to its own variability.

3.2 Asymptotic Properties

We now investigate the properties of the thresholding estimator  over the following 

parameter space for sparse covariance matrices,

(17)

The parameter space  contains a large collection of sparse covariance matrices and 

does not impose any constraint on the variances σii, i = 1, . . ., p. The collection 

contains some other commonly used classes of sparse covariance matrices in the literature, 

including an ℓq ball assumption  in Bickel and Levina [3], and weak 

ℓq ball assumption  for each integer k in Cai and Zhou [10] 

where |σj[k]| is the kth largest entry in magnitude of the jth row (σij)1≤i≤p. See Cai et al. [7] 

for more discussions.

We have the following result on the performance of  over the parameter space .

Theorem 3.1 Suppose that δ ≥ 2, ln  and Assumptions 2.1 and 2.2 hold. 

Then, conditioning on S, there exists a constant C not depending on p,  or n such that 

for any ,

(18)

Moreover, if we further assume that  and δ ≥ 4 + 1/ξ, we in addition have
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(19)

Moreover, the lower bound result below shows that the rate in (19) is optimal.

Proposition 3.1 For any n0 ≥ 1 and cn,p > 0 such that  for some 
constant M < 0, conditioning on S we have

Remark 3.1 (ℓq norm loss) We focus in this paper on estimation under the spectral norm 

loss. The results given in Theorem 3.1 can be easily generalized to the general matrix ℓq 

norm for 1 ≤ q ≤ ∞. The results given in Equations (18) and (19) remain valid when the 

spectral norm is replaced by the matrix ℓq norm for 1 ≤ q ≤ ∞.

Remark 3.2 (Positive definiteness) Under mild conditions on Σ, the estimator  is 

positive definite with high probability. However,  is not guranteed to be positive definite 

for a given data set. Whenever  is not positive semi-definite, a simple extra step can make 

the final estimator  positive definite and also rate-optimal.

Write the eigen-decomposition of  as , where  are the 

eigenvalues and v̂i are the corresponding eigenvectors. Define the final estimator

where Ip×p is the p × p identity matrix. Then  is a positive definite matrix with the same 

structure as that of . It is easy to show that  and  attains the same rate of 

convergence over . See Cai, Ren and Zhou [7] for further discussions.

Remark 3.3 (Exclusion of the Rademacher Distribution) To guarantee that  is a good 

estimate of θij, one important condition needed in the theoretical analysis is that 

 is bounded from below by a positive constant. Howver when the components of 

Zk in (8) are i.i.d. Rademacher, it is possible that . For example, If Z1 and Z2 

are i.i.d. Rademacher and Xi = Z1 – Z2, then , and this 

implies .
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A key technical tool in the analysis of the adaptive thresholding estimator is a large deviation 

result for the self-normalized entries of the generalized sample covariance matrix. The 

following lemma, proved in Section 6, plays a critical role in the proof of Theorem 3.1 and 

can be useful for other high-dimensional inference problems with missing data.

Lemma 3.1 Suppose ln  and Assumptions 2.1 and 2.2 hold. For any 

constants δ ≥ 2, ε > 0, M > 0, conditioning on S, we have

(20)

(21)

In addition to optimal estimation of a sparse covariance matrix Σ under the spectral norm 

loss, it is also of significant interest to recover the support of Σ, i.e., the locations of the 

nonzero entries of Σ. The problem has been studied in the case of complete data in, e.g., Cai 

and Liu [5] and Rothman et al. [24]. With incomplete data, the support can be similarly 

recovered through adaptive thresholding. Specifically, define the support of Σ = (σij)1≤i,j≤p 

by supp(Σ) = {(i, j) : σij ≠ 0}. Under the condition that the non-zero entries of Σ are 

sufficiently bounded away from zero, the adaptive thresholding estimator  recovers the 

support supp(Σ) consistently. It is noteworthy that in the support recovery analysis, the 

sparsity assumption is not directly needed.

Theorem 3.2 (Support Recovery) Suppose ln  and Assumptions 2.1 and 

2.2 hold. Let γ be any positive constant. Suppose Σ satisfies

(22)

Let  be the adaptive thresholding estinmator with δ = 2, then, conditioning on S, we have

(23)
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4 Numerical Results

We investigate in this section the numerical performance of the proposed estimators through 

simulations. The proposed adaptive thresholding procedure is also illustrated with an 

estimation of the covariance matrix based on data from four ovarian cancer studies.

The estimators  and  introduced in the previous sections all require specification of 

the tuning parameters (k or δ). Cross-validation is a simple and practical data-driven method 

for the selection of these tuning parameters. Numerical results indicate that the proposed 

estimators with the tuning parameter selected by cross-validation perform well empirically. 

We begin by introducing the following K-fold cross-validation method for the empirical 

selection of the tuning parameters.

4.1 Cross-validation

For a pre-specified positive integer N, we construct a grid T of non-negative numbers. For 

bandable covariance matrix estimation, we set T = {1, ⌈p1/Nl⌉,..., ⌈pN/N⌉}, and for sparse 

covariance matrix estimation, we let T = {0,1/N,..., 4N/N}.

Given n samples  with mising values, for a given positive integer K, we 

randomly divide them into two groups of size n1 ≈ n(K – 1)/K, n2 ≈ n/K for H times. For h = 

1, . . . , H, we denote by  and  the index sets of the two groups for the h-th 

split. The proposed estimator,  for bandable covariance matrices, or  for sparse 

covariance matrices, is then applied to the first group of data  with each value of the 

tuning parameter t ∈ T and denote the result by  or  respectively. Denote the 

generalized sample covariance matrix of the second group of data  by  and set

(24)

where  is either  for bandable covariance matrices, or  for sparse 

covariance matrices.

The final tuning parameter is chosen to be

and the final estimator  (or ) is calculated using this choice of the tuning parameter t*. 

In the following numerical studies, we will use 5-fold cross-validation (i.e., K = 5) to select 

the tuning parameters.
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Remark 4.1 The Frobenius norm used in (24) can be replaced by other losses such as the 

spectral norm. Our simulation results indicate that using the Frobenius norm in (24) works 

well, even when the true loss is the spectral norm loss.

4.2 Simulation Studies

In the simulation studies, we consider the following two settings for the missingness. The 

first is MUCR where each entry Xik is observed with probability 0 < ρ ≤ 1, and the second is 

missing not uniformly but completely at random (MCR) where the complete data matrix X 
is divided into four equal-size blocks,

and each entry of X(11) and X(22) is observed with probability ρ(1) and each entry of X(12) 

and X(21) is observed with probability ρ(2), for some 0 < ρ(1), ρ(2) ≤ 1.

As mentioned in the introduction, high-dimensional inference for missing data has been 

studied in the case of MUCR and we would like to compare our estimators with the 

corresponding estimators based on a different sample covariance matrix designed for the 

MUCR case. Under the assumption that EX = 0 and each entry of X is observed 

independently with probability ρ, Wainwright [21] and Lounici [23] introduced the 

following substitute of the usual sample covariance matrix

(25)

where the missing entries of X* are replaced by 0's. It is easy to show that  is a consistent 

estimator of under MUCR and could be used similarly as the sample covariance matrix in 

the complete data setting.

For more general settings where EX ≠ 0 and the coordinates X1, X2, . . ., Xp are observed 

with different probabilities ρ1, . . . , ρp,  can be generalized as

(26)

where for i = 1, . . . , p and k = 1, . . . , n,  and .

Based on , we can analogously define the corresponding blockwise tridiagonal estimator 

 for bandable covariance matrices, and adaptive thresholding estimator  for sparse 

covariance matrices.
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We first consider estimation of bandable covariance matrices and compare the proposed 

blockwise tridiagonal estimator  with the corresponding estimator . For both 

methods, the tuning parameter k is selected by 5-fold cross-validation with N varying from 

20 to 50. The following bandable covariance matrices are considered:

1. (Linear decaying bandable model) Σ = (σij)1≤i,j≤p with σij = max{0, 1 – |i – 

j|/5}.

2. (Squared decaying bandable model) Σ = (σij)1≤i,j≤p with σij = (|i – j| 
+ 1)−2.

For missingness, both MUCR and MCR are considered and (25) and (26) are used to 

calculate  respectively. The proposed procedure  is compared with the estimator , 

which is based on . The results for the spectral norm, ℓ1 norm and Frobenius norm losses 

are reported in Table 1. It is easy to see from Table 1 that the proposed estimator 

generally outperforms , especially in the fast decaying setting.

Now we consider estimation of sparse covariance matrices with missing values under the 

following two models.

1. (Permutation Bandable Model) Σ = (σij)1≤i,j≤p, where σij = max(0, 1–0.2·|

s(i)–s(j)|) and s(i), i = 1, . . ., p is a random permutation of {1, . . ., p}.

2. (Randomly Sparse Model) Σ = Ip + (D + D⊤)/(∥D + D≊∥ + 0.01), where D 
is randomly generated as

Similar to the sparse covariance matrix estimation, for missingness, we 

consider both MUCR and MCR. The results for the spectral norm, matrix 

ℓ1 norm and Frobenius norm losses are summarized in Table 2. It can be 

seen from Table 2 that, even under the MUCR setting, the proposed 

estimator  based on the generalized sample covariance matrix is 

uniformly better than the one based on . In the more general MCR 

setting, the difference in the performance between the two estimators is 

even more significant.

4.3 Comparison with Complete Samples

For covariance matrix estimation with missing data, an interesting question is: what is the 

“effective sample size”? That is, for samples with missing values, we would like to know the 

equivalent size of complete samples such that the accuracy for covariance matrix estimation 

is approximately the same. We now compare the performance of the proposed estimator 

based on the incomplete data with the corresponding estimator based on the complete data 
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for various sample sizes. We fix the dimension p = 100. For the incomplete data, we 

consider n = 1000 and MUCR with ρ = .5. The covariance matrix Σ is chosen as

• Linear Decaying Bandable Model (in Bandable Covariance Matrix 

Estimation);

• Permutation Bandable Model (in Sparse Covariance Matrix Estimation);

Correspondingly, we consider the similar settings for the complete data with the same Σ and 

p, but different sample size nc, where nc can be one of the following three values,

1.
: the average number of pairs of (xi, xj)'s that can be 

observed within the same sample;

2.
: the average number of single xi's can be observed;

3. n: the same number of samples with the missing values.

The results for all the settings are summarized in Table 3. It can be seen that the equivalent 

sample size depends on the loss function and in general it is between  and . Overall, 

the average risk under the missing data setting is most comparable to that under the 

complete data setting for the sample size of , the average number of observed pairs.

4.4 Analysis of Ovarian Cancer Data

In this section, we illustrate the proposed adaptive thresholding procedure with an 

application to data from four ovarian cancer genomic studies, Cancer Genome Atlas 

Research Network [11] (TCGA), Bonome et al. [4] (BONO), Dressman et al. [15] (DRES) 

and Tothill et al. [27] (TOTH). The method introduced in Sections 3 enables us to estimate 

the covariance matrix by integrating data from all four studies and thus yields a more 

accurate estimator. The data structure is illustrated in Figure 2. The gene expression markers 

(the first 426 rows) are observed in all four studies without any missingness (the top black 

block in Figure 2). The miRNA expression markers are observed in 552 samples from the 

TCGA study (the bottom left block in Figure 2) and completely missing in the 881 samples 

from the TOTH, DRES, BONO and part of TCGA studies (the white block in Figure 2).

Our goal is to estimate the covariance matrix Σ of the 1225 variables with the particular 

interest in the cross-covariances between the gene and miRNA expression markers. It is 

clear that the missingness here is not uniformly at random. On the other hand, it is 

reasonable to assume the missingness does not depend on the value of the data and thus 

missing completely at random (Assumption 2.1) can be assumed. We apply the adaptive 

thresholding procedure with δ = 2 to estimate the covariance matrix and recover its support 

based on all the observations. The support of the estimate is shown in a heatmap in Figure 3. 

The left panel is for the whole covariance matrix and the right panel zooms into the cross-

covariances between the gene and miRNA expression markers.

It can be seen from Figure 3 that the two diagonal blocks, with 12.24% and 8.39% nonzero 

off-diagonal entries respectively, are relatively dense, indicating that the relationships among 

the gene expression markers and those among the miRNA expression markers, as measured 
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by their covariances, are relatively close. In contrast, the cross-covariances between gene 

and miRNA expression markers are very sparse with only 0.38% of significant gene-miRNA 

pairs. The gene and miRNA expression markers a ect each other through different 

mechanisms, the cross-covariances between the gene and miRNA markers are of significant 

interest (see Ko et al. [19]). It is worthwhile to take a closer look at the cross-covariance 

matrix displayed on the right panel in Figure 3. For each given gene, we count the number of 

miRNAs whose covariances with this gene are significant, and then rank all the genes by the 

counts. Similarly, we rank all the miRNAs. The top 5 genes and the top 5 miRNA expression 

markers are shown in Table 4.4.

Many of these gene and miRNA expression markers have been studied before in the 

literature. For example, the miRNA expression markers hsa-miR-142-5p and hsa-

miR-142-3p have been demonstrated in Andreopoulos and Anastassiou [1] as standing out 

among the miRNA markers as having higher correlations with more genes, as well as 

methylation sites. Carraro et al. [12] finds that inhibition of miR-142-3p leads to ectopic 

expression of the gene marker ACTA2. This indicates strong interaction between 

miR-142-3p and ACTA2.

To further demonstrate the robustness of our proposed procedure against missingness, we 

consider a setting with additional missing observations. We first randomly select half of the 

552 complete samples (where both gene and miRNA expression markers are observed) and 

half of the 881 incomplete samples (where only gene expression markers are observed), and 

then independently mask each entry of the selected samples with probability 0.05. The 

proposed adaptive thresholding procedure is then applied to the data with these additional 

missing values. The estimated covariance matrix is shown in heatmaps in Figure 4. These 

additional missing observations do not significantly a ect the estimation accuracy. Figure 4 is 

visually very similar to Figure 3. To quantify the similarity between the two estimates, we 

calculate the Matthews correlation coefficient (MCC) between them. The value of MCC is 

equal to 0.9441, which indicates that the estimate based on the data with the additional 

missingness is very close to the estimate based on the original samples. We also pay close 

attention to the cross-covariance matrix displayed on the right panel in Figure 4 and rank the 

gene and miRNA expression markers in the same way as before. The top 5 genes and the top 

5 miRNA expression markers, listed in Table 5, are nearly identical to those given in Table 

4.4, which are based on the original samples. These results indicate that the proposed 

method is robust against additional missingness.

5 Discussions

We considered in the present paper estimation of bandable and sparse covariance matrices in 

the presence of missing observations. The pivotal quantity is the generalized sample 

covariance matrix defined in (7). The technical analysis is more challenging due to the 

missing data. We have mainly focused on the spectral norm loss in the theoretical analysis. 

Performance under other losses such as the Frobenius norm can also be analyzed.

To illustrate the proposed methods, we integrated four ovarian cancer studies. These 

methods for high-dimensional covariance matrix estimation with missing data are also 
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useful for other types of data integration. For example, linking multiple data sources such as 

electronic data records, medicare data, registry data and patient reported outcomes could 

greatly increase the power of exploratory studies such as phenome-wide association studies 

(Denny et al. [14]). However, missing data inevitably arises and may hinder the potential of 

integrative analysis. In addition to random missingness due to unavailable information on a 

small fraction of patients, many variables such as the genetic measurements may only exist 

in one or two data sources and are hence structurally missing for other data sources. Our 

proposed methods could potentially provide accurate recovery of the covariance matrix in 

the presence of missingness.

In this paper, we allowed the proportion of missing values to be non-negligible as long as the 

minimum number of occurrences of any pair of variables  is of order n. An interesting 

question is what happens when the number of observed values is large but  is small (or 

even zero). We believe that the covariance matrix Σ can still be well estimated under certain 

global structural assumptions. This is out of the scope of the present paper and is an 

interesting problem for future research.

The key ideas and techniques developed in this paper can be used for a range of other related 

problems in high-dimensional statistical inference with missing data. For example, the same 

techniques can also be applied to estimation of other structured covariance matrices such as 

Toeplitz matrices, which have been studied in the literature in the case of complete data. 

When there are missing data, we can construct similar estimators using the generalized 

sample covariance matrix. The large deviation bounds for a sub-matrix and self-normalized 

entries of the generalized sample covariance matrix developed in Lemmas 3.1 and 2.1 would 

be helpful for analyzing the properties of the estimators.

The techniques can also be used on two-sample problems such as estimation of differential 

correlation matrices and hypothesis testing on the covariance structures. The generalized 

sample covariance matrix can be standardized to form the generalized sample correlation 

matrix which can then be used to estimate the differential correlation matrix in the two-

sample case. It is also of significant interest in some applications to test the covariance 

structures in both one- and two-sample settings based on incomplete data. In the one-sample 

case, it is of interest to test the hypothesis {H0 : Σ = I} or {H0 : R = I}, where R is the 

correlation matrix. In the two-sample case, one wishes to test the equality of two covariance 

matrices {H0 : Σ1 = Σ2}. These are interesting problems for further exploration in the future.

6 Proofs

We prove Theorem 2.1 and the key technical result Lemma 6.1 for the bandable covariance 

matrix estimation in this section.

6.1 Proof of Lemma 2.1

To prove this lemma, we first introduce the following technical tool for the spectral norm of 

the sub-matrices.
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Lemma 6.1 Suppose  is any positive semi-definite matrix, A, B ∈ {1, . . ., p}, 
then

(27)

The proof of Lemma 6.1 is provided later and now we move back to the proof of Lemma 

2.1. Without loss of generality, we assume that μ = EX = 0. We further define

(28)

Also for convenience of presentation, we use C, C1, c, . . . to denote uniform constants, 

whose exact values may vary in different senarios. The lemma is now proved in the 

following steps:

1. We first consider for fixed unit vectors a,  with , 

, the tail bound of . We would like to show 

that there exist uniform constants C1, c > 0 such that for all x < 0,

(29)

Specifically, we will bound  and 

separately in the next two steps.

2.

We consider  first. Since

 can be written as
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(30)

We can calculate from (30) that

(31)

For the last term in (31), we have the following bound,

Thus, by (31) and the inequality above, we have
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(32)

The last term of (30) can be treated as a quadratic form of the 

vectorization of . We note the last term as 

vec(X)⊤Qvec(X), where  and

Q has the following properties,

(33)

(34)

For , since its segments {Xk, k = 1, . . ., p} are independent 

and Xk = ΓZk we can further write vec(X) = DΓvec(Z), where 

 is with n diagonal blocks of Γ, vec(Z) is a (qn)-dimensional 

i.i.d. sub-Gaussian random vector. Based on Hanson-Wright's inequality 

(Theorem 1.1 in Rudelson and Vershynin [25]),
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(35)

Here c > 0 is a uniform constant. Since Q is supported on {(i, k), (j, l) : i ∈ 

A, J ∈ B}, we have . Here , 

 are with n diagonal block ΓA×[q] and ΓB×[q], 

respectively, where [q] = {1, . . ., q}. Since , 

, we know

Then we further have

(36)

We define , combining the 

inequality above and (32), we have

Cai and Zhang Page 22

J Multivar Anal. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(37)

In the last inequality above, we used a fact that τ is lower bounded by a 

uniform constant. This is due to Assumption 2.2 that E(Z) = 0, var(Z) = 1, 

Eexp(tZ) ≤ exp(t2τ2/2). Then,

which implies τ2 ≤ ½ ln(2).

(38)

3.

It is easy to see that , so . Then Here 

 is a matrix such that . Note that Ck is 

supported on A × B, we can prove the following properties of Ck.
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(39)

(40)

(41)

Now, note that the last line of (38) can be also equivalently written as

where vec(Z) is the vectorization of Z, which is an qn-dimensional i.i.d. 

sub-Gaussian vector. Based on the properties of Ck above, we have

Now applying Hanson-Wright's inequality (Theorem 1.1 in Rudelson and 

Vershynin [25]), we have
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(42)

Thus,

(43)

Here c is a uniform constant. Combining (43) and (37), we have (29).

4. Next, we use the ε-net technique to give the bound on . 

Denote . Suppose  is the (1/3)-net for all unit 

vectors in ; similarly  is the (1/3)- net for all unit vectors in . 

Based on the proof of Lemma 3 in Cai et al. [9], we can let 

, . Since all a, , b, ,

(44)

we have for all , , , we can find , 

, such that ∥a0 – a∥2 ≤ 1/3, ∥b0 – b∥2 ≤ 1/3, then

which yields
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(45)

Finally, by combining (29) and the inequality above, we know there exist 

uniform constants C1, c > 0 such that for all t > 0,

(46)

Since , we have finished the proof of Lemma 2.1.

Proof of Lemma 6.1. Since Σ is positive semi-definite, we can find the Cholesky 

decomposition such that Σ = VVȪ4. Then  and

Here we have used the Cauchy-Schwarz inequality.

6.2 Proof of Theorem 2.1

Define B = (bij)1≤i,j≤p such that bij = σij if i ∈ Is, j ∈ Is′ and |s – s′| ≤ 1, and 0 otherwise. Let 

Δ = Σ – B. Then

It is easy to see that

To bound , note that
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For any , we have

The Cauchy-Schwarz inequality yields

(47)

Therefore,

which yields

According to lemma 2.1, there exists constant C, c > 0 which only depend on τ such that for 

all x > 0,

(48)

Now we set  for C′ large enough. The spectral norm risk satisfies
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(49)

then (49) yields

(50)

where C only depends on τ, M, M0. We can finally finish the proof of Theorem 2.1 by 

taking .
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Figure 1. 
Weight matrix for the blockwise tridiagonal estimator.
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Figure 2. 
Illustration of the ovarian cancer dataset. Black block = completely observed; White block = 

completely missing.
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Figure 3. 
Heatmaps of the covariance matrix estimate with all the observed data.
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Figure 4. 
Heatmaps of the covariance matrix estimate with additional missing values.
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Table 1

Comparsion between  and  in different settings of bandable covariance matrix estimation.

Spectral norm ℓ1 norm Frobenius norm

(p, n) Σbt Σbt• Σbt Σbt• Σbt Σbt•

Linear Decay Bandable Model, MUCR ρ = .5

(50, 50) 2.78(0.17) 2.88(0.18) 4.37(0.57) 4.57(0.76) 7.73(0.85) 7.85(0.80)

(50, 200) 1.44(0.06) 1.56(0.07) 2.52(0.17) 2.71(0.19) 3.91(0.18) 4.16(0.16)

(200, 100) 2.25(0.13) 2.44(0.16) 3.83(0.32) 4.22(0.46) 10.27(0.29) 10.89(0.29)

(200, 200) 1.67(0.07) 1.82(0.08) 2.81(0.19) 3.08(0.22) 7.19(0.19) 7.68(0.14)

(500, 200) 2.00(0.07) 2.18(0.10) 3.45(0.16) 3.74(0.27) 12.10(0.36) 12.87(0.42)

Squared Decay Bandable Model, MUCR ρ = .5

(50, 50) 1.34(0.08) 1.40(0.11) 2.28(0.16) 2.37(0.21) 3.78(0.19) 3.91(0.18)

(50, 200) 0.82(0.01) 0.84(0.01) 1.47(0.03) 1.49(0.02) 2.24(0.02) 2.30(0.02)

(200, 100) 1.13(0.01) 1.17(0.02) 2.12(0.05) 2.18(0.07) 5.74(0.04) 5.91(0.05)

(200, 200) 0.92(0.00) 0.94(0.00) 1.66(0.02) 1.72(0.03) 4.49(0.02) 4.61(0.01)

(500, 200) 0.97(0.00) 0.98(0.00) 1.80(0.02) 1.86(0.02) 7.15(0.01) 7.35(0.01)

Linear Decay Bandable Model, MCR ρ(1) = .8, ρ(2) = .2

(50, 50) 2.76(0.26) 3.46(1.43) 4.24(0.73) 5.87(2.91) 7.03(1.25) 8.47(1.29)

(50, 200) 1.51(0.11) 2.64(0.40) 2.52(0.30) 4.29(0.99) 3.62(0.30) 5.77(0.45)

(200, 100) 2.32(0.22) 3.93(0.67) 3.73(0.47) 6.21(1.11) 9.04(0.48) 13.47(0.84)

(200, 200) 1.67(0.10) 3.23(0.27) 2.71(0.26) 4.91(0.49) 6.32(0.11) 11.32(0.49)

(500, 200) 1.98(0.09) 3.78(0.20) 3.19(0.20) 5.70(0.42) 10.39(0.12) 18.48(0.49)

Squared Decay Bandable Model, MCR ρ(1) = .8, ρ(2) = .2

(50, 50) 1.26(0.08) 1.49(0.13) 2.21(0.23) 2.60(0.28) 3.48(0.14) 4.18(0.23)

(50, 200) 0.82(0.01) 0.88(0.04) 1.47(0.05) 1.77(0.11) 2.18(0.04) 2.68(0.11)

(200, 100) 1.06(0.01) 1.30(0.04) 1.96(0.04) 2.44(0.07) 5.32(0.02) 6.51(0.06)

(200, 200) 0.90(0.00) 0.96(0.03) 1.60(0.02) 1.99(0.06) 4.27(0.02) 5.26(0.15)

(500, 200) 0.93(0.00) 1.03(0.01) 1.69(0.01) 2.11(0.03) 6.73(0.01) 8.25(0.04)
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Table 2

Comparsion between  and  in different settings of sparse covariance matrix estimation.

Spectral norm ℓ1 norm Frobenius norm

(p, n) Σat Σat• Σat Σat• Σat Σat•

Permutation Bandable Model, MUCR ρ = .5

(50, 50) 4.26(0.24) 4.45(0.41) 5.58(0.58) 6.19(7.54) 11.34(0.79) 11.73(1.08)

(50, 200) 1.70(0.05) 1.74(0.06) 3.31(0.32) 3.42(0.38) 4.93(0.09) 5.07(0.16)

(200, 100) 3.48(0.07) 3.66(0.58) 5.80(0.39) 6.23(14.89) 18.34(0.81) 19.37(5.50)

(200, 200) 2.12(0.04) 2.20(0.03) 4.17(0.29) 4.44(0.32) 11.46(0.14) 11.94(0.13)

(500, 200) 2.28(0.03) 3.51(0.17) 4.17(0.15) 6.55(0.72) 16.85(0.10) 21.96(0.49)

Randomly Sparse Model, MUCR ρ = .5

(50, 50) 1.76(0.07) 1.96(0.62) 3.69(0.24) 4.20(5.89) 5.75(0.51) 6.27(2.95)

(50, 200) 1.05(0.00) 1.06(0.00) 2.73(0.04) 2.74(0.05) 3.75(0.03) 3.77(0.04)

(200, 100) 1.40(0.01) 1.45(0.01) 4.88(0.08) 4.94(0.09) 8.34(0.07) 8.50(0.07)

(200, 200) 1.07(0.00) 1.09(0.01) 4.44(0.03) 4.46(0.03) 7.42(0.02) 7.43(0.02)

(500, 200) 1.14(0.01) 1.31(0.01) 6.39(0.04) 6.65(0.08) 11.73(0.01) 12.23(0.05)

Permutation Bandable Model, MCR ρ(1) = .8, ρ(2) = .2

(50, 50) 4.23(0.38) 4.71(1.17) 6.67(2.30) 7.46(8.92) 11.22(1.34) 11.71(2.01)

(50, 200) 1.64(0.05) 2.79(0.39) 2.94(0.21) 4.52(0.95) 4.41(0.13) 6.29(0.46)

(200, 100) 3.17(0.06) 4.16(0.57) 5.73(0.66) 8.11(1.87) 15.93(0.53) 18.03(0.77)

(200, 200) 2.00(0.03) 3.22(0.18) 3.65(0.16) 5.70(0.60) 9.83(0.11) 13.29(0.55)

(500, 200) 2.22(0.03) 3.45(0.17) 4.09(0.17) 6.44(0.96) 16.80(0.14) 21.93(0.45)

Randomly Sparse Model, MCR ρ(1) = .8, ρ(2) = .2

(50, 50) 2.15(0.46) 2.19(0.49) 4.21(0.94) 4.47(4.65) 6.36(0.96) 7.25(1.57)

(50, 200) 1.09(0.02) 1.16(0.04) 2.82(0.19) 2.99(0.32) 3.83(0.10) 4.00(0.20)

(200, 100) 1.46(0.02) 1.82(0.03) 4.96(0.12) 5.61(0.21) 8.45(0.07) 10.10(0.14)

(200, 200) 1.08(0.00) 1.20(0.01) 4.46(0.04) 4.57(0.05) 7.43(0.02) 7.66(0.04)

(500, 200) 1.12(0.01) 1.33(0.01) 6.35(0.04) 6.60(0.07) 11.71(0.02) 12.20(0.06)
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Table 3

Comparison between incomplete samples and complete samples.

Setting sample size Spectral norm ℓ1 norm Frobenius norm

Bandable Covariance Matrix Estimation

Missing Data n = 1000 0.72(0.01) 1.25(0.03) 2.40(0.01)

Complete Data nc = npair
∗ 0.97(0.03) 1.49(0.05) 2.48(0.04)

Complete Data nc = ns
∗ 0.65(0.01) 1.01(0.03) 1.69(0.03)

Complete Data nc = n 0.48(0.01) 0.73(0.01) 1.22(0.01)

Sparse Covariance Matrix Estimation

Missing Data n = 1000 0.75(0.01) 1.37(0.04) 2.90(0.02)

Complete Data nc = npair
∗ 0.83(0.02) 1.31(0.05) 2.94(0.04)

Complete Data nc = ns
∗ 0.65(0.01) 1.01(0.03) 1.86(0.04)

Complete Data nc = n 0.45(0.01) 0.64(0.01) 1.12(0.01)
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Table 4

Genes and miRNA's with most selected pairs

Gene Expression Marker Counts miRNA Expression Marker Counts

ACTA2 61 hsa-miR-142-5p 31

INHBA 57 hsa-miR-142-3p 29

COL10A1 53 hsa-miR-22 26

BGN 46 hsa-miR-21* 24

NID1 41 hsa-miR-146a 21
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Table 5

Genes and miRNA's with most selected pairs after masking

Gene Expression Marker Counts miRNA Expression Marker Counts

ACTA2 60 hsa-miR-142-3p 31

INHBA 56 hsa-miR-142-5p 30

COL10A1 50 hsa-miR-146a 21

BGN 43 hsa-miR-150 21

NID1 40 hsa-miR-21* 21
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