Skip to main content
. Author manuscript; available in PMC: 2017 Sep 1.
Published in final edited form as: J Multivar Anal. 2016 May 19;150:55–74. doi: 10.1016/j.jmva.2016.05.002

Table 2.

Comparsion between Σ^at and Σ^at in different settings of sparse covariance matrix estimation.

Spectral norm
1 norm
Frobenius norm
(p, n) Σ^at Σ^at Σ^at Σ^at Σ^at Σ^at
Permutation Bandable Model, MUCR ρ = .5
(50, 50) 4.26(0.24) 4.45(0.41) 5.58(0.58) 6.19(7.54) 11.34(0.79) 11.73(1.08)
(50, 200) 1.70(0.05) 1.74(0.06) 3.31(0.32) 3.42(0.38) 4.93(0.09) 5.07(0.16)
(200, 100) 3.48(0.07) 3.66(0.58) 5.80(0.39) 6.23(14.89) 18.34(0.81) 19.37(5.50)
(200, 200) 2.12(0.04) 2.20(0.03) 4.17(0.29) 4.44(0.32) 11.46(0.14) 11.94(0.13)
(500, 200) 2.28(0.03) 3.51(0.17) 4.17(0.15) 6.55(0.72) 16.85(0.10) 21.96(0.49)
Randomly Sparse Model, MUCR ρ = .5
(50, 50) 1.76(0.07) 1.96(0.62) 3.69(0.24) 4.20(5.89) 5.75(0.51) 6.27(2.95)
(50, 200) 1.05(0.00) 1.06(0.00) 2.73(0.04) 2.74(0.05) 3.75(0.03) 3.77(0.04)
(200, 100) 1.40(0.01) 1.45(0.01) 4.88(0.08) 4.94(0.09) 8.34(0.07) 8.50(0.07)
(200, 200) 1.07(0.00) 1.09(0.01) 4.44(0.03) 4.46(0.03) 7.42(0.02) 7.43(0.02)
(500, 200) 1.14(0.01) 1.31(0.01) 6.39(0.04) 6.65(0.08) 11.73(0.01) 12.23(0.05)
Permutation Bandable Model, MCR ρ(1) = .8, ρ(2) = .2
(50, 50) 4.23(0.38) 4.71(1.17) 6.67(2.30) 7.46(8.92) 11.22(1.34) 11.71(2.01)
(50, 200) 1.64(0.05) 2.79(0.39) 2.94(0.21) 4.52(0.95) 4.41(0.13) 6.29(0.46)
(200, 100) 3.17(0.06) 4.16(0.57) 5.73(0.66) 8.11(1.87) 15.93(0.53) 18.03(0.77)
(200, 200) 2.00(0.03) 3.22(0.18) 3.65(0.16) 5.70(0.60) 9.83(0.11) 13.29(0.55)
(500, 200) 2.22(0.03) 3.45(0.17) 4.09(0.17) 6.44(0.96) 16.80(0.14) 21.93(0.45)
Randomly Sparse Model, MCR ρ(1) = .8, ρ(2) = .2
(50, 50) 2.15(0.46) 2.19(0.49) 4.21(0.94) 4.47(4.65) 6.36(0.96) 7.25(1.57)
(50, 200) 1.09(0.02) 1.16(0.04) 2.82(0.19) 2.99(0.32) 3.83(0.10) 4.00(0.20)
(200, 100) 1.46(0.02) 1.82(0.03) 4.96(0.12) 5.61(0.21) 8.45(0.07) 10.10(0.14)
(200, 200) 1.08(0.00) 1.20(0.01) 4.46(0.04) 4.57(0.05) 7.43(0.02) 7.66(0.04)
(500, 200) 1.12(0.01) 1.33(0.01) 6.35(0.04) 6.60(0.07) 11.71(0.02) 12.20(0.06)