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Abstract

Salmonellae invasion and intracellular replication within host cells results in a range of diseases 

including gastroenteritis, bacteraemia, enteric fever and focal infections. In recent years, 

considerable progress has been made in our understanding of the molecular mechanisms by which 

Salmonellae alter host cell physiology through the delivery of effector proteins with specific 

activities, and through the modulation of defence and stress response pathways in the host. In this 

Review, we summarize our current knowledge of the complex interplay of bacterial and host 

factors that lead to inflammation, disease and in most cases, control of Salmonellae infection, 

particularly Salmonella enterica serovar Typhimurium, by its animal hosts. We also highlight gaps 

in our knowledge of the contributions of Salmonellae and the host to disease pathogenesis and 

suggest future avenues for further study.

ToC

In this Review, Miller and colleagues discuss the arsenal of effector proteins that salmonellae use 

to manipulate their animal hosts, in addition to the host response to these infections. The authors 

also discuss the challenges ahead for unravelling the mechanistic details of effector function.

Salmonellae are motile, Gram-negative bacteria that cause enteric diseases in a wide range 

of animals. The species Salmonella enterica is comprised of over 2,500 serovars, on the 

basis of flagellar and lipopolysaccharide antigens, and includes both typhoidal and non-

typhoidal Salmonella (NTS) strains. Salmonella enterica serovar Typhi and Salmonella 
enterica serovar Paratyphi (the typhoidal serovars) are human-restricted pathogens that cause 

the systemic disease enteric (typhoid) fever, which is characterized by fever and abdominal 

pain. The NTS, Salmonella enterica serovar Enteritidis and Salmonella enterica serovar 

Typhimurium (S. Typhimurium), are broad host range pathogens that cause acute self-

limiting gastroenteritis in humans, cattle, swine and poultry, but can cause bacteraemia and 

systemic infection in immunosuppressed hosts, in very young and older individuals and 

occasionally in healthy adult humans and animals1. The majority of studies discussed herein 

have used S. Typhimurium.

Salmonellae are usually acquired by oral ingestion of contaminated food or water and 

survive gastric acidity to gain access to the intestinal epithelium. NTS strains elicit 
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inflammatory changes in the intestinal epithelium, including the infiltration of neutrophils 

and fluid into the intestinal lumen, resulting in inflammatory diarrhea2. The inflammatory 

reaction is essential for the release of factors (such as tetrathionate) that can be used as 

nutritional sources by NTS, which provides the pathogen with a growth advantage over the 

intestinal microbiota3, 4. Salmonellae can be engulfed by intestinal luminal phagocytes to 

facilitate invasion of the mucosal barrier; however, the bacterium usually induces its own 

uptake by epithelial cells and traverses the epithelial barrier through microfold cells (M 

cells) that overlay the intestinal lymphoid tissue or Peyer’s patches5.

Salmonellae can invade and survive inside a variety of mammalian cells types including 

macrophages, but are rapidly cleared by neutrophils6, 7. The intracellular lifestyle of 

salmonellae within epithelial cells and macrophages facilitates the avoidance of neutrophil-

mediated killing and is essential for pathogenesis. Intracellular survival requires the bacteria 

to recognize and resist components of the innate immune system, including cationic 

antimicrobial peptides and the acidic pH of the phagocytic vacuole. The recognition of host 

innate immunity by salmonellae results in transcriptional activation of genes important for 

the remodelling of the bacterial cell surface to promote intracellular survival8. Sensing of the 

intracellular environment and subsequent bacterial membrane remodelling is dependent on 

regulatory proteins, including the two-component systems PhoP-PhoQ, OmpR-EnvZ, PmrA-

PmrB, RcsB-RcsC, and Cya-Crp8, 9. S. Typhimurium pathogenesis is also highly dependent 

on two distinct type III secretion systems (T3SSs) encoded on Salmonella pathogenicity 

islands (SPI) 1 and 2, which function to transport effector proteins to the host cell 

cytoplasm. These effectors target host cell processes to promote S. Typhimurium invasion 

and intracellular survival (Supplementary Table S1). The two T3SSs are encoded at distinct 

locations on the chromosome and analysis of the genome suggests that they were acquired 

by horizontal gene transfer10. The need for two distinct T3SSs is probably linked to the 

differential use of these secretion systems under different environmental conditions, as other 

transcriptional and post-transcriptional regulatory mechanisms could presumably be used to 

deliver a different set of effectors through a single apparatus.

Following contact with host cells, the S. Typhimurium SPI-1 T3SS transports proteins across 

the plasma membrane to enable bacterial invasion, and results in the induction of intestinal 

inflammatory responses. By contrast, the SPI-2 T3SS transports proteins that are important 

for intracellular survival and vacuolar movement across the membrane of the Salmonella-

containing vacuole (SCV)9. Many effectors translocated by the SPI-1 T3SS persist within 

host cells after bacterial internalization and may also be important for intracellular survival 

within the SCV11–16. In contrast to NTS, S. Typhi does not elicit a pronounced 

inflammatory response within the host gastrointestinal tract, and a number of factors that 

may contribute to such differences are discussed in Box 1.

Together, the effector proteins that are delivered into the host cell by the two T3SSs 

promotes entry, survival and replication of bacteria within host tissues. Salmonellae induce 

actin cytoskeleton ruffling and macropinocytosis to promote bacterial uptake into non-

phagocytic cells and the SPI-1 T3SS effectors reverse these changes after entry. 

Phagocytosis by macrophages also involves macropinocytosis, which occurs by both SPI1-

dependent or SPI1-independent mechanisms. Macropinocytic uptake of salmonellae occurs 
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rapidly, and bacteria initially reside in a spacious phagosomal compartment17, which 

undergoes a maturation process to form a unique compartment known as the SCV18. 

Salmonellae modify the lipid and protein content of the SCV and induce morphological 

changes, including cytosolic membrane associated actin polymerization and endosomal 

tubulation of the vacuolar membrane using the SPI-2 T3SS effectors9. Although some of the 

host factors manipulated by salmonellae effectors that are released from the SCV are known, 

many of the eukaryotic targets have yet to be discovered and the downstream activities of the 

majority of these effectors is still elusive. Most of the effectors are specifically localized to 

the SCV, whereas others are localized to the apical surface of polarized epithelial cells. 

Furthermore, effectors can have multiple mammalian binding partners, and their enzymatic 

activities may require these binding partners or specific post-translocation modifications, 

which complicates the identification of their specific functions. Understanding the molecular 

basis of the complex interplay between effectors delivered across the SCV membrane and 

host cells should lead to a greater understanding of the overall strategy that salmonellae use 

to achieve a successful intracellular lifestyle. Although many questions remain unanswered, 

despite intense study of these model organisms, in this Review, we summarize what is 

currently known about the complex interplay between the arsenal of effectors that 

Salmonella secretes and the pathways altered in host cells, including cytoskeletal changes, 

inflammatory responses, membrane modifications, vacuolar trafficking and autophagy.

Invasion of non-phagocytic epithelia

Salmonellae effectors translocated by the SPI-1 T3SS are important for bacterial invasion of 

non-phagocytic epithelia (Figure 1). The effector protein SopB is an inositol phosphatase 

that affects a number of cellular pathways during infection, including membrane ruffling, 

initiation of M-cell development and inhibition of SCV fusion with lysosomes13, 19–21. 

Bacterial invasion is mediated in part by SopB activation of Rho kinase-dependent actin 

rearrangements at the host cell membrane22–24. SopB also recruits AnxA2 which functions 

as a platform for actin rearrangements25. On the SCV, SopB can generate 

Phosphatidylinositol 3-phosphate (PI(3)P) by recruiting Rab5 and the PI3 kinase, Vps3426. 

SopB decreases levels of acidic lipids on the SCV, which may alter Rab family GTPase 

trafficking and antagonize SCV fusion with lysosomes21. SopB also influences the ability of 

the bacterium to transform follicular associated epithelial cells into M-cells through 

activation of Wnt/β-catenin signalling20; induction of Wnt signalling leads to activation of 

the receptor-activator of NF-κB ligand (RANKL) and its receptor RANK, which are 

sufficient to initiate M-cell development and can lead to promotion of salmonellae 

invasion20. The distinct activities of SopB are spatiotemporally controlled in vivo through 

mono-ubiquitination of distinct residues at specific times during the infection, which results 

in the persistence of SopB on the SCV but it is removed from the plasma membrane 

following entry16, 27.

Reorganization of the actin cytoskeleton is also triggered following activation of the small 

Rho GTPases Rac1 and Cdc42 by the guanine nucleotide exchange factor (GEF) activity of 

the SPI-1 effectors SopE and SopE228–32. Salmonellae effectors trigger localized actin 

polymerization by influencing recruitment and activation of the nucleation promoting factors 

(WAVE and N-WASP)33, 34. The host Arf1 GEF, ARNO, is recruited by PI(3)P, possibly 
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owing to its generation by SopB at the plasma membrane34. ARNO (which is activated by 

the binding active Arf6, Arf6-GTP) activates the GTPase Arf1, which then promotes WAVE 

regulatory complex (WRC)-dependent membrane ruffling and bacterial invasion34, 35. The 

GEF activity of SopE triggers recruitment of WRC and N-WASP, leading to activation of 

actin related protein (Arp2/3) at the cell membrane, resulting in localized actin 

polymerization and membrane ruffling which promotes bacterial uptake into phagosomes 

inside the non-phagocytic epithelial cell33, 34.

Bacterial internalization is also promoted by SipA and SipC, which bind directly to actin at 

the site of insertion of the T3SS translocon, of which SipC is a component (Figure 1). SipA 

inhibits actin depolymerization and increases actin bundling at the site of bacterial entry into 

epithelial cells36, 37, and SipC bundles and nucleates actin on insertion of the translocon to 

promote invasion38, 39. SipC may also interact with intermediate filament proteins40, 41. 

After bacterial entry into host cells, the architecture of the cytoskeleton is restored. The 

GTPase activating protein (GAP) SptP reverses the activation of Rac1 and Cdc42 by SopE, 

SopE2 and SopB, to restore the architecture of epithelial cells42, and SopE is inactivated by 

proteasomal degradation43.

SPI-1 mediated inflammation

Localized inflammation of the intestinal tract is essential for providing a growth advantage 

for luminal NTS salmonellae, and enhances bacterial transmission through multiple 

mechanisms4. Many of the SPI-1 effectors (including SopE, SopE2, SopB, SipA, SipC and 

SopA) contribute to intestinal inflammation44–46 by stimulating production of the 

proinflammatory cytokine IL-8 through the mitogen-activated protein kinase (MAPK) and 

NF-κB pathways, destabilizing tight junctions and stimulating neutrophil transepithelial 

migration into the intestinal lumen (Figure 2)1, 47, 48. Host Toll-like receptors (TLRs) are 

activated following the sensing of salmonellae components (for example, lipopolysaccharide 

(LPS) which promotes macrophage activation and increased killing by the phagosomal 

compartment, as well as transcriptional activation of inflammatory caspase genes49.

Inflammation in response to Salmonellae is also induced by activation of inflammatory 

caspases 1 and 11 in mice and caspases 1, 4, and 5 in human cells50. Cytoplasmic delivery of 

the flagellar FliC filament protein and the PrgJ rod protein by the T3SS-1 apparatus activates 

caspase-1 in macrophages51, 52 (Figure 2). Caspase-1 activation triggers release of the 

proinflammatory cytokines IL-18 and IL-1β by macrophages, that in turn, promote the 

release of IL-17 and IL-22 by T cells, thereby amplifying inflammation in the intestinal 

mucosa53. The SPI-1 translocon protein SipB is inserted in the plasma membrane and may 

migrate to the mitochondria, damages to plasma and mitochondrial membranes might also 

contribute to caspase-1 activation.54. In addition to the role of SopE in invasion of non-

phagocytic cells, its GEF activity for the Rho GTPases Rac and Cdc42 can activate 

caspase-1 in stromal cells, which elicits gut inflammation during infection, probably as a 

result of the reorganization of actin in response to bacterial-mediated endocytosis55. Caspase 

11 in mice and caspases 4 and 5 in humans may have a role in intestinal inflammation and 

restriction of NTS through their activation by cytoplasmic LPS, which may be generated by 

destabilization of the SCV in epithelial cells or another unknown transport mechanism50, 56. 
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SipA may also have a direct role in inflammation, independent of its role in bacterial 

invasion, by promoting PMN migration across the intestinal epithelium57 and by activating 

caspase-3 in host cells58.

Competition with the intestinal microbiota

Salmonellae have several mechanisms to compete with the gut microbiota. For example, 

intestinal inflammation results in luminal accumulation of lipocalin-2, a host protein that 

sequesters the bacterial siderophore enterochelin, which is required by the microbiota for the 

acquisition of iron. The salmonellae siderophore salmochelin is not sequestered by 

lipocalin-2, which provides the pathogen with a growth advantage compared to other enteric 

bacteria59 (Figure 2). Salmonellae invasion of cells results in the release of reactive oxygen 

species into the lumen, which reacts with thiosulfate, a respiratory by-product generated by 

the microbiota and the intestinal lumen, to generate tetrathionate. Tetrathionate is used by 

Salmonella spp. but not the microbiota, as a terminal electron acceptor to support anaerobic 

or microaerophillic growth3. Furthermore, Salmonella spp. induce SopE-dependent 

production of nitrate by the host, which can be used by anaerobic nitrate respiration to 

enhance growth of Salmonella spp. and other members of the Enterobacteriaceae60. These 

and other changes allow Salmonella spp. to outgrow the intestinal microbiota, providing 

them with the opportunity for more effective transmission owing to increased proliferation in 

the intestinal lumen.

Dampening of inflammation after entry

After entry into host cells, salmonellae reverse actin cytoskeleton rearrangements (which are 

required for entry) and dampen inflammation using other effectors. The tyrosine 

phosphatase SptP reverses MAPK-mediated inflammation and IL-8 secretion61, 62, and it 

persists during the late stages of infection to dephosphorylate the AAA+ ATPase valosin-

containing protein, which is important for intracellular replication and endosomal tubule 

formation15. Both the SPI-1 effector AvrA and the SPI-1/2 E3 ubiquitin ligase effector 

SspH1, contribute to downregulation of Salmonella-induced IL-8 production by epithelial 

cells. SspH1 binds to and ubiquitinates PKN1, which inhibits NF-κB activity63–65. The 

acetyltransferase activity of AvrA can suppress the inflammation that is triggered by 

apoptosis of macrophages and enhance bacterial intracellular survival66. Several other 

effectors target the MAPK and NF-κB pathways to down-modulate inflammation. These 

include AvrA67, 68, the phosphothreonine lyase SpvC, which increases Salmonella spp. 

dissemination in mice69, and the anti-inflammatory effector GogB which blocks 

ubiquitination and degradation of IκB, leading to inhibition of NF-κB proinflammatory 

signalling70. In addition, the SPI-1/2 effector SpvC reduces inflammation by inhibiting the 

production of IL-8 and TNF-α71. Another SPI-1/2 effector, SteA elicits changes in the 

expression of several genes in HeLa cells, including the activation of genes that regulate 

extracellular matrix organization, cell proliferation and serine/threonine kinase signaling 

pathways; and the repression of genes involved in regulating immune processes, cell death, 

adhesion and migration72, which suggests that this effector can also modulate inflammation 

in the host. The effectors SseF, SifA, SspH2, SlrP, PipB2 and SseI can inhibit the migration 

of dendritic cells73, and several of these effectors (SspH2, SlrP, PipB2, SifA, SopD2 and 

SseFG) also inhibit antigen presentation by dendritic cells and inhibit T-cell proliferation74. 
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Collectively, the results of these studies suggest that both the innate and adaptive immune 

response of the host is activated and inhibited during salmonellae infection.

Survival and replication within the SCV

For many years, it has been recognized that intracellular salmonellae can exist in both 

replicative and non-replicative states75. In recent years, increased attention has been devoted 

to the study of the non-replicating population because they display a reversible, antibiotic-

tolerant phenotype and persist following antibiotic treatment. These so-called “persisters” or 

drug-tolerant phenotypic variants of salmonellae seem to arise stochastically and are now 

more amenable to study owing to the development of new technologies (Box 2). In addition 

to antibiotic tolerance, this phenotypic diversity of individual cells during infection is an 

interesting area for further exploration, particularly in the case of S. Typhi, which causes a 

relapsing infection with a chronic phase that might be dominated by non-replicating bacteria 

that are intracellular or in biofilms associated with gall stones and bladder stones76. The 

molecular basis of phenotypic heterogeneity among individual bacteria and SCV variability 

is an area that requires further study to determine whether specific populations of bacteria 

may have different functions in the infection process.

Despite the challenges associated with studying intracellular bacteria and SCV diversity 

because of the large number of transient interactions and modifications that take place, 

several principles about the SCV within epithelial cells are known. Beginning immediately 

after entry into epithelial cells, the SCV undergoes several vacuolar modifications that 

distinguish it morphologically from typical phagosomal compartments. Although defined 

functions for the large repertoire of salmonellae SPI-2 effectors remain to be established, 

these proteins are required for many of the SCV vacuolar modifications, and are involved in 

its microtubule-based vacuolar movement in the host cell (Figure 3). Our current knowledge 

regarding the identity, targets and functions of the SPI-1 and SPI-2 effector proteins is 

detailed in Supplementary Table S1. Maturation of the SCV involves transient interactions 

with early endosomes, which result in the recruitment of early endosomal markers, including 

the transferrin receptor, early endosomal antigen-1 and the small GTPase Rab577, 78. These 

markers are subsequently replaced with late endosomal markers and often lysosomal 

markers including the lysosome-associated membrane proteins (LAMPs), the GTPase Rab7, 

RILP, vacuolar ATPase and cholesterol77, 79–81. Other lysosomal markers including 

mannose-6-phosphate receptor (MPR) and lysobisphosphatidic acid can be absent from the 

mature SCV in some cell types (mostly HeLa cells)80, although bacteria can survive within 

the SCV in macrophages despite direct fusion of the SCV with the lysosomal 

compartment82. The observed variation in SCV surface markers in different experimental 

systems is probably a reflection of whether the SPI-1 T3SS is used for entry (in 

macrophages), the degree of caspase-1 activation and cell toxicity, and diversity in the 

secretion of SPI-2 effectors and bacterial gene expression within the SCV. Despite this 

complexity and the lack of uniformity in experimental systems, it is likely that modifications 

of the SCV surface by SPI-2 effectors contribute to intracellular survival.

Further evidence that a major function of the SPI-2 T3SS is modification of the endosomal 

membrane is that many SPI-2 effector proteins localize to the SCV, including SifA and SseJ, 
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which are the the best characterized. The main function of SseJ on the SCV is activation of 

its glycerophospholipid:cholesterol acyltransferase activity (by binding to RhoA) to directly 

modify the composition of cholesterol and phospholipids in these membranes, ultimately 

increasing the accumulation of cholesterol esters within lipid droplets in the cytoplasm83–85 

(Figure 3). The lipid changes on the SCV have the potential to dramatically alter the 

repertoire of proteins that associate with the SCV; for example, SifA is recruited and 

functions as a link to connect the SCV to the microtubular network86. The effector SseL, 

which is a deubiquitinase, may prevent lipid droplet accumulation in cells, potentially 

antagonizing SseJ activity and preventing lipid composition on the SCV87. Many other 

effectors that localize to the SCV may alter protein or lipid content, but their specific 

activities are currently unknown. As detailed in Supplementary Table S1, proteins such as 

SspH2 (a ubiquitin ligase with unknown targets) localize to the SCV in non-polarized cells 

and the apical surface of polarized epithelial cells, and may function in the removal of host 

proteins through ubiquitination. The specific enzymatic activities of the wide array of SPI-2 

effector proteins may manipulate small GTPases, remove proteins from the SCV by post-

translational modification, inhibit the trafficking of proteins through endocytic recycling 

pathways or deubiquitination, among other complex activities, all of which result in a 

vacuole with unique protein and lipid content.

SPI-2 mediated movement of the SCV

The SCV traffics via the microtubule network to the perinuclear region of non-polarized host 

cells (such as HeLa) in a manner that is dependent on SPI-2 effectors (Figure 3)88. 

Salmonellae induce sorting nexin tubule formation early after invasion, which contributes to 

the recruitment of Rab7 and LAMP-189, 90. Rab7-interacting lysosomal protein (RILP) links 

active Rab7 to the motor protein dynein91, a complex that is important for the centripetal 

movement of the SCV at earlier stages of infection92, 93. At later stages of infection, the 

SCV is displaced to the cell periphery where it could be important for bacterial transfer 

between epithelial cells94. The SPI-2 effector SifA links the SCV to the microtubular 

network through its interaction with the host SifA and kinesin-interacting protein (SKIP), 

which is relocated from the microtubule organizing centre to the SCV95. Other SPI-2 

effectors, including PipB2 and SseF, bind to the SCV and microtubular motor proteins and 

may have a role in specific intracellular movement96, 97, suggesting that a major function of 

SPI-2 could be to move the SCV within the host cell cytoplasm. It is interesting to speculate 

that this movement along the microtubular network may be directional when bacteria are 

within polarized epithelial cells that have a specific microtubular orientation.

Further evidence that SPI-2 effectors function in the manipulation of the microtubular 

network comes from work with S. Typhimurium, which has shown that the bacterium 

induces the formation of dynamic LAMP-1 positive microtubule-dependent endosomal 

tubule (ET) extensions, which are historically termed Salmonella-induced filaments 

(Sifs)98–100. The term Sif is somewhat confusing as traditional eukaryotic filaments are actin 

based fibres, whereas Sifs are formed via actin-independent, but microtubular-dependent, 

alteration of endosomal membranes. The SPI-2 effectors, SifA, PipB2, SseF, SseG, SseJ, 

SpvB, SteA and SopD2 all contribute to ET dynamics and SCV movement100–106. 

Recruitment of the microtubular motor protein kinesin to the SCV results in ET extension, 
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which is dependent on PipB296 and the host Arf GTPase Arl8B107. Following its 

recruitment, kinesin is activated by the eukaryotic factor SKIP, which is complexed to SifA 

(Figure 3)86. SifA also associates with the SCV and ETs through its carboxyl-terminus 

CAAX motif (C is cysteine residue, AA are two aliphatic residues, and X represents any C-

terminal amino acid), which is post-translationally lipidated108, 109. The SifA-SKIP complex 

links the SCV to the microtubular network and initiates the fission of periphery directed 

transport vesicles, triggering ET formation along microtubules86, 110 (Figure 3). SifA may 

recruit Rab7 to displace the Rab7-RILP-dynein motor complex and thereby increase the 

peripheral movement of ETs92. In HeLa cells, SifA-SKIP sequesters Rab9 and blocks Rab9-

dependent retrograde trafficking of mannose-6-phosphate receptors, which decreases 

lysosomal function and promotes bacterial survival111. Salmonellae induce tubulation of 

membranes that are positive for secretory carrier membrane protein 3 (SCAMP3)112, a 

protein normally found in the trans-Golgi network, which suggests that the tubular network 

surrounding Salmonella spp. is derived from both the Golgi and endosomes. Interestingly, 

there is evidence that the host secretory pathway communicates with the SCV, since S. 
Typhimurium disrupts exocytosis suggesting that secretory traffic may be directed to the 

SCV as part of the mechanism of this unique compartment’s longevity within cells113. 

Although no physiological function has been attributed to membrane tubulation, this process 

is correlated with the ability of S. Typhimurium to cause disease as mutation of effectors 

(such as PipB2, SopD, SopD2, SseJ, SifA) required for ET formation results in virulence 

attenuation in inbred mice96, 102, 114, 115. The hypotheses that ETs may be used to collect 

membrane and nutrients important for salmonellae survival, to dilute lysosomal enzymes or 

to promote the stability of the SCV membrane have yet to be verified experimentally. 

Endosomal tubulation could be a result of effector inhibition of fission, which typically 

occurs to recycle endosomes back to the plasma membrane and hence, the inhibition of this 

step might maintain membranes and proteins (that are normally recycled) as components of 

the SCV.

Overlapping functions of effectors

Irrespective of the mechanisms involved, SPI-2 and its effectors promote replication of S. 
Typhimurium in bone marrow-derived macrophages from mice and virulence in inbred 

mice116. In the systemic mouse model, strains lacking individual SPI-2 effectors have 

attenuated virulence, although these single deletions do not lead to the more pronounced 

attenuation that accompanies inactivation of the SPI-2 T3SS, suggesting that effectors have 

overlapping and partially redundant functions. Much attention has been placed on the S. 
Typhimurium mouse model of infection, in which the importance of individual effectors is 

measured on the basis of virulence phenotypes. However, the acquisition of effectors rarely 

has a neutral effect on fitness. and their expression alone suggests that the effector has a 

pivotal role in pathogenesis, and the seemingly partially redundant functions may reflect 

their differential importance in different animal hosts. Another important and often 

overlooked variable in experiments using strains that lack specific effectors, is the possible 

increased delivery of other effectors that may mask, enhance or otherwise affect virulence 

phenotypes. These issues can only be circumvented by testing the effects of point mutations 

of crucial functional residues of the effector, but these studies are only feasible after function 

and/or binding partners have been identified. This is best illustrated by our understanding of 
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the virulence defect of the SifA deletion mutant. Strains that lack SifA have the most 

pronounced virulence defects117, and SseJ and SopD2 promote release of bacteria into the 

cytosol in this mutant106, 118. The presence of cytosolic salmonellae results in rapid bacterial 

clearance in macrophages owing to the induction of host stress response pathways that are 

not normally activated in response to intravacuolar bacteria. Vacuolar integrity is however 

not the only variable that is responsible for the virulence defect of sifA-null bacteria, as the 

virulence defect is SopD2-dependent but not SseJ-dependent106, 118. Other SPI-2 effectors 

that confer virulence defects when deleted individually are SpvB, SseJ, SseF, SseG, SseI, 

SopD2, SteA and PipB297, 105, 114, 115, 117, 119–122; and other than SseJ, in which a site-

directed mutation that confers a loss in activity has been generated, it is important to 

interpret these results as preliminary since they could reflect an increased delivery of other 

effectors that may contribute to attenuated virulence.

Host modification of effectors—Inside host cells, salmonellae effectors undergo 

modifications and participate in interactions similar to host proteins, which enables them to 

perform their functions by influencing their localization and activity. Lipidation of some 

effectors has been documented, which probably affects their membrane localization. For 

example, SifA undergoes prenylation108 and SspH2 and SseI are S-palmitoylated123. 

SopB27, SptP43 and SopA124 undergo ubiquitination, and phosphorylation of AvrA68 is 

important for activity. In addition, caspase-3 can cleave SipA into two domains, but this 

occurs extracellularly and not inside cells where SipA functions, therefore cleavage by 

Caspase-3 may not be required for SipA function58. In the case of SseJ, its enzymatic 

activity is induced by the host factor RhoA84 and its localization to endosomal membranes is 

dependent on its association with RhoA84. Co-expression of SseJ and SifA or SseJ and 

RhoA induces the formation of ETs in HeLa cells, supporting the idea of cooperativity 

between these proteins to induce tubulation95. The carboxy termini of SifA and SifB have a 

fold similar to GEFs of Rho GTPases although neither effector has known GEF activity95. 

SifA binds GDP-bound RhoA95, 125 and promotes the activity of a yeast RhoA homologue 

(Rho1) on peroxisomes126, suggesting that it may regulate SseJ enzymatic activity by 

activating RhoA95, 125. Despite having a structural fold similar to GEFs, SifA lacks 

conserved catalytic residues important for GEF activity and they differ from those in other 

bacterial GEFs127, which supports the idea that SifA functions as a scaffold for the assembly 

of other proteins on GTPases; however, a biochemical link between SifA and SseJ remains 

to be defined.

Induction of host stress response pathways

Activation of autophagy

Autophagy is a stress-induced metabolic adaptation that is triggered in eukaryotic cells in 

response to sublethal stress, and is characterized by lysosomal degradation of cytosolic 

components, including bacteria. Its role in the clearance of salmonellae131 is unknown 

because Salmonella spp. largely (and potentially exclusively) reside within the SCV. 

However, in tissue culture models and inbred mice, a small percentage of NTS escape the 

vacuole and hyper-replicate, leading to the extrusion of the infected cell132. Data using 

inbred mice models suggest that host cell extrusion may be physiologically relevant in 
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restricting intraepithelial proliferation in the intestinal mucosa {Sellin, 2014 #302}, although 

since it occurs for only a minority of cells, its overall importance in the infectious process is 

unknown. Cytosolic detection may be most relevant to induction of innate and acquired 

immune responses that are related to autophagy and the inflammasome. Deficiencies in 

autophagy related genes restrict the replication of intracellular Salmonella spp. in the 

unicellular model organism Dictostyleum discoideum and in the multicellular model 

organisms Caenorhabditis elegans and Drosophila melanogaster133. In the mouse model, 

autophagy in intestinal epithelial cells protects against dissemination of invasive bacteria134. 

Polymorphisms in the autophagy related gene ATG16L1, which is associated with 

susceptibility to Crohn’s disease in humans, correlate with reduced clearance of salmonellae 

in cells and animal models, owing to decreased induction of autophagy and increased IL-1β 
secretion135, 136. However, these polymorphisms also influence granule formation in Paneth 

cells in an autophagy-independent manner137, suggesting that some effects on bacterial 

clearance may not be a consequence of altered autophagy alone. Irrespective of whether 

NTS escape to the cytoplasm138 through alteration of the SCV by SPI-2 effectors, it is 

plausible that autophagy-mediated targeting of the SCV for destruction, and its interactions 

with other host innate immune defence pathways, has an effect on host clearance of NTS.

Cellular models have shown that damaged SCVs and cytosolic bacteria can be targeted for 

autophagic degradation (Figure 4) as they recruit autophagosomes through ubiquitin-

LC3adaptor proteins, such as p62 (sequestosome SQSTM1) and nuclear dot protein 52 

(NDP52)139. Phosphorylation of the adaptor optineurin (OPTN) by protein kinase TANK 

binding kinase 1 (TBK1) can also promote autophagy of ubiquitin-coated cytosolic 

salmonellae140. Ubiquitination results in the recruitment of additional components of the 

autophagy machinery, including the Atg16L1 complex, the ULK1 complex and Atg9L1 

around cytosolic salmonellae139, 141–143. Furthermore, SCV membrane damage promotes 

the accumulation of galectins 3 and 8, which recruit NDP52 to initiate autophagy144. The 

lipid second messenger diacylglycerol (DAG) is also observed on damaged SCVs, 

independent of ubiquitin accumulation145. DAG activation can also activate SQSTM1 and 

protein kinase Cδ to induce the production of reactive oxygen species via NOX2 complex 

assembly145. These host factors contribute to autophagic clearance of cytosolic bacteria and 

damaged SCVs, but salmonellae use counteractive mechanisms to subvert this process. The 

reactivation and recruitment of mammalian target of rapamycin (mTOR) to SCVs, which 

occurs following the acute and transient amino acid starvation response that is induced on 

infection, inhibits the induction of autophagy and possibly provides an escape mechanism 

for the bacteria146. It has been suggested that in macrophages, an unknown SPI-2 effector is 

involved in the recruitment of focal adhesion kinase to the SCV, which can then activate 

mTOR through Akt147. Furthermore, it is likely that autophagic targeting of damaged or 

altered SCVs influences antigen presentation, as well as adaptive and autoimmunity, and a 

deeper understanding of this process should expand our knowledge of chronic human 

diseases.

Inflammasome activation

In addition to autophagy, inflammasome activation can occur following the detection of 

salmonellae. Inflammasomes are molecular platforms that respond to pathogens and tissue 
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damage by promoting cell death (in a process known as pyroptosis) and pro-inflammatory 

signalling148. Their importance for innate immune defence against salmonellae is evidenced 

by mice that lack key components (such as caspases-1 and 11, IL-1β or IL-18), which 

succumb earlier to infection and have higher bacterial loads149, 150. Caspase-1 activation by 

salmonellae can occur via the activation of either the NLRC4 or NLRP3 inflammasome, 

both of which are individually dispensable in vivo, indicating that they have redundant roles 

early in infection151, 152. Coordinated activation of both NLRs sustains the release of IL1β, 

which is important for progression of the infection in mice153. The Apoptosis Speck like 

CARD domain containing protein (ASC) associates with the inflammasome and is crucial 

for salmonellae-induced IL-1β secretion152. The physiological significance of ASC 

containing foci is unknown, as the CARD domain of NLRC4 can interact directly with the 

CARD domain of Caspase-1, which suggests that ASC may not be required as a linker. 

However, it has been proposed that ASC might have a role in signal amplification function 

and activation of NLRP3 and NLRC4 requires ASC in vitro152, 154, 155.

The NLRP3 inflammasome can be activated by citrate, which is secreted by S. Typhimurium 

mutants that lack the TCA cycle enzyme aconitase156. Aconitase-deficient salmonellae show 

reduced acute systemic virulence in mice after oral administration and are defective in their 

ability to persist. Although mitochondrial cardiolipin is a direct ligand for NLRP3157, it is 

unknown whether cardiolipin in bacterial membranes, (which may be altered by 

dysregulation of the TCA cycle), can also activate NLRP3. The cardiolipin content of the 

salmonellae outer membrane increases in a PhoPQ-dependent manner, indicating that it 

might increase in host cells where PhoPQ is activated, and could be involved in 

inflammasome activation158. Caspase-1 activation by NLRC4 depends largely on the 

expression of flagellin159–163 and the presence of cytosolic flagellin is sufficient to activate 

NLRC4, whereas mutation of three conserved carboxy-terminal hydrophobic amino acids in 

flagellin abolishes recognition160. As mentioned above, in addition to flagellin, the inner rod 

proteins of the salmonellae T3SSs are capable of activating NLRC4. These rod proteins 

adopt an α-helical secondary structure and may oligomerize to form a protein translocation 

channel154, 166. Cytosolic recognition of flagellin and inner rod proteins is mediated by the 

NLR family Apoptosis Inhibitory Proteins (NAIP)167, 168. Mouse NAIP5 directly recognizes 

flagellin and mouse NAIP2 recognizes the SPI-1 T3SS rod protein PrgJ, but not its SPI-2 

homologue SsaI167. The ligand specificity of NAIPs is mediated by an internal region that 

encompasses several NBD-associated α-helical domains169, and ligand binding is required 

for NAIP oligomerization with NLRC4. Unlike the multiple NAIP genes in mice, the human 

NAIP gene locus consists of only a single full-length orthologue and recognizes the 

salmonellae SPI-1 T3SS needle protein PrgI170. Recognition of the T3SS components may 

be more important than recognition of flagellin since the T3SSs have a stronger association 

with bacterial virulence. Copy number variation in NAIP has been reported for 

geographically-segregated human populations and could contribute to the variable responses 

of individuals to infection171, 172. The redundancy between NAIP5 and NAIP2, as well as 

NLRC4 and NLRP3 in the detection of salmonellae may enable the host to activate the 

Caspase-1 pathway despite changes in the expression of pathogen ligands that these 

complexes recognize, e.g. detection may be dependent on NLRP3 when flagellin expression 

is down-regulated during the systemic phase of infection173.
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Detection of cytosolic salmonellae or direct recognition of cytoplasmic LPS173 can also 

induce inflammasome-mediated cell death through Caspase-11174, 175, which is non-

essential for the activation of Caspase-1 and may represent a form of inflammasome 

activation that occurs later in the infection50. It is unclear whether Caspase-11 interacts with 

the Caspase 1 inflammasome components NLRC4 and ASC175, 176, but in the absence of 

Caspase-1, Caspase-11-mediated cell death seems to be exploited by salmonellae to cause 

inflammation in the host. Mice lacking Caspase-1 are more susceptible to infection with S. 
Typhimurium than mice lacking both Caspase-1 and Caspase-1156, 150. Although activation 

of the inflammasome pathway may be beneficial in defence against cytosolic bacteria 50, 

aberrant hyperactivation, possibly when LPS concentrations reach a high level in the cytosol 

(known as endotoxic shock), is likely to be detrimental177.

Interactions between stress response pathways

Recent studies are now beginning to unravel the integral coupling of the inflammasome and 

autophagy pathways. It is possible that hyperactivation of inflammasomes occurs when 

autophagy fails to clear the pathogen, given that autophagy maintains cellular homeostasis 

and tightly controls inflammasome activation in the host. The sensing of pathogens by 

TLRs, which is important for the upregulation of Salmonellae SPI-2 transcription and 

formation of the replicative compartment, the SCV, in macrophages49, promotes 

autophagosome formation178–180. Ectopic expression of the effector SipA activates Nod1 

and Nod2 in epithelial cells181, which also induces autophagosome formation182. In turn, 

autophagy regulates the transcription, processing and secretion of cytokines (IL1β, IL1α and 

IL18) that are triggered by the inflammasome183, and autophagosomes can sequester and 

degrade inflammasome components184. Moreover, the inhibition of mitophagy185, 186 can 

also trigger inflammasome activation. The exquisite control exerted by autophagy on 

inflammasome components is apparent by its ability to both activate and inhibit Caspase-11; 

Caspase-11 activation requires the lysis of pathogen containing vacuoles by IRGs187, but 

interestingly, autophagy also counteracts Caspase-11 activation, possibly by sequestering 

bacteria that escape the vacuole and preventing LPS release into the cytosol. Autophagic 

clearance of pathogen components in the cytosol may temper overt inflammasome 

activation, and the timing of all of these events in the host may determine the ultimate 

outcome.

Conclusions and future prospects

Considerable progress has been made in our understanding of how salmonellae intricately 

adapt host signalling and vesicle trafficking pathways to make the usually inhospitable 

intracellular environment a replication niche. The discrete functions of many of the 

numerous salmonellae effector proteins are not fully understood, and it is likely that many of 

their functions may only be elucidated when their activities are studied in the context of 

other effectors and in a spatiotemporal context within the host. The pace at which the 

activities of effector proteins are elucidated is likely to only increase through a more 

systematic investigation of their functions. Furthermore, much of the work to date has used 

non-polarized, immortalized cell lines, which greatly confounds our ability to understand the 

importance of directional movement within intestinal polarized epithelial cells, as well as the 
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interplay between salmonellae and cell death pathways. Recent advances in the culturing 

and differentiation of primary epithelial cells from both mice and humans should add to our 

knowledge of the specific and diverse responses of these cell types to salmonellae188. It is 

most likely that not all of the effectors function in all cell types, which must be investigated 

for substantial progress towards understanding the important niches of salmonellae in the 

host to be made. It is possible that the seemingly redundant functions of effector proteins are 

important for bacterial survival or replication in different cell types or in different hosts, 

particularly for those serovars that have a broad host range (such as S. Typhimurium). This 

would be consistent with data that shows that host-restricted serovars (such as S. Typhi) have 

lost a number of effector proteins that are potentially important for causing gastrointestinal 

disease in a diverse range of hosts, but are possibly detrimental to causing systemic disease 

in specific host species. Only a limited number of unique virulence factors have been 

identified in S. Typhi suggesting that loss-of-function mutations may have a pivotal role in 

restricting host range and promoting systemic disease. It is interesting to speculate that many 

of the S. Typhimurium effectors that S. Typhi lacks are most important within polarized 

gastrointestinal epithelial cells as S. Typhi does not typically reside in this niche in human 

hosts, except during chronic colonization of the gallbladder. Research on S. Typhi has 

obviously lagged behind our understanding of NTS, but the availability of humanized mouse 

models, as well as advances in studying the organism in human cells, should teach us more 

about the pathogenesis of this human-specific pathogen189–191. The increase in the number 

of whole genome sequences of S. Typhimurium strains and other non-typhoidal and 

typhoidal strains that cause systemic or gastrointestinal disease should help to tease apart the 

effector proteins that are involved in determining host range and possible causing different 

disease manifestations. Similarly, advances in human diversity in inflammasome and 

autophagy pathways should provide important information about human susceptibility to 

salmonellae infection.

Substantial progress has been made in understanding how NTS can outcompete the 

microbiota to cause disease and disseminate, with induction of inflammation being an 

important trigger for release of host factors that promote proliferation. Salmonellae 

infection, which has reduced substantially owing to modern hygiene, may have provided a 

selective pressure for predisposition to increased inflammatory responses during times of 

increasing population density. Thus, future studies that examine host-salmonellae 

interactions in the context of different human populations will expand our understanding of 

the role of both the host and the bacterium in pathogenesis. Finally, considerable interest in 

phenotypic variation of individual salmonellae cells within host cells and tissues has led to 

renewed interest in the observation that different populations of bacteria have variable 

growth rates in vivo192–194. It will be interesting to examine these diverse populations and 

the expression profiles of important virulence factors that modify host cell responses, as this 

should help to elucidate interactions between bacteria in the host in the context of distinct 

subpopulations. Such studies are expected to improve our understanding of whether bacteria 

have specialized functions to replicate and resist host defences in specific mammalian 

niches.
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Glossary

Autophagy
A catabolic cellular process in which cytoplasmic contents, such as damaged organelles and 

proteins, are targeted for lysosomal degradation

Pyroptosis
An inflammatory, programmed cell death pathway that is triggered by activation of caspases 

1 and 11 (in mice) and caspases 4/5 and 11 (in humans).

Peyers Patches
Organized lymphoid regions of the small intestine monolayer that function in immune 

surveillance and the generation of a localized immune response

Pathogenicity Island
A large horizontally acquired region of genomic DNA that often encodes virulence factors

Type III Secretion System (T3SS)
A needle-like apparatus that is assembled by pathogenic bacteria for the delivery of bacterial 

effectors directly into host cells

Pathogen recognition receptors (PRRs)
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Proteins of the innate immune system that recognize pathogen-associated molecular patterns 

and initiate an innate immune cascade that facilitates pathogen clearance by triggering 

cytokine and chemokine expression

Toll-like receptor (TLR)
Membrane bound receptors of the innate immune system that recognize specific pathogen 

associated molecular patterns

Nod-like receptor (NLR)
Intracellular receptors of the innate immune system that recognize pathogen associated 

molecular patterns

Endocytosis
The process by which extracellular particles are engulfed by eukaryotic cells and enclosed in 

a vesicle

Jnk Pathway
The JNK signalling pathway responds to stress to regulate apoptosis, cell proliferation and 

immune responses

Stress Fibre
Cytoskeletal structures comprised of bundles of actin filaments and are important for cell 

motility and endocytosis

Microfold cells
Specialized epithelial cells that phagocytose molecules in the intestinal lumen for 

transepithelial transport to enable immunological sampling of antigens

Tight junctions
The adhesive contact comprised of protein complexes that function to limit the movement of 

molecules and ions through the space between cells in a monolayer

Transcytosis
The process of vesicular transport of molecules across a cell

Caspase
Family of cysteine proteases that have an essential role in cell death pathways

Rho GTPase
A family of GTPases that are important molecular switches for regulating actin dynamics

Siderophore
Small molecules that have high affinity for iron and are secreted by bacteria to scavenge iron

Reactive Oxygen Species (ROS)
Chemically reactive species containing oxygen, which are produced as a by-product of 

aerobic respiration and function in combating microbial infections

Endotoxic shock
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Severe inflammatory reaction induced by high levels of endotoxin in the bloodstream

Macropinocytosis
A non-selective form of endocytosis that involves membrane ruffles

Microtubular network
The dynamic network of tubulin polymers that comprise an important component of the cell 

cytoskeleton. This network is utilized for intracellular transport, including movement of 

secretory vesicles and organelles, including the Salmonella containing vacuole

Sorting nexin
A family of proteins that are characterized by the presence of a phox-homology domain that 

functions by binding phosphatidylinositol-3-monophosphate. Sorting nexins associate with 

the endocytic network and are involved in endocytosis, endosomal sorting and endosomal 

signalling

Peroxisome
Organelles that degrade long-chain fatty acids in eukaryotes

Prenylation
The attachment of farnesyl or geranyl-geranyl groups to C-terminal cysteine residues that 

are present in specific prenylation motifs of proteins, which promotes membrane association 

or protein-protein interactions

Palmitoylation
The reversible covalent posttranslational attachment of lipids (usually palmitate) to proteins 

on cysteine residues

Mitophagy
The process of targeting mitochondria for autophagic degradation

Stromal cells
Connective tissue cells that include enterocytes, tissue fibroblasts, and vascular endothelial 

cells

Periphery directed transport vesicles
Vesicles, such as those from the SCV, that move towards the periphery of cells along 

microtubules

Peroxisome
Eukaryotic organelles involved in the catabolism of fatty acids
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Box 1

Salmonella enterica serovar Typhi

Most of our understanding of salmonellae-host interactions is based on studies using S. 
Typhimurium infection of cultured cells and the inbred mouse model. Although the 

findings of such studies are often generalized to all serovars, much less is definitively 

known about the interactions between human host cells and the causative agent of 

typhoid fever, S. Typhi. The ability of S. Typhi to cause a human-restricted systemic 

disease is through the acquisition of novel genes and loss of others through gene loss or 

inactivation. For example, the S. Typhi-specific typhoid toxin is a tripartite exotoxin that 

causes DNA damage and subsequent cell-cycle arrest. This is mediated by the active 

subunit of cytolethal distending toxin, CdtB, which associates with PltA and PltB (which 

are homologues of pertussis toxin), and the tripartite complex is delivered to the 

extracellular milieu, thereby intoxicating neighboring cells195, 196. Secretion of the 

tripartite toxin is dependent on the muramidase TtsA, which is predicted to bind to 

peptidoglycan in the cell wall and may mediate secretion of typhoid toxin through a 

secretion mechanism that is thought to have evolved from phage endolysins197. However, 

the contribution of the toxin to virulence and host specificity is poorly understood, 

although its binding to specific carbohydrates may have a role in its localization in host 

cells. In addition, the absence of the effector GtgE (which cleaves and inactivates Rab29) 

enables Rab29-dependent vesicular export of typhoid toxin, which contributes to efficient 

trafficking of the toxin to its targets198, 199. S. Typhi also expresses a capsular 

polysaccharide that reduces intestinal inflammatory responses200, 201. This, in 

combination with the inability to produce very long O-antigen chains as part of LPS and 

the differential regulation of the SPI-1 T3SS, results in a reduced inflammatory response 

to S. Typhi compared with S. Typhimurium202.

Genome reduction contributes to the ability of S. Typhi to cause human-restricted 

systemic disease. Several virulence factors that are present in serovars that cause broad 

host range gastroenteritis are pseudogenes in S. Typhi and S. Paratyphi203. As mentioned 

above, GtgE is a cysteine protease secreted by NTS that cleaves specific Rab GTPases in 

their regulatory switch regions and this prevents their recruitment to the SCV; however, 

this protease is absent in S. Typhi. Heterologous expression of GtgE in S. Typhi promotes 

intracellular replication in human macrophages and survival in non-permissive mouse 

macrophages198, 204. Furthermore, the effectors SseJ and SopD2 are absent in S. Typhi, 

and their loss may contribute to the ability of S. Typhi to cause systemic, rather than 

gastrointestinal, disease203, 205.

Between 3–5% of individuals that become acutely infected with S. Typhi become chronic 

carriers and actively shed bacteria206. S. Typhi can access the gall bladder during acute 

infection, where it can reside in biofilms for decades and be sheltered from killing by 

conventional antibiotic treatment76. This finding, together with the development of an 

appropriate animal model for the carrier state, will greatly aid investigations that aim to 

eradicate the human reservoir. S. Typhi does not naturally replicate in mice, and 

considerable research into the development of an animal model has led to a number of 

models for infection which can give us important insights into this pathogen. These 

LaRock et al. Page 28

Nat Rev Microbiol. Author manuscript; available in PMC 2016 October 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models include humanized mouse models that develop lethal S. Typhi infections, albeit 

the pathological features do not fully reflect human infection189–191. Ultimately, human 

genetics has an important role in susceptibility to infectious diseases, and to truly 

understand S. Typhi interaction with humans there must be a shift from the reliance upon 

cultured cells or mouse cell lines that have genetically similar backgrounds. Perhaps the 

future lies in more advanced human intestinal and immune cell models (such as the 

epithelial cell culture system developed to produce a panel of cell lines from individuals 

which exhibited differential adherence phenotypes for pathogenic E. coli) to understand 

individual responses to S. Typhi188, 207.
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Box 2

Salmonella persister cells

Phenotypic heterogeneity of Salmonella spp. populations within endocytic vacuoles was 

originally documented in the early 1990’s and indicated that salmonellae populations 

could divided into two subpopulations: those that rapidly replicate and those that do not 

replicate but are still viable75. These non-replicating variants are recalcitrant to killing by 

antibiotics (termed antibiotic tolerance) and have been termed persisters. The subject of 

bacterial persistence is an area of renewed interest owing to the increasing number of 

multi-drug resistant bacteria combined with the dwindling pipeline of novel antibiotics. 

Persisters arise stochastically owing to the inherent heterogeneity of bacterial 

populations208, and their formation can also be induced following exposure to stresses 

such as sub-inhibitory concentrations of antibiotics209. Phenotypic heterogeneity in 

isogenic bacterial populations has been observed frequently, but the mechanisms behind 

this phenomenon have been difficult to dissect with traditional tools that employ bulk 

methodologies. Bacterial signalling using second messengers, like cyclic di-GMP, 

enables a rapid response to changing environmental conditions and is one way in which 

phenotypic variation can be achieved. A FRET-based biosensor has been used to measure 

the variation in the expression of cyclic di-GMP in individual cells, which has been key 

to our understanding of how differences in the levels of this factor between cells correlate 

with phenotypic diversity210. The fluorescence dilution technique has also been used to 

detect persisters by monitoring the growth rate of single cells in vivo and was recently 

been applied to examine the emergence of S. Typhimurium persisters194. Internalization 

of S. Typhimurium by macrophages was found to rapidly induce the persistence 

phenotype as a result of vacuolar acidification and nutritional deprivation. The emergence 

of S. Typhimurium persisters in macrophages was also found to be dependent on the Lon 

protease which degrade the antitoxins of 14 putative toxin-antitoxin modules, resulting in 

the release of toxin activity and subsequent growth arrest194. As persisters can revert back 

to growth in new environmental conditions, they may have a role in re-occurring 

infections. The methods described above and other developing technologies to follow 

and/or isolate individual cells from a population will greatly enhance our ability to 

understand phenotypic diversity within isogenic populations.
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Online summary

• Salmonella spp. deliver proteins into host cells to promote replication 

and survival.

• Effector proteins translocated by the Salmonella pathogenicity island 1 

Type III secretion system (T3SS) are important for bacterial invasion 

into non-phagocytic cells.

• Induction of inflammation enhances extracellular growth of 

salmonellae and enables them to outcompete the gut microbiota

• Effector proteins delivered by the Salmonella pathogenicity island-2 

T3SS modify the Salmonella containing vacuole, associated endosomal 

membranes and proteins, all of which promotes intracellular 

replication.

• Interplay between the host response pathways of autophagy and 

pyroptosis is involved in the detection of intracellular Salmonella spp.

• Distinct functions for many of the salmonellae effector proteins are not 

fully understood, and it is likely that many of their functions will only 

be elucidated when their activities are studied in the context of other 

effectors and are considered in a spatiotemporal context within the 

host.
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Figure 1. Host pathways manipulated by Salmonella during epithelial cell invasion
Following contact with host cells, Salmonella spp. translocate effectors via the Salmonella 
pathogenicity island 1 (SPI-1) type III secretion system (T3SS) to mediate invasion. On the 

SCV and potentially at the plasma membrane, SopB recruits Rab5 and the PI3K Vps34 to 

generate PI(3)P. SopB can also recruit AnxA2 to the membrane, which functions as a 

platform for actin rearrangements, and SopB also activates Rho-kinase dependent actin 

rearrangements. SopE and SopE2 activate host Rho GTPases to promote bacterial 

internalization by actin reorganization. Activation of Rac1 (conversion from Rac1-GDP to 

Rac1-GTP) by SopE in particular promotes the recruitment of factors to the host cell 

membrane (such as WAVE regulatory complex (WRC) and N-WASP), which promotes actin 

rearrangements at the host cell membrane, proximal to extracellular Salmonella spp.. The 

host Arf1 GEF, ARNO, is activated by binding to Arf6 and is recruited to the plasma 

membrane by PI(3)P, which is possibly generated by SopB. Activation of Arf1 promotes 

WRC-dependent actin polymerization and bacterial uptake. WRC and N-WASP activate 

actin related proteins (Arp2/3) which results in localized actin polymerization to promote 

bacterial uptake into non-phagocytic cells. The effectors SipA and SipC promote bacterial 

invasion through their actin bundling functions. SipA may need to be cleaved into two 

domains (potentially by caspase-3) for activation. SptP promotes restoration of epithelial cell 

architecture after bacterial entry by reversing the activation of Rho GTPases.
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Figure 2. Salmonella-induced inflammation promotes pathogen transmission
Localized inflammation in the intestinal tract is important for promoting transmission of 

salmonellae. Activation of Rho GTPases by the effectors SopE, SopE2 and SopB induces 

MAPK pathways, thereby activating NFκB and AP1, which stimulates production of the 

proinflammatory cytokine IL-8 to promote transepithelial migration of neutrophils into the 

intestinal lumen. SipA activates Caspase-3 and may be subsequently cleaved by this 

protease;; cleavage of SipA also promotes transepithelial migration of neutrophils. 

Caspase-1 is activated by FliC (a flagellin protein), PrgJ (a rod protein of the T3SS 

apparatus) and possibly by the effector SipB in macrophages, which may stimulate the 

release of IL-1β and IL-18. SopE activation of Rho GTPases can also activate Caspase-1 in 

epithelial cells. Intracellular LPS can activate Caspases4 and 5, resulting in the release of 

mature IL-1β and IL-18, which promotes the synthesis of IL-17 and IL-22 by T-cells and 

amplifies inflammation in the intestinal mucosa. SopE also activates the production of 

nitrate by host cells, which can be used by luminal Salmonella spp. for respiration. Pathogen 

invasion also induces the release of reactive oxygen species (ROS) and lipocalin-2. ROS 

converts the respiratory by-product thiosulfate (generated by the microbiota) into 
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tetrathionate, which can be used by Salmonella spp. (but not the microbiota) for respiration. 

Lipocalin-2 sequesters the iron siderophore enterochelin from the microbiota, but the 

Salmonella spp. siderophore salmochelin escapes sequestration. Together, these changes 

promote outgrowth and transmission of Salmonella spp. that reside in the intestinal lumen. 

The MAPK inflammatory responses are dampened by the activities of SptP, SpvC, AvrA, 

SspH1 and GogB, but the mechanistic basis of this is not fully understood.
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Figure 3. Salmonella manipulation of host membranes
After invasion, Salmonella reside in a vacuolar compartment that undergoes various surface 

modifications and alterations that distinguish it morphologically, forming the Salmonella-

containing vacuole (SCV). In some cell types (such as epithelial cells), the SCV acquires 

markers of late endosomal compartments including LAMP-1 (purple), Rab7, vacuolar 

ATPase and cholesterol. Rab7 interacts with Rab7-interacting lysosomal protein (RILP) and 

the microtubular motor protein, dynein, and this complex is important for centripetal 

movement of the SCV in the cell early in infection. Salmonella pathogenicity island 2 

(SPI-2) effectors (shown in deep red) are released across the SCV membrane into the host 

cell cytosol by the T3SS. These effectors distribute to different locations in the cell and are 
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required for SCV vacuolar modifications and microtubular-based movement, including 

promoting the dynamic formation of endosomal tubules (ETs). Binding of SseJ to RhoA 

results in direct modification of the lipid content of the SCV and ETs (producing cholesterol 

esters), whereas SseL counteracts this activity by decreasing lipid droplet accumulation in 

cells. SseF and SseG promote microtubule bundling and the aggregation of endosomal 

vesicles;; in addition, recruit Golgi-derived vesicles to the SCV. SteC induces actin 

rearrangements around the SCV and can alter the position of the SCV within the cell, and 

SopB induces phosphorylation and activation of myosin II indirectly. SopB phosphatase 

activity reduces the membrane charge of the SCV by preventing the accumulation of Rabs, 

which are important for promoting SCV fusion to lysosomes. SifA binds to the eukaryotic 

SifA and kinesin interacting protein (SKIP), which activates the microtubular motor protein 

kinesin to mediate the extension of ETs. PipB2 is involved in recruiting kinesin to the SCV 

and ETs,and SifA-SKIP is suggested to bind Rab7 and Rab9. SifA binding to Rab7 may 

disrupt interactions between Rab7-RILP and dynein, which would result in increased 

peripheral movement of ETs. SifA binding to Rab9 blocks retrograde transport of mannose 6 

phosphate receptor (MPR) hydrolyases and MPR to the Golgi, which blocks lysosomal 

fusion with the SCV. Salmonella spp. manipulate host membranes to direct the SCV towards 

the nucleus and then promotes SCV movement towards the cell periphery where bacteria are 

presumably released into the intestinal lumen to infect neighbouring cells.
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Figure 4. Autophagy and inflammasome activation in response to Salmonella spp. infection
Most intracellular S. Typhimurium reside in SCVs but in some cellular models of infection, 

some bacteria escape into the host cytosol. Both cytosolic bacteria (shown in step 3) and 

damaged SCVs (shown in step 5) can be ubiquitinated, and are therefore recognized by the 

bridging adaptors such as NDP52, OPTN or p62, which leads to the recruitment of LC3 and 

autophagic clearance. In parallel, Salmonella spp. mediate an acute and transient amino acid 

starvation response, which reactivates mTOR, thereby inhibiting autophagy. The physiologic 

significance of this on bacterial clearance remains unclear, since most Salmonella spp. 

remain inside the SCV. Detection of specific bacterial components (such as flagellin, the 

T3SS rod protein PrgJ and LPS) in the host cytosol can trigger activation of inflammasome-

mediated cell death via caspase-1 and -11 (shown in step 7). SPI-1 mediated detection of 

PrgJ and flagellin by NAIP2 and NAIP5 respectively in mice trigger NLRC4 mediated 

Caspase-1 activation, while citrate and potentially bacterial cardiolipin can trigger Caspase-1 

activation via NLRP3 inflammasome. The detection of cytosolic LPS in the host can trigger 

Caspase-11 activation.
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