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Variation in gene expression, in addition to sequence polymorphisms, is known to influence developmental, physiological, and
metabolic traits in plants. Genetic mapping populations have facilitated identification of expression quantitative trait loci (eQTL), the
genetic determinants of variation in gene expression patterns. We used an introgression population developed from the wild desert-
adapted Solanum pennellii and domesticated tomato (Solanum lycopersicum) to identify the genetic basis of transcript level variation. We
established the effect of each introgression on the transcriptome and identified approximately 7,200 eQTL regulating the steady-state
transcript levels of 5,300 genes. Barnes-Hut t-distributed stochastic neighbor embedding clustering identified 42 modules revealing
novel associations between transcript level patterns and biological processes. The results showed a complex genetic architecture of
global transcript abundance pattern in tomato. Several genetic hot spots regulating a large number of transcript level patterns relating to
diverse biological processes such as plant defense and photosynthesis were identified. Important eQTL regulating transcript level
patterns were related to leaf number and complexity as well as hypocotyl length. Genes associated with leaf development showed an
inverse correlation with photosynthetic gene expression, but eQTL regulating genes associated with leaf development and
photosynthesis were dispersed across the genome. This comprehensive eQTL analysis details the influence of these loci on plant
phenotypes and will be a valuable community resource for investigations on the genetic effects of eQTL on phenotypic traits in tomato.

The genetic basis of many qualitative and quantitative
phenotypic differences in plants has been associated
with sequence polymorphisms and the corresponding

changes in gene function. However, differences in the
levels of steady-state transcripts, without underlying
changes in coding sequences, also significantly influence
plant phenotypes. Closely related plant species often
have little coding sequence divergence; nonetheless, the
related species often develop unique physiological,
metabolic, and developmental characteristics, indicating
that patterns of gene expression are important in species-
level phenotypic variation (Kliebenstein, 2009; Koenig
et al., 2013). Phenotypic differences attributed to varia-
tions in gene expression patterns have been found to
influence disease resistance, insect resistance, phosphate
sensing, flowering time, circadian rhythm, and plant
development (Kroymann et al., 2003;Werner et al., 2005;
Clark et al., 2006; Zhang et al., 2006; Svistoonoff et al.,
2007; Chen et al., 2010; Hammond et al., 2011).

Global transcript level changes across precise genetic
backgrounds have been used to define expression
quantitative trait loci (eQTL) by identifying genomic
regions responsible for the variation in transcript levels
(Jansen and Nap, 2001; Kliebenstein, 2009; Druka et al.,
2010; Chitwood and Sinha, 2013). An eQTL is a chro-
mosomal region that drives variation in gene expres-
sion patterns (i.e. steady-state transcript abundance)
between individuals of a genetic mapping population
and can be treated as a heritable quantitative trait (Brem
et al., 2002; Kliebenstein, 2009; Cubillos et al., 2012).
Depending upon the proximity to the gene being regu-
lated, eQTL can be classified into two groups: cis-eQTL
when the physical location of an eQTL coincides with the
location of the regulated gene, and trans-eQTL when an
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eQTL is located at a different position from the gene be-
ing regulated (Kliebenstein, 2009). eQTL studies with the
model plant Arabidopsis (Arabidopsis thaliana) showed
that cis-eQTL have a significant effect on local expression
levels, whereas trans-eQTL often have global influences
on gene regulation (DeCook et al., 2006; West et al., 2007;
Holloway and Li, 2010). Global eQTL studies also iden-
tified transacting eQTL hot spots, which contain master
regulators controlling the expression of a suite of genes
that act in the same biological process or pathway. For
example, eQTL hot spots in Arabidopsis colocate with
the ERECTA locus, which has been shown to pleio-
tropically influence many traits, including those regu-
lating morphology (Keurentjes et al., 2007). Similarly, the
rice sub1 locus, which regulates submergence tolerance
by controlling internode and leaf elongation, controls the
activity of ethylene response factorswith significant trans
effects (Fukao et al., 2006). In addition, the eQTL identi-
fied using pathogen-challenged tissues in barley were
enriched for genes related to pathogen response (Chen
et al., 2010; Druka et al., 2010). Thus, eQTL analyses have
the potential to reveal a genome-wide view of the com-
plex genetic architecture of gene expression regulation
and the underlying gene regulatory networks and may
also identify master transcriptional regulators.
Cultivated tomatoes, along with their wild relatives,

harbor broad genetic diversity and large phenotypic
variability (Moyle, 2008; Ranjan et al., 2012). Wide in-
terspecific crosses bring together divergent genomes,
and hybridization of such diverse genotypes leads to
extensive gene expression alterations compared to ei-
ther parent. Introgression lines (ILs), developed by
crosses between wild relatives and the cultivated to-
mato to bring discrete wild relative genomic segments
into the cultivated background, have proved to be a
useful genetic resource for genomics and molecular
breeding studies. These ILs may vary in the size of the
introgressed region that may range from a few genes to
more than a thousand genes. ILs developed from the
wild desert-adapted species Solanum pennellii and do-
mesticated Solanum lycopersicum cvM82 have proved to
be a useful genetic resource (Eshed and Zamir, 1995;
Liu and Zamir, 1999). This population has been suc-
cessfully used to map numerous QTL for metabolites,
enzymatic activity, yield, fitness traits, and develop-
mental features, such as leaf shape, size, and complex-
ity (Frary et al., 2000; Holtan and Hake, 2003; Fridman
et al., 2004; Chitwood et al., 2013; Muir et al., 2014).
Comparative transcriptomics for the two parents en-
abled identification of transcript abundance variation
potentially underlying trait differences between species
(Koenig et al., 2013). However, the genetic regulators of
these transcriptional differences between the species
still need to be elucidated. Therefore, we used a ge-
nomics approach in combination with statistical
methods to identify the genetic basis of transcript level
variation in tomato using the S. pennellii introgression
lines.
Here, we report on a comprehensive transcriptome

profile of the ILs, a comparison between the transcript

abundance patterns of the ILs and the cultivated M82
background (differential gene expression [DE]), as well
as a global eQTL analysis to identify patterns of genetic
regulation of transcript abundance in the tomato shoot
apex.We have identifiedmore than 7,200 cis- and trans-
eQTL in total, which regulate the transcript abundance
of approximately 5,300 genes in tomato. Additional
analyses using Barnes-Hut t-distributed stochastic
neighbor embedding (BH-SNE; van der Maaten, 2013)
identified 42 modules revealing novel associations be-
tween transcript abundance patterns and biological
processes. The transcript abundance patterns under
strong genetic regulation are related to plant defense,
photosynthesis, and plant developmental traits. We
also report important eQTL regulating steady-state
transcript abundance pattern associated with leaf
number, complexity, and hypocotyl length phenotypes.

RESULTS AND DISCUSSION

Transcriptome Profiling and Global eQTL Analysis

RNA-seq reads obtained from the tomato shoot apex
with developing leaves and hypocotyl were used to
identify DE genes at the transcript level between each
S. pennellii IL and the cultivated M82 (Supplemental
Data Set S1). The total number of genes differentially
expressed for each IL both in cis (in this population
reflecting “local” level regulation either from within a
gene itself or other genes in the introgression) and trans,
along with the number of genes in the introgression
regions, is presented in Figure 1 and Supplemental
Table S1. There was a strong correlation between the
number of genes in the introgression regions and the
number of DE genes in cis (Supplemental Fig. S1A). In
contrast, the number of DE genes in trans was poorly
correlated with introgression size (Supplemental Fig.
S1B). For example, IL12.1.1, despite having one of the
smallest introgressions, showed 96% of approximately
500 DE genes regulated in trans (Supplemental Table
S1; Supplemental Fig. S2). In contrast, IL1.1 and IL12.3,
the ILs with highest number of genes in the introgres-
sion regions, showed smaller numbers of total and trans
DE genes (Fig. 1; Supplemental Table S1; Supplemental
Fig. S2). These examples suggest that specific loci and
not the introgression size determine gene regulation in
trans. This could, in part, be due to the presence of
genes encoding key transcription factors or develop-
mental regulators in the regions with strong influence
on transcript expression pattern, as is seen in the
ERECTA containing genomic region in Arabidopsis
(Keurentjes et al., 2007). A total of 7,943 unique tomato
geneswere DE between the ILs and cvM82, representing
approximately one-third of the approximately 21,000
genes with sufficient sequencing depth to allow DE
analysis. Therewere 2,286 genes,more than one-fourth of
unique DE genes between the ILs and cv M82, which
showed transgressive expression patterns, that is, those
genes were differentially expressed at the transcript level
for the IL but not for S. pennellii compared to cv M82
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(Supplemental Data Sets S2 and S3). These data suggest
that in addition to protein coding differences, transcrip-
tional regulation of less than one-third of all genes ac-
counts for most of the phenotypic and trait differences
between the ILs and the cultivated parent.

Identifying eQTL localized to subsets of the intro-
gressions, based on overlaps between them, enabled us
to narrow down the regions that contain the regulatory
loci. This analysis brings us one step closer to identi-
fying potential candidates that influence transcript
abundance patterns in tomato. We identified 7,225
significant eQTL (bins) involving 5,289 unique genes
across the 74 ILs (Fig. 2; Supplemental Data Set S4).
These 7,225 significant eQTL (located in bins) were
designated as cis, trans, or chromo0 (unmapped tran-
scripts) as defined in the methods and illustrated in
Supplemental Figure S3, and either up or down based
on increase or decrease in transcript levels. This cor-
relation resulted in a total of 1,759 cis-up and 1,747
cis-down eQTL, 2,710 transup and 920 transdown
eQTL, and 51 chromo0-up and 38 chromo0-down
eQTL (Spearman’s rho values; Supplemental Fig. S4;
Supplemental Table S2). The majority of genes (.4,000
of 5,289) are under the regulation of a single eQTL
(3,134 cis, 1,014 trans, and 19 chromo0; Supplemental
Fig. S5). This observation shows the predominance of
cis-eQTL for genetic regulation of transcript abundance
in the tomato ILs. Similar correlation between transcript
level variation and genome-wide sequence divergence
within seven Arabidopsis accessions was reported to be
due to cis control of a majority of the detected variation
(Kliebenstein et al., 2006).

The number of genes regulated by eQTL showed
large variation across bins. Bins on chromosomes 6, 8,
and 4, such as 6B, 6C, 4D, 8A, and 8B, contain pre-
dominantly trans-eQTL (Supplemental Data Set S5). In
contrast, three bins, 1F, 3I, and 8G, which each contain
more than 100 genes, have no significant trans or cis-

eQTL and are transcriptionally silent. As expected, bins
containing more than 100 significant cis-eQTL are
scattered across the genome (Supplemental Data Set
S5). The abundance of trans-eQTL on chromosomes 4,
6, and 8 strengthens the idea of trans-eQTL hot spots
controlling expression of a large number of transcripts,
as reported in other organisms (Brem et al., 2002; Schadt
et al., 2003). The resolution in this analysis is at the level
of bin, and these significant eQTL likely map to a
smaller number of genes within the bins. Functional
classification of genes being regulated by these eQTL
and phenotypic association with the relevant ILs was
undertaken to glean insights into the identity of can-
didate genes in the bin.

Clustering eQTL Target Genes into Modules Defined by
Transcript Abundance Patterns

To functionally categorize the eQTL regulated genes,
BH-SNE (van der Maaten, 2013) was performed on the
5,289 genes with eQTL to detect novel associations be-
tween transcript abundance patterns. This clustering
resulted in 42 distinct modules containing 3,592 genes
(Fig. 3). Seventeen of these modules had significant
Gene Ontology (GO) enrichment (P value , 0.05) with
each module consisting of transcript abundance pat-
terns either predominately regulated by cis- or trans-
eQTL (Supplemental Table S3). To determine which ILs
are important for module regulation, the median tran-
script abundance value ofmodule genes for each ILwas
calculated and used to identify ILs with significantly
altered module steady-state transcript level.

Three modules were present in all mappings of the
BH-SNE (van der Maaten and Hinton, 2008) deter-
mined through iterations of DBscan analysis and GO
enrichment and were designated as landmark modules
(Fig. 3B; Supplemental Fig. S6; Supplemental Data Set
S6; Supplemental Table S3). The largest module had a

Figure 1. Transcriptome profile of the
tomato introgression lines. Differen-
tially expressed genes at the transcript
level for the ILs compared to cultivated
parent M82. The y axis shows all the
tomato genes starting from the first gene
on chromosome 1 to the last gene on
chromosome 12, and the x axis depicts
the individual ILs. Genes differentially
expressed within the introgression re-
gions (in cis) are shown as blue points
and differentially expressed genes in
trans (outside) the introgression region
are shown as orange points.
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GO enrichment for photosynthesis and related pro-
cesses, and significant trans-eQTL scattered widely
across the genome with no bin or IL identified as the
primary regulating region (Fig. 4B; Supplemental Fig.
S6A; Supplemental Data Sets S6 and S7). The second
landmark module was enriched for transcript abun-
dance patterns with roles in defense, metabolism, and
signaling with themajority of their trans-eQTLmapped
to IL6.2 and 6.2.2 (Fig. 4A; Supplemental Fig. S6B;
Supplemental Data Sets S6 and S8). The third module,
which is enriched for transcript abundance patterns
with Cys-type peptidase activity, was predominately

composed of genes regulated by cis-eQTL on IL 4.2, 4.3,
and 4.3.2 (Bins 4E and 4F; Fig. 4C; Supplemental Fig.
S6C; Supplemental Data Sets S6 and S9). A cluster of
genes enriched for “peptidase regulation” also emerged
from a transcriptome study of leaf development for
three tomato species; this cluster was uniquely associ-
ated with S. pennellii orthologs at the P5 stage of leaf
development, indicating that this species has a unique
pattern of gene expression, which involves peptidase
regulation (Ichihashi et al., 2014), and may be related
to leaf maturation and senescence processes (Díaz-
Mendoza et al., 2014).

Genetic Regulation of Transcriptional Responses
Associated with Plant Defense

One of the landmark modules from the clustering
analysis was enriched for transcript abundance pat-
terns related to plant defense (Fig. 3B; Supplemental
Data Set S8). Therefore, we explored the genetic basis of
transcriptional changes associated with plant defense.
IL6.2 and IL6.2.2, and associated bins 6B and 6C, in
particular, influence of the transcriptional responses of
genes associated with plant defense and signaling
(Supplemental Data Set S1). The genes showing in-
creased steady-state transcript levels in both ILs com-
pared to cv M82, as well as the genes regulated by the
corresponding bins, show enrichment of the GO cate-
gories response to stress and stimulus, cell death, de-
fense response, and plant-type hypersensitive response
(Supplemental Data Sets S10 and S11). Promoter en-
richment analysis for these genes showed enrichment of
a W-box promoter motif that is recognized by WRKY
transcription factors and influences plant defense re-
sponse (Supplemental Data Sets S12 and S13; Yu et al.,
2001). Both bins, in particular bin 6C, contain genes
involved in pathogen, disease, and defense response,
such as NBS-LLR resistance genes, WRKY transcription
factors, Multidrug resistance genes, Pentatricopeptide
repeat-containing genes, Chitinase, and Heat Shock Protein
coding genes. This transcriptional response in the ILs is
also reflected in the morphology of IL6.2.2; the plants
are necrotic and dwarfed (http://tgrc.ucdavis.edu/
pennellii_ils.aspx; Sharlach et al., 2013). Previously, a
phenotypic study for the chromosome 6 introgression,
specifically a 190-kb region in bin 6C, in a pathogen
(Xanthomonas perforans)/control experiment was shown
to confer hypersensitive response in IL6.2 and 6.2.2
(Sharlach et al., 2013). Taken together, these findings
suggest bins 6B and 6C contain master genetic regulators
of plant defense response genes, though identification of
the causal gene/s that influence many other genes in
trans will need further genetic dissection of these bins.

Genetic Regulation of Transcriptional Responses
Associated with Leaf Development

Given the striking differences in leaf features be-
tween S. pennellii and cv M82 that are manifested in

Figure 2. cis- and trans-eQTL plotted by bin across the 12 chromo-
somes of S. lycopersicum cv M82. A, Stacked bar graph showing the
sum of the number of eQTL mapping to each bin. B, Dotplot showing
each eQTL arranged vertically by bin and horizontally by the location of
the transcript abundance pattern it regulates. Bins with the largest
numbers of trans-eQTL (4D, 4E, 4F, 6B, 6C, 8A, 8B) are highlighted by
green boxes. C, Map of chromosomes 4, 6, and 8 showing the over-
lapping IL regions, which define the bins (modified from Chitwood
et al., 2013). Bins with the largest numbers of trans-eQTL are indicated
by green asterisks.
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many ILs (Chitwood et al., 2013), the IL population
provides an excellent system for determining the extent
of genetic regulation of genes controlling leaf devel-
opment. Previous phenotypic and QTL analyses iden-
tifiedmany ILs, such as IL4.3, IL8.1.5, IL8.1.1, and IL8.1,
harboring loci regulating leaf and plant developmental
traits (Holtan and Hake, 2003; Chitwood et al., 2013;
Muir et al., 2014). IL4.3, which harbors loci with the
largest contribution to leaf shape and shows larger
epidermal cell sizes (Chitwood et al., 2013), exhibited
decreased steady-state transcript levels for many genes
associated with cell division, such as Cyclin-dependent
protein kinase regulator-like protein (CYCA2;3), Cyclin
A-like protein (CYCA3;1), and F-box/LRR-repeat pro-
tein 2 SKP2A (Supplemental Data Sets S1 and S10). In
addition, genes showing differences in transcript levels
in IL4.3 were enriched for the promoter motifs MSA
(M-specific activators that are involved in M-phase spe-
cific transcription) and the E2F binding site (Supplemental

Data Set S11). Genes with decreased transcript levels in
ILs 8.1.5, 8.1.1, and 8.1, also included genes associated
with leaf development and morphology, genes encod-
ing WD-40 repeat family protein LEUNIG, Homeobox-
Leu zipper protein PROTODERMAL FACTOR 2, and the
transcription factor ULTRAPETALA (Supplemental Data
Sets S1 and S10; Abe et al., 2003; Cnops et al., 2004; Carles
et al., 2005).

We further investigated the transcript expression
dynamics of a set of literature-curated genes related to
leaf development (Ichihashi et al., 2014) across the ILs and
bins (Supplemental Data Sets S14 and S15). A number of
canonical leaf developmental genes such as SHOOT
MERISTEMLESS (Solyc02g081120, STM), GROWTH-
REGULATING FACTOR 1 (GRF1, Solyc04g077510),
ARGONAUTE 10 (AGO10, Solyc12g006790), BELL
(BEL1, Solyc08g081400), LEUNIG (Solyc05g026480), and
SAWTOOTH 1 (SAW1, Solyc04g079830) were differen-
tially expressed at the transcript level in more than five

Figure 3. BH-SNE 2D mapping of eQTL.
A, Forty-two distinct modules identified by
DBscan from the mapping generated by
BH-SNE analysis. B, The three modules
defined as landmark modules: photosyn-
thesis, defense, and Cys-type peptidase
activity and the leaf development module’s
position within the mapping. Modules are
false colored.
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ILs. At the level of bins, genes involved in leaf development
were regulated by eQTL scattered widely across the ge-
nome (Fig. 4D). eQTL(bin)-regulationof leaf developmental
genes for someof ILs, such as IL 2.1, 4.3, 5.4, 8.1/8.1.1/8.1.5,
and 9.1.2 showing strong leaf phenotypes, is summarized
in Supplemental Table S4. We then examined the location
of literature-curated leaf developmental genes within the
identified modules in the BH-SNE mapping (Fig. 3). The
highest number of literature-curated leaf developmental
genes (108) was located in the photosynthesis module,

whereas 19 of these genes were located in the leaf devel-
opment module (Supplemental Fig. S7B; Supplemental
Data Sets S16 and S17), suggesting a relationship between
these two modules. Over one-third of the transcript ex-
pression patterns in the leaf development module have
significant eQTL that map to bins 4D, 8A, and 8B (5.4%,
16.2%, and15.5%, respectively; SupplementalData Set S18),
suggesting that these bins contain important regulators of
leaf development. This enrichment of eQTL for specific bins
is also consistentwith the strong leaf phenotypes for ILs 4.3,

Figure 4. Connections between eQTL and the genes with correlated transcript level. Each plot includes the genes with eQTL that
were clustered together into a module based on transcript level patterns. A, Defense module. B, Photosynthesis module. C, Cys
peptidase module. D, Leaf development module. I, The 12 tomato chromosomes in megabases. II, Colored boxes indicate the
sizes of each bin. III, Black bars indicate the locations of the genes. IV, Chords connect eQTL to the genes whose transcript level
patterns they regulate. Chords are colored by the chromosome location of the eQTL.
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8.1, 8.1.1, and 8.1.5. Altogether, DE, eQTL, and BH-SNE
results indicate that while there is no obvious master reg-
ulatory bin for leaf developmental genes, many are under
strong genetic regulation by eQTL distributed throughout
the genome (Fig. 4D). This observation underscores the
highlypolygenic regulationof leaf development (Chitwood
et al., 2013) as multiple loci, residing in many different
chromosomal locations, regulate the expression of key leaf-
developmental genes at the transcriptional level.

Genetic Regulation of Transcriptional Responses
Associated with Photosynthesis

Since photosynthesis GO terms were enriched for the
largest module from the clustering analysis (Fig. 3B)
and there was a correlation between photosynthesis
and leaf developmental modules (Supplemental Fig.
S7B), we examined the genetic regulation of photo-
synthetic genes by specific ILs and corresponding bins.
Genes related to photosynthesis show increased tran-
script levels across 21 ILs distributed on all chromo-
somes except chromosome 5 (Supplemental Data Set
S10), showing multigenic regulation of photosynthetic
traits. Many of these ILs, including 8.1.5, 8.1.1, 8.1, and

4.3, and associated bins showed regulation of genes
linked to photosynthesis, chlorophyll biosynthesis, and
response to light stimulus (Supplemental Data Sets
S10 and S11). This observation indicates that ILs may
also differ from each other and from the cultivated M82
background in photosynthetic efficiency. However, no
studies, so far, have investigated the photosynthetic
phenotype of these ILs.

To analyze the relationship between the leaf devel-
opment and photosynthesis modules, the median
transcript abundance value of all genes in each module
was compared, resulting in a significant negative cor-
relation (adjusted r2 = 0.77; Fig. 5). This analysis likely
reflects the transition from leaf development to leaf
maturation captured in our shoot meristem samples.
The genes found in the leaf development module may
promote developmental processes such as cell division
and maintenance or meristematic potential, whereas
the leaf development-related genes found in the pho-
tosynthesis module may act to suppress this process to
allow for maturation of the leaf. The two modules had
their most influential eQTL on bins 4D, 8A, and 8B
(Supplemental Data Set S6; Supplemental Fig. S7A),
suggesting that leaf development and photosynthetic

Figure 5. Median transcript level values for
leaf development and photosynthesis related
modules and expression correlation. A, The
median transcript level values of a module for
each IL are shown. A consistent negative cor-
relation between photosynthesis and leaf de-
velopment transcript expression is evident
across nearly all 74 ILs. Dashed lines indicate
1 SD from the module mean transcript level.
Filled areas represent the median transcript
level of the leaf development module, while
open areas indicate the photosynthesis mod-
ulemedian transcript levels. B, Leaf development
median transcript level versus photosynthesis
median transcript level values for each IL show a
distinct negative correlation with an adjusted
R-squared value of 0.77 (calculated by linear
regression in R).
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genes not only have transcript levels in opposition but
also likely share common regulatory loci. This finding is
consistent with the link between leaf development and
photosynthesis that we established previously by meta-
analysis of developmental andmetabolic traits (Chitwood
et al., 2013).

Dissection of Identified eQTL to Spatially and Temporally
Regulated Development

Since the eQTL study used shoot apices that includes
the shoot apical meristem (SAM) and developing
leaves, we resolved the detected eQTL to specific tis-
sues and temporally regulated development using
previous gene expression data. We analyzed transcript
abundance in laser microdissected samples represent-
ing the SAM + P0 (the incipient leaf) versus the P1 (the

first emerged leaf primordium) that represents tran-
script levels in the meristem (SAM) and the first dif-
ferentiated leaf (P1; Fig. 6A). We also analyzed hand
dissected samples of the SAM + P0-P4 vs. the P5 col-
lected over time (Fig. 6, B and C), representing genes
regulated by vegetative phase change (heteroblasty;
Chitwood et al., 2015).

Using a bootstrapping approach, we identified bins
statistically enriched for genetically regulating genes
with previously identified transcript expression
patterns (Fig. 6, D and F). Except for one instance (cis-
regulated genes with high SAM/P0 expression located
in bin 2I), bins enriched for transcript expression patterns
represented trans regulation, hinting at predominant
regulation of gene expression patterns mediated by
transcription factors at the level of transcription. Most
SAM/P0 versus P1 enriched bins were enriched for P1

Figure 6. Enriched gene transcript levels that
are controlled by specific bins. A, Log fold
change values (P1/SAM +P0) for previ-
ously identified differentially expressed genes
with high transcript levels in the SAM + P0
(magenta) versus P1 (green). B, Scaled tran-
script level values for previously identified
differentially expressed genes with increasing
(red) and decreasing (blue) transcript levels
over developmental time in the SAM + P0-P4.
C, Scaled expression values for previously
identified genes with differential levels of
transcripts with increasing (orange) and de-
creasing (purple) transcript levels over devel-
opmental time in P5. D, Transcripts (y axis) and
bins (x axis) showing the genetic regulation of
transcript abundance (eQTL). Colors indicate
SAM+ P0 (magenta) and P1 (green) transcripts.
Bins enriched for genetically regulating genes
with specific transcript expression patterns are
indicated below with triangles. E, Same as in
D, except showing genes with increasing (red)
and decreasing (blue) transcript levels over
temporal time in the SAM + P0-P4. F, Same as
in D, except showing genes with increasing
(orange) and decreasing (purple) transcript
levels over temporal time in P5. Previously
determined transcript abundance patterns are
previously published (Chitwood et al., 2015).
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transcript expression (Fig. 6D). We previously showed
that genes with high P1 transcript levels are enriched for
photosynthetic-related GO terms compared to SAM/P0
genes enriched for transcription, cell division, and
epigenetics-related GO terms (Chitwood et al., 2015),
suggesting a genetic basis at both a functional and
tissue-specific level for genes related to photosynthesis
expressed preferentially in the P1 compared to the
SAM/P0.

Bins enriched for regulation of genes with temporally
dependent steady-state transcript levels were mostly
associated with genes with decreasing transcript level
over time, for both the SAM + P0-P4 and P5 (Fig. 6, E
and F). Interestingly, 3 bins (7E, 7F, and 8A) share en-
richment for genes with decreasing transcript levels
over time in both the SAM + P0-P4 and P5 (Fig. 6, E
and F), suggesting true temporal trans regulation, re-
gardless of tissue, by these loci. Broadly, genes with
increasing transcript levels over time are associated
with transcription and small RNA GO terms in both the
SAM + P0-P4 and P5, whereas decreasing transcript
levels over time are associated with translation associ-
ated GO terms in the SAM + P0-P4 and photosynthetic
activity in the P5 (Supplemental Data Set S19).

Linking Leaf and Hypocotyl Phenotypes to Detected eQTL

To connect detected eQTL with leaf and hypocotyl
phenotypes under two different environmental condi-
tions, we correlated transcript abundance with leaf
number, leaf complexity (as measured in Chitwood
et al., 2014), and hypocotyl length phenotypes of the ILs

grown under simulated sun and shade conditions.
Significant correlations with transcript abundance pat-
terns were identified for all three phenotypes analyzed
under both treatments (Supplemental Table S5). Fo-
cusing on a subset of these transcript expression pat-
terns that had associated eQTL enabled us to connect
the phenotypes to their regulatory loci (Supplemental
Table S5).

Genes negatively correlated with leaf number showed
enrichment of leaf development GO terms, whereas
positively correlated genes showed enrichment of
photosynthesis-related GO terms (Supplemental Fig. S8,
A and B; Supplemental Data Set 2 in Chitwood et al.,
2014). For the leaf complexity trait, correlations were
reversed compared to leaf number (Supplemental Fig. S9,
A andB; SupplementalData Set S20). The transcript levels
of these genes associated with leaf number were pre-
dominantly regulated by eQTL on chromosomes 7 and 8
(Supplemental Fig. S8, C and D) and those of leaf
complexity on chromosomes 4, 7, and 8 (Supplemental
Fig. S9, C andD). These results, in combinationwith DE,
eQTL, and BH-SNE, highlight bins on chromosomes
4 and 8 as important genetic regulators of leaf develop-
mental genes.

Five genes were positively correlated with hypo-
cotyl length under simulated shade, and one gene
(Solyc10g005120) was negatively correlated with hy-
pocotyl length under both sun and shade (Fig. 7A;
Supplemental Data Set S21). eQTL for the positively
correlated genes are located on chromosomes 3, 7, and
11, whereas the single cis-eQTL for the negatively
correlated gene, Solyc10g005120 (an uncharacterized

Figure 7. eQTL regulation of transcript abundance patterns that correlate with hypocotyl length. A, Forty-two distinct modules
identified by DBscan from the eQTL mapping generated by BH-SNE analysis. Modules enriched for genes with leaf development
and photosynthesis GO terms are labeled in blue and green, respectively. Genes with transcript levels correlated with hypocotyl
length under simulated shade are indicated by squares with positive correlations in red and negative correlations in yellow. B,
Genes with transcript levels correlated with hypocotyl length under simulated shade are shown connected to their respective
eQTL with chords. I, The 12 tomato chromosomes in megabases. II, Colored boxes indicate the sizes of each bin. III, Black bars
indicate the locations of the genes. IV, Chords connect eQTL to the genes whose transcript levels those eQTL regulate. Chords
are colored by the chromosome location of the eQTL.
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Flavanone 3-hydroxylase-like gene), was located in bin
10A.1 (Supplemental Fig. S10; Fig. 7B). The transcript is
expressed only in IL 10.1, which has the S. pennellii
version of the gene and an attenuated shade avoidance
response, but is not expressed in IL 10.1.1, which has the
M82 version of the gene and a normal shade avoidance
response (Supplemental Fig. S11). This indicates that
genes in bin 10A, the nonoverlapping regions of 10.1
and 10.1.1, are responsible for the shade avoidance re-
sponse. Bin 10A includes Solyc10g005120, the one gene
negatively correlated with hypocotyl length under both
sun and shade.
A set of Backcross Inbred Lines (BILs), developed

from cvM82 and S. pennellii, provide higher resolution
gene mapping with smaller bin sizes (Müller et al.,
2016; Fulop et al., 2016). To further explore the role of
Solyc10g005120, we used BIL-128, which contains a
subregion of bin 10A and has a secondary introgression
on chromosome 2 (Supplemental Fig. S10). Influence of
the secondary introgressionwas examinedusing BIL-033,
which shares the introgression on chromosome 2. BIL-
128 has an attenuated shade avoidance response, as
does 10.1, whereas BIL-033 undergoes a shade avoid-
ance response similar to that of cv M82 (Supplemental
Fig. S11). These results rule out the influence of chro-
mosome 2 genes on the attenuated hypocotyl pheno-
type and confirm the influence of the bin 10A subregion,
which includes Solyc10g005120, on the attenuated hy-
pocotyl phenotype (Supplemental Figs. S10 and S11).
Solyc10g005120 is an uncharacterized gene, and our
observations highlight it as a new candidate regulating
shade avoidance responses.

CONCLUSION

In this study, we have investigated the regulation of
steady-state transcript levels in the progeny of crosses
between cultivated tomato and a wild relative (S. pen-
nellii). A combination of DE, eQTL, and clustering
analyses provides a comprehensive picture of genetic
regulation of transcript expression patterns in this IL
population. Our data show that some biological path-
ways, such as plant defense, are under the regulation of
a limited number of loci with strong effects, whereas
loci regulating other pathways, such as photosynthesis
and leaf development, are scattered throughout the
genome, most likely with weaker individual effects. We
correlated transcript levels with leaf and hypocotyl
phenotypes and identified the regulatory regions
driving these transcript expression patterns. Coupled
with comprehensive phenotyping on these ILs, this
data set provides a valuable resource to design strate-
gies to achieve a desirable plant phenotype through
genetic manipulation of the transcript abundance of
key genes or gene modules. Our ability to predict and
understand the downstream effects of genes intro-
gressed fromwild relatives on gene expression patterns
and ultimately phenotypes will be a critical component
of crop plant enhancement.

MATERIALS AND METHODS

Plant Materials, Growth Conditions, and
Experimental Design

Plant materials, growth conditions, and experimental designwere described
in (Chitwood et al., 2013), but are outlined here briefly. Seeds of wild tomato
(Solanum pennellii) ILs (Eshed and Zamir, 1995; Liu and Zamir, 1999) and cul-
tivated tomato (Solanum lycopersicum cv M82) were obtained either from Dani
Zamir (HebrewUniversity, Rehovot, Israel) or from the Tomato Genetics Resource
Center (University of California, Davis). Seeds were stratified in 50% bleach for
2 min and grown in darkness for 3 d for uniform germination before moving to a
growth chambers for 5 d. Six seedlings of each genotype were planted per pot for
each replicate. The 76 ILs (and two replicates each of cv M82 and S. pennellii) were
divided into four cohorts of 20 randomly assigned genotypes. These cohorts were
placed across four temporal replicates in a Latin square design as described in
(Chitwood et al., 2013). The seedlings were harvested 5 d after transplanting (13 d
of growth in total). Cotyledons and mature leaves .1 cm in total length were ex-
cluded, and remaining tissues (including the SAM) above the midpoint of the
hypocotylwere pooled, for all individuals in a pot, into 2-mLmicrocentrifuge tubes
and immediately frozen in liquid nitrogen. Two ILs, IL7.4 and IL12.4.1, were not
included in the final analysis due to seed contaminations.

Growth Conditions and Quantification of
Hypocotyl Length

Seeds 76 ILs (covering the entire genome) along with the parents were
sterilized using 70% ethanol, followed by 50% bleach, and finally rinsed with
sterile water. This experiment was replicated three times each in 2011 and 2012.
Ten to 12 seeds of each IL were sown into Phytatray II (Sigma-Aldrich) con-
tainers with 0.53 Murashige and Skoog minimal salt agar. Trays were ran-
domized and seeds germinated in total darkness at room temperature for 48 h.
Trays of each IL were randomly assigned to either a sun or shade treatment
consisting of 110 mmol PAR with a red to far-red ratio of either 1.5 (simulated
sun) or 0.5 (simulated shade) at 22°C with 16-h-light/8-h-dark cycles for 10 d.
Three genotypes were excluded from the analyses due to poor germination
(IL3.3) or their necrotic dwarf phenotypes (IL6.2, 6.2.2). After 10 d, seedlings
were removed from the agar and placed onto transparency sheets containing a
moistened kimwipe to prevent dehydration and scanned using an Epson V700
at 8-bit grayscale at 600 dpi. Image analysis was carried out using the software
ImageJ (Abramoff et al., 2004).

For hypocotyl length analysis of backcross inbred lines between S. pennellii
and S. lycopersicum cv M82, seeds were sterilized in 50% bleach and then rinsed
with sterile water. The seeds were then placed in Phytatrays in total dark at
room temperature for 72 h and then moved to 16 h light/8 h dark for 4 d.
Seedlings were transferred to soil using a randomized design and assigned to
either a sun or shade treatment (as described above) for 7 d. Images were taken
with an HTC One M8 Dual 4MP camera and hypocotyl lengths measured in
ImageJ (Abramoff et al., 2004) using the Simple Neurite Tracer (Longair et al.,
2011) plugin.

RNA-Seq Library Preparation and Preprocessing RNA-
Seq Data

RNA-seq libraries were prepared and the reads were preprocessed as de-
scribed in Chitwood et al. (2013) and are outlined here. mRNA isolation and
RNA-seq library preparation were performed from 80 samples at a time using a
high-throughput RNA-seq protocol (Kumar et al., 2012). The prepared libraries
were sequenced in pools of 12 for replicates 1 and 2 (one lane each) and in pools
of 80 for replicates 3 and 4 (seven lanes) at the UC Davis Genome Centre Ex-
pression Analysis Core using theHiSeq 2000 platform (Illumina). Preprocessing
of reads involved removal of low-quality reads (phred score ,20), trimming of
low-quality bases from the 39 ends of the reads, and removal of adapter con-
tamination using customPerl scripts. The quality-filtered readswere sorted into
individual libraries based on barcodes, and then barcodes were trimmed using
custom Perl script.

Read Mapping and Quantification of Transcript Levels

Mapping and normalization were done on the iPLANT Atmosphere cloud
server (Goff et al., 2011). S. lycopersicum reads were mapped to 34,727 tomato
cDNA sequences predicted from the gene models from the ITAG2.4 genome
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build (downloadable from ftp://ftp.solgenomics.net/tomato_genome/
annotation/ITAG2.4_release/). A pseudo reference list was constructed for S.
pennelliiusing the homologous regions between S. pennellii scaffolds v.1.9 and S.
lycopersicum cDNA references above. Using the defined boundaries of ILs,
custom R scripts were used to prepare IL-specific references that had the S.
pennellii sequences in the introgressed region and S. lycopersicum sequences
outside the introgressed region. The reads were mapped using BWA (Li and
Durbin, 2009; Roberts and Pachter, 2013) using default parameters except for
the following that were changed: bwa aln: -k 1 -l 25 -e 15 -i 10 and bwa samse:
-n 0. The bam alignment files were used as inputs for express software to account
for reads mapped to multiple locations (Roberts and Pachter, 2013). The esti-
mated read counts obtained for each gene for each sample from express were
treated as raw counts for DE analysis. The counts were then filtered in R using
the Bioconductor package EdgeR version 2.6.10 (Robinson and Oshlack, 2010)
such that only genes that hadmore than two reads permillion in at least three of
the samples were kept. Normalization of read counts was performed using the
trimmed mean of M-values method (Robinson and Oshlack, 2010), and nor-
malized read counts were used to identify genes that are differentially
expressed at the transcript level in each IL compared to cvM82 parent as well as
between two parents, S. pennellii and M82. The DE genes for each IL were
compared to those between the two parents to identify genes that were dif-
ferentially expressed for the IL but not for S. pennellii compared to cv M82.
Those genes were considered to show transgressive expression pattern at the
transcript level for the specific IL, whereas other DE genes were considered to
show the transcript expression similar to S. pennellii.

Correlation of Phenotype with Pattern of Steady-State
Transcript Levels

Transcript level patterns were correlated with three phenotypes collected
from the ILs alongwith the parents. Normalized estimated read countswith 3 to
4 independent replicates per IL were log2 transformed prior to the analyses.
Leaf number and complexity were collected from the ILs as outlined in
Chitwood et al. (2014) under both sun and shade treatments. Hypocotyl lengths
were measured as detailed above. To test whether the transcript level for a
given gene was correlated with a particular phenotype, boostrapping analyses
were performed. Transcript levels and phenotype data were randomly per-
muted (with replacement) using the sample() function against IL and then
merged. For each analysis, 1,000 replications were performed and the P values
were calculated from the Spearman’s rho value distributions. P values were
adjusted for multiple comparisons using the BH correction (Benjamini and
Hochberg, 1995). Significant correlations were identified as those with an ad-
justed P value , 0.05, and the mean rho value (the correlation coefficient) was
used to designate the correlation as either positive (positive slope) or negative
(negative slope). All analyses were implemented using the statistical software R
and custom scripts (R Development Core Team, 2015).

Methods for eQTL Analyses

eQTL mapping analyses were performed to determine whether the tran-
script level of a gene is correlated with the presence of a specific introgression
from S. pennellii into S. lycopersicum cv M82. This correlation was examined at
the level of “bin,” with a bin defined as a unique overlapping region between
introgressions. Examining eQTL at the bin level enables those eQTL to be
mapped to considerably smaller intervals than the ILs themselves (Liu and
Zamir, 1999). eQTL mapping analyses were performed on the normalized es-
timated read counts with 3 to 4 independent replicates per IL, which were log2
transformed prior to the analyses. To test whether the transcript level for a
given gene is correlatedwith the presence of a particular bin, a Spearman’s rank
correlation test was usedwith ties resolved using themidrankmethod. P values
were adjusted formultiple comparisons using the BH correction (Benjamini and
Hochberg, 1995). Significant eQTL were identified as those with an adjusted P
value , 0.05, and Spearman’s rho (the correlation coefficient) was used to
designate the eQTL as up (positive slope) or down (negative slope). Significant
eQTL were also designated as cis (defined as local gene regulation within the
same bin) if the gene was located on the bin with which it is correlated; trans
(distant) if the gene was correlated with a bin that is neither the bin it is on nor a
bin that shares an overlapping IL with the correlated bin; or chromo0 if the gene
lies in the unassembled part of the genome. When a gene has a designation cis-
eQTL, and a secondary correlation was found with a bin that shares an over-
lapping introgression, this secondary correlation was not designated as an
eQTL. When a gene does not have a designated cis-eQTL and a correlation was

found with a bin that shares an overlapping introgression, this correlation was
designated as a trans-eQTL. All analyses were implemented using the statistical
software R and custom scripts (R Development Core Team, 2015).

Methods for eQTL Clustering Analysis

Data Preparation

In preparation for analysis using the Barnes-Hut-SNE algorithm, the data set
was log2 transformed. The transcript level for each gene was then normalized
across all 74 introgression lines so that the profile had amean of zero and a SD of
one. Normalization of the data allowed for comparison of the relative rela-
tionship between each gene expression profile (Bushati et al., 2011).

Barnes-Hut-SNE

t-SNE or t-distributed stochastic neighbor embedding (van der Maaten and
Hinton, 2008) is a nonlinear dimensionality reduction method, which faithfully
maps objects in high dimensional space (H-space) into low dimensional space
(V-space). Crowding is avoided through the long-tailed t-distribution, which
forces nonneighbor clusters farther away from each other in V-space than those
clusters actually are in H-space (van der Maaten and Hinton, 2008). The ex-
aggerated separation of nonneighboring clusters improves 2D resolution,
allowing identification of novel groupings not readily apparent in other clus-
tering methods. However, this method is resource intensive, and with higher
dimensionality, the number of genes that can be analyzed is limited. We have
used Barnes-Hut-SNE, a newer implementation of t-SNE that greatly increases
the speed and number of genes that can be analyzed, for the present analysis
(van der Maaten, 2013). Barnes-Hut-SNE accomplishes this efficiency through
the use of a Vantage Point tree and a variant of the Barnes-Hut algorithm (van
derMaaten, 2013). For clustering, 2Dmapswere generated using a perplexity of
30 and without the initial PCA step from the Barnes-Hut-SNE R implementa-
tion (Rtsne package; Krijthe, 2014). Theta was set to 0.3 based on van der
Maaten (2013) to maintain an accurate dimensionality reduction without sac-
rificing processing speed.

Clustering for Module Selection

The DBscan algorithm (Density Based spatial clustering of applications with
noise)wasused to selectmodules fromtheBarnes-Hut-SNE results (fpcpackage;
Hennig, 2014). This algorithm had the advantage of both selecting modules and
removing any genes that fell between modules. The scanning range (epsilon)
and minimum seed points (minpts) were selected manually and used to deter-
mine if any one point is a member of a cluster based on physical positioning
within the mapping relative to neighboring points. A minpts of 25 was used to
capture smaller modules on the periphery, and an epsilon of 2.25 was used to
avoid the overlapping of internal and closely spaced modules.

Plots

Box plots were generated from normalized transcript abundance values for
each module. The ribbon plot was generated from correlated abundance values
from leaf development and photosynthesis related modules. These plots were
generated using ggplot form the ggplot2 R Package (Wickham, 2009). The
median transcript levels of the genes mapped to a module were calculated for
each IL and replicated for all modules. Significant ILs were identified as those
with a median transcript level.1 SD from the mean of all genes across all ILs in
the module.

GO Enrichment Analysis

Differentially expressed genes at the transcript level for individual ILs and
geneswith significant eQTLwere analyzed for enrichment of GO terms at a 0.05
false discovery rate cutoff (goseq Bioconductor package; Young et al., 2010).

Promoter Enrichment Analysis

Promoter enrichment analysis was performed by analyzing the 1,000 bp
upstream of the ATG translational start site for genes with significant eQTL
using 100 motifs represented in the AGRIS AtTFDB (http://arabidopsis.med.
ohio-state.edu/AtTFDB). The Biostrings package was used to analyze the
abundance of 100 motifs in groups of genes with significant eQTL compared to

338 Plant Physiol. Vol. 172, 2016

Ranjan et al.

ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG2.4_release/
ftp://ftp.solgenomics.net/tomato_genome/annotation/ITAG2.4_release/
http://arabidopsis.med.ohio-state.edu/AtTFDB
http://arabidopsis.med.ohio-state.edu/AtTFDB


motif abundance in promoters of all analyzed genes using a Fisher’s exact test
(P , 0.05) with either zero or one mismatch (Ichihashi et al., 2014).

Dissection of eQTL to Different Stages and Time of
Development at Shoot Apex

Differentially expressed genes with enriched transcript levels in laser-
microdissected SAM/P0 versus P1 samples or hand-dissected samples of the
SAM + P0-P4 or P5 sampled over developmental time were obtained from
Chitwood et al. (2015). Genes for which a differential expression call could be
made (i.e. had enough reads and passed quality filters) were merged with
detected eQTL using the merge() function in R (R Development Core Team,
2015). For bootstrapping, cis- and transregulated transcripts were analyzed
separately. Merged transcript abundance patterns were randomly permuted
(without replacement) using the sample() function against bin identity. For each
test, 10,000 permutations were sampled to count the times that a particular
transcript expression pattern was assigned to a bin more than the actual count.
Resulting frequencies, representing a probability value, were multiple test ad-
justed using the Benjamini-Hochberg (Benjamini and Hochberg, 1995) method
using p.adjust(). Those bins with multiple test adjusted P values , 0.05 were
analyzed further using visualizations created with ggplot2 (Wickham, 2009).

Accession Numbers

The quality filtered, barcode-sorted, and trimmed short read data set, which
was used to get the normalized read counts and for DE analysis, was deposited
to the NCBI Short Read Archive under accessions SRR1013035 to SRR1013343
(Bioproject accession SRP031491).

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Number of genes in the introgression region for
an IL and the number of differentially expressed genes at the transcript
level compared to cv M82.

Supplemental Figure S2. Histograms for differentially expressed genes at
the transcript level for the ILs.

Supplemental Figure S3. eQTL and the transcript abundance patterns they
regulate.

Supplemental Figure S4. cis- and trans-eQTL.

Supplemental Figure S5. Frequency and distribution of differentially
expressed genes at the transcript level for the IL population at the intro-
gression and the bin level.

Supplemental Figure S6. Box plots of the normalized transcript levels for
the three landmark modules.

Supplemental Figure S7. Normalized transcript levels of the leaf develop-
ment module and genes associated with leaf development within the
mapping.

Supplemental Figure S8. eQTL regulation of transcript abundance pat-
terns that correlate with leaf number.
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