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Abstract

MORC3 is linked to inflammatory myopathies and cancer, however the precise role of MORC3 in 

normal cell physiology and disease remains poorly understood. Here, we present detailed genetic, 

biochemical, and structural analyses of MORC3. We demonstrate that MORC3 is significantly 

upregulated in Down syndrome, and that genetic abnormalities in MORC3 are associated with 

cancer. The CW domain of MORC3 binds to the methylated histone H3K4 tail, and this 

interaction is essential for the recruitment of MORC3 to chromatin and accumulation in nuclear 

bodies. We show that MORC3 possesses intrinsic ATPase activity that requires DNA however is 

negatively regulated by CW, which interacts with the ATPase domain. Natively linked CW 
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impedes binding of the ATPase domain to DNA, resulting in a decrease in the DNA-stimulated 

enzymatic activity. Collectively, our studies provide a molecular framework detailing newly 

identified functions of MORC3 and suggest that its modulation may contribute to human disease.

eTOC

MORC3 is upregulated in Down syndrome and is linked to cancer. Using genetic, biochemical, 

and structural analyses, Andrews et al show that MORC3 CW domain associates with methylated 

histone H3, and negatively regulates MORC3 DNA-dependent ATPase activity by binding to 

MORC3 ATPase domain.

Introduction

Microrchidia 3 (MORC3) is a member of the Morc family of four proteins evolutionarily 

conserved throughout the eukaryotic kingdom. MORC3, also called nuclear matrix protein 2 

(NXP2), was originally identified as a nuclear matrix-associated protein with RNA-binding 

activity (Kimura et al., 2002). It is one of the most common auto-antigens present in 

inflammatory myopathies, with one fourth of juvenile dermatomyositis (DM) patients being 

found positive for anti-MORC3 antibodies (Gunawardena et al., 2009). Recent clinical 

studies reveal elevated MORC3 expression in leukocytes following anti-cancer 

chemotherapy (Gonzalez-Fernandez et al., 2012). MORC3 localizes to promyelocytic 

leukemia nuclear bodies (PML-NBs), where it regulates p53 activity essential for cellular 

senescence in human and mouse fibroblasts (Mimura et al., 2010; Takahashi et al., 2007). 

Accumulating evidence suggests a role of MORC3 in transcription, as it promotes gene 

silencing when bound to SUMO-2 (Rosendorff et al., 2006).

MORC3 is a large, 939-residue multi-modular protein. It contains an N-terminal gyrase, 

Hsp90, histidine kinase, and MutL (GHKL)-type ATPase domain, which is conserved in 

other human MORC family members (MORC1, MORC2 and MORC4) and is also present 
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in a diverse array of chromatin-modified enzymes and chaperones (reviewed in (Dutta and 

Inouye, 2000; Li et al., 2013)). Although the catalytic activity of MORC3 has not been 

established, the ATP-hydrolyzing function of orthologous and homologous Morc proteins 

was found to be essential for heterochromatin condensation and gene silencing in 

Arabidopsis thaliana and for chromatin remodeling in response to DNA damage in 

mammalian cells (Li et al., 2013; Moissiard et al., 2012; Pastor et al., 2014). The ATPase 

domain in MORC3 is followed by a CW-type zinc finger and a C-terminal coiled-coil 

region. The MORC3 CW domain has been shown to interact with histone H3 peptides (Li et 

al., 2012; Liu et al., 2016), however the functional significance of this interaction remains 

unclear. The biological role of the coiled-coil region is unknown, though it may mediate 

protein dimerization.

Recent reports have demonstrated that MORC3 is misregulated in the brain of a Down 

syndrome mouse model (Ling et al., 2014) and anti-MORC3 antibodies are found in most 

patients with cancer-associated dermatomyositis (Fiorentino et al., 2013), yet the precise role 

of MORC3 in normal cellular processes and in disease has not been determined. Here, we 

present detailed genetic, biochemical, and structural analyses of MORC3. We report on 

histone H3K4me- and DNA-binding functions of MORC3, inter-domain crosstalk, and 

intrinsic catalytic activity of this ATPase. Our mechanistic and mutagenesis studies reveal an 

intricate multivalent engagement of MORC3 with chromatin and regulation of the ATPase 

activity by DNA and CW and suggest a possible link between the impaired MORC3 histone-

binding activity and disease.

Results and Discussion

MORC3 is markedly upregulated in Down syndrome

Because the MORC3 gene is encoded on chromosome 21 (chr21), trisomy of which causes 

Down syndrome (DS), the most common chromosomal abnormality in humans, we 

examined whether MORC3 contributes to the disease pathology. We first analyzed and 

compared expression of MORC3 and two other family members, MORC2 and MORC4, 

which are located on chr22 and chrX, respectively, using the Genotype-Tissue Expression 

(GTEx) portal. We found that all three genes are expressed ubiquitously across tissues and to 

similar levels (Fig. 1a). To determine whether MORC3 is subject to inter-individual and 

tissue-specific variation, we next performed RNA sequencing (RNA-seq) on a panel of 12 

age- and gender-matched euploid (D21) and T21 fibroblasts and measured MORC3, 

MORC2 and MORC4 expression levels. We found that MORC3 is substantially upregulated 

in T21 cells compared to D21 cells, and this discernible upregulation is conserved across 

different individuals (Fig. 1b). In contrast, MORC2 and MORC4 expression levels remained 

unchanged in T21 and D21 cells.

To test whether MORC3 upregulation is conserved in a different tissue, we carried out RNA-

seq on a panel of six age-matched female D21 and T21 lymphoblastoid cells. Like in 

fibroblasts, MORC3 (but not MORC2) was notably upregulated in T21 lymphoblastoid cells 

relative to D21 cells (Fig. 1c). MORC4 was also strongly upregulated in T21 lymphoblastoid 

cells, however this upregulation appeared to be unique to these cell lines and potentially 

confounded by the near absolute lack of MORC4 expression in D21 cells. Finally, to 
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examine MORC3 expression levels in naïve patient samples, we isolated monocytes and T 

cells from 17 individuals (10 T21 and 7D21), extracted RNA and performed RNA-seq. 

Analysis of the RNA-seq data revealed consistent upregulation of MORC3, but not MORC2 
or MORC4, in individuals with T21 (Fig. 1d). Furthermore, the observed upregulation level 

of MORC3 was equal to or greater than that of genes known to contribute to DS pathology, 

including RCAN1, DYRK1A, APP and RUNX1. For example, in monocytes from 

individuals with T21, MORC3 is upregulated to a greater extent (1.69 fold) than RCAN1 
(1.36 fold), DYRK1A (1.31 fold), APP (1.21 fold) and RUNX1 (0.86 fold). Together, these 

results demonstrate high expression level of MORC3 in cells from individuals with DS, 

which is conserved across different tissue types.

To establish whether MORC3 upregulation is conserved across species, we analyzed our 

RNA-seq datasets against a published dataset of gene expression in brains of a mouse 

Ts1Cje model of DS. The Ts1Cje model has a partial triplication of the region of mouse 

chromosome 16 that is syntenic to human chr21. Strikingly, while relatively few genes are 

consistently upregulated in the five datasets, MORC3 is found among the 15 that are (Fig. 

1e). Such conservation of MORC3 upregulation among individuals, tissues, and even 

species, suggests that MORC3 could be part of a core signaling cascade consistently 

deregulated by trisomy 21.

Genetic abnormalities in MORC3 are associated with cancer

A subset of DM patients has been reported to be at increased risk of malignancies at the time 

of DM diagnosis (Fiorentino et al., 2013; Madan et al., 2009). Since most patients with 

cancer-associated DM present antibodies to MORC3 (Fiorentino et al., 2013), we sought to 

characterize a possible link between MORC3 and cancer. We performed a survey of genetic 

alterations in MORC3 across human cancers collected in The Cancer Genome Atlas 

(TCGA). MORC3 is altered (mutation, amplification, or deletion) in multiple cancers, most 

frequently in bladder, uterine, stomach and lung cancers, as well as diffuse large B-cell 

lymphomas (Fig. S1a). We further explored the impact of these alterations on patient 

outcomes and found that patients with amplifications of MORC3 showed significantly 

poorer overall survival in sarcoma (p=0.002, log-rank test), acute myeloid leukemia 

(p=0.004, log-rank test), stomach adenocarcinoma (p=0.013, log-rank test), breast invasive 

carcinoma (p=0.034, log-rank test), and uterine corpus endometrial carcinoma (p=0.036, 

log-rank test) (Fig. S1b). We note that a possible association of MORC3 antibody-positive 

idiopathic inflammatory myopathies and cancer has also been suggested (Ichimura et al., 

2012). Together, the genetic abnormalities found in DS, DM and cancer patients point to a 

physiological importance of MORC3, yet our knowledge of its function at the molecular 

level is very limited.

Binding of MORC3-CW to the histone H3 tail is modulated by PTMs

In an effort to better understand the mechanism of action of MORC3, we carried out 

biochemical and structural analyses of its functional modules, the CW domain and the 

ATPase domain (Fig. 2a). While the CW domain of MORC3 was shown to associate with 

the histone H3 tail (Li et al., 2012), its preference for and regulation by posttranslational 

modifications (PTMs) have not been characterized. To determine the specific binding partner 
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and assess the effect of PTMs on binding activity of MORC3-CW, we tested the CW domain 

in a high-throughput histone peptide microarray (Fig. 2b–d). A GST-fusion of CW was 

incubated with a library of ~200 synthetic histone peptides containing known single and 

combinatorial PTMs (lysine acetylation, lysine and arginine methylation, arginine 

citrullination, and serine/threonine phosphorylation) found in the core and variant histone 

proteins (Tables S1 and S2). Microarray results showed that the MORC3 CW domain 

recognizes N-terminal histone H3 peptides but does not recognize H2A, H2B or H4 peptides 

(Fig. 2d). The effect of single modifications on CW binding varied, with methylation of 

H3K4 enhancing this interaction, and methylation or citrullination of H3R2, 

phosphorylation of H3T3 and H3T6, and acetylation of H3K4 reducing it. Interestingly, the 

negative effect of PTMs was essentially annulled when K4me3 was present on the same 

peptide, suggesting that the MORC3 CW domain is capable of binding to H3K4me3 

regardless of the presence of neighboring marks.

To assess the extent of enhancement observed in the CW binding to H3K4me, we 

produced 15N-labeled MORC3-CW and examined it in 1H,15N heteronuclear single 

quantum coherence (HSQC) titration experiments (Fig. 2e). Addition of the H3K4me3 

peptide (aa 1–12 of H3) induced large chemical shift changes in MORC3-CW, indicating 

direct interaction. Throughout titration of the peptide, a number of crosspeaks corresponding 

to the free state of the protein disappeared, and simultaneously, another set of resonances, 

corresponding to the bound state, appeared. This pattern of chemical shift changes indicates 

tight binding in a slow exchange regime on the NMR time scale. Titration of the unmodified 

H3 peptide led to an almost identical pattern of resonance changes, and the slow exchange 

regime again pointed to a strong interaction and binding affinity in a low micromolar range. 

In agreement, dissociation constants (Kds) for the complexes of MORC3-CW with the 

H3K4me3, H3K4me2, H3K4me1 and H3K4me0 peptides were found to be ~0.64, 0.67, 

0.74, and 6.8 μM, respectively, as measured by intrinsic tryptophan fluorescence (Fig. 2f, g). 

These results suggest that the MORC3 CW domain does not efficiently discriminate 

between the methylation states of H3K4, displaying only a slight preference for H3K4me3 

species over H3K4me2 or H3K4me1. Furthermore, although its binding affinity for 

H3K4me0 is ~10 fold lower, it is still in the range of binding affinities exhibited by the 

majority of known epigenetic readers toward modified or unmodified histones (1–50 μM) 

(Musselman et al., 2012). These data corroborate well the results of the most recent study 

that reports 0.8 μM (measured by ITC) or 1.8 μM (by FP) binding affinity of the MORC3 

CW domain for H3K4me3 and a ~8-fold decrease in the affinity of this domain for 

H3K4me0 (Liu et al., 2016).

Structural basis for the interaction of the MORC3 CW domain with H3K4me3

To elucidate the molecular mechanism for the recognition of H3K4me3, we determined the 

crystal structure of the MORC3 CW domain bound to an H3K4me3 peptide to a 1.56 Å 

resolution (Fig. 3 and Table S3). The MORC3 CW domain has a compact globular fold 

consisting of a double-stranded antiparallel β sheet and a 310-helical turn linked by a single 

zinc-binding cluster (Fig. 3a). The H3K4me3 peptide is bound in an extended conformation. 

It forms a third antiparallel β-strand pairing with the β1 strand of the protein. Backbone 

amides of the peptide residues R2, K4, and T6 form characteristic β-sheet hydrogen bonds 
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with the backbone amides of Gln408, Trp410 and Gln412 of the CW domain (Fig. 3a). The 

N-terminal amino group of the peptide residue A1 donates two hydrogen bonds to the 

carbonyl groups of Pro430 and Glu431, whereas the methyl group of A1 is bound in a 

hydrophobic pocket lined with Trp433 (Fig. 3b). The CW:H3K4me3 complex is further 

stabilized through an extensive set of intermolecular hydrogen bonds involving the side 

chains of the peptide. The Q5 amide is hydrogen bonded to Thr409, and T6 forms a polar 

contact with the indole nitrogen atom of Trp410. The guanidino group of R8 is restrained 

through the interaction with the side chain amide of Gln408 and a salt bridge with the 

carboxyl group of Asp424. Another hydrogen bond is formed between the amino group of 

K9 and the carboxyl group of Asp454, whereas T11 is hydrogen bonded to a serine residue 

from the vector.

The fully extended side chain of K4me3 occupies an elongated groove made of two aromatic 

residues and two negatively charged residues (Fig. 3a, b). The aromatic side chains of 

Trp410 and Trp419 are positioned orthogonally to each other, creating side-walls of the V-

shaped groove, whereas Glu450 and Glu453 in the C-terminal loop of the CW domain make 

the groove’s end-wall. The positively charged trimethylammonium group of K4 is locked 

through cation-π interactions with Trp410 and Trp419 and through electrostatic interactions 

with the negatively charged carboxylates of Glu453 and Glu450.

Negatively charged end-wall residues direct selectivity of MORC3-CW

Given that MORC3-CW is capable of tight binding to either methylated form of H3K4, we 

sought to obtain mechanistic insight into this behavior by determining the crystal structure 

of the CW domain in complex with an H3K4me1 peptide (Fig. 3d and Table S3). We found 

that the overall structure of the CW:H3K4me1 complex is almost identical to the structure of 

the CW:H3K4me3 complex (Fig. 3d). However, there is a significant difference in 

coordination of K4me3 and K4me1 within the binding groove that can help explain the 

indifference of MORC3-CW toward the K4 methylation state. Particularly, the 

monomethylammonium moiety is restrained via two hydrogen bonds, formed with the 

carboxylate of Glu453 and mediated by two highly ordered water molecules (Fig. 3e). These 

water molecules are absent in the H3K4me3-binding pocket; moreover, their relative spaces 

are occupied by the methyl groups in the trimethylammonium moiety. The two additional 

hydrogen bonds observed in the K4me1-binding pocket likely compensate for the energetic 

loss in the hydrophobic and cation-π interactions, which contribute to coordination of 

K4me3 to a higher degree. While we were unable to obtain the structure of the H3K4me2-

bound CW domain, based on the comparative analysis, we would anticipate that the 

dimethylammonium moiety is stabilized through a single water-mediated hydrogen bond 

with Glu453. Together, the structural data suggest that the ability of the MORC3 CW 

domain to interact robustly with H3K4me3/me2/me1 is likely due to the ability of the end-

wall residue, Glu453, to facilitate water-mediated hydrogen bonds with H3K4 in the low 

methylation state.

Alignment of the CW domain sequences demonstrates that the two tryptophan residues in 

the histone-binding site are conserved in several other CW domains, however the negatively 

charged end-wall residue (Glu453 in MORC3) is not conserved (Fig. 4a). For example, 
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Glu453 is replaced with an aromatic tryptophan residue in the CW domain of CWPW1 that 

associates with H3K4me3 ~2.5-, ~6- and ~14- fold tighter than it associates with H3K4me2, 

H3K4me1 and H3K4me0, respectively (He et al., 2010) (Fig. 4b). To further corroborate the 

importance of the end-wall residues in MORC3, we generated a series of Glu453 mutants 

and assayed their interactions with histone peptides by fluorescence spectroscopy and NMR. 

We found that substitution of Glu453 with a tryptophan enhances the preference of the 

MORC3 CW domain toward H3K4me3 (Fig. 4c, d and Fig. S2).

The two-tryptophan V-shaped groove is also observed in another reader of H3K4me, a PHD 

finger of JARID1A, which selects for the trimethylated mark (Wang et al., 2009). While the 

tryptophan residues in the histone-binding sites of JARID1A-PHD and MORC3-CW are 

superimposed well, the JARID1A-PHD finger’s groove does not have the end-wall residues 

and is fully open-ended (Fig. 4e). On the other hand, a number of H3K4me3-specific PHD 

fingers, including ING2, contain an aromatic residue in the end-wall position (Peña et al., 

2006). Intriguingly, PHD fingers use the N-terminal loop preceding the β-sheet to create the 

end-wall, whereas the MORC3 CW domain uses the C-terminal loop to form its end-wall 

(Fig. 4e).

Substitution of Glu453 in MORC3-CW with a positively charged lysine residue resulted in a 

10-fold decrease in binding to H3K4me3, indicating that electrostatic repulsion between 

Lys453 and the positively charged trimethylammonium group of K4 impedes complex 

formation (Fig. 4c, d). Similarly, a decrease in binding was observed for the E453R mutant 

of MORC3-CW (Fig. S2). Together, our results indicate that it is the end-wall residues in the 

binding site of the MORC3 CW domain that account for the ability of this domain to bind 

either methylation state of H3K4. While the cation-π interactions involving the aromatic 

Trp410 and Trp419 residues favor trimethylated lysine over di- or monomethylated lysine, 

the negatively charged end-wall residues enhance interaction with the low methylation states 

by providing extra water-mediated hydrogen bonds. Additionally, increased electrostatic 

attraction forces with a less delocalized positive charge in the low-methylation states of 

lysine would further strengthen this interaction.

Tryptophan residues are necessary for binding of MORC3-CW to H3K4me3

The critical role of the histone-binding site residues was supported by mutational analysis. 

We generated point-mutants of MORC3-CW and tested their stability and binding to 

H3K4me3 using NMR and assessed the strength of these interactions by fluorescence 

spectroscopy and NMR (Fig. 5). We found that Trp410 and Trp419 in the Trp-groove do not 

contribute equally to the interaction with H3K4me3. Substitution of Trp410 with an alanine 

reduced the binding by two orders of magnitude, whereas replacement of Trp419 with an 

alanine decreased this interaction more severely, i.e. by three orders of magnitude, and the 

Trp419K mutant was completely impaired in binding to H3K4me3 (Fig. 5a and Fig. S3). 

The uneven contribution probably reflects the fact that in the complex, the K4me3 group is 

placed closer to Trp419 than to Trp410. The distance from the nitrogen atom in the 

trimethylammonium group to the Cγ atom of Trp410 is 4.9 Å; however, the corresponding 

distance to Trp419 is 4.2 Å, which is 0.7 Å shorter. Much like K4me3 in the MORC3-

CW:H3K4me3 complex, the monomethylammonium and ammonium moieties in the 
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MORC3-CW:H3K4me1 and MORC3-CW:H3K4me0 complexes lie closer to Trp419, 

though the complex with unmodified H3 peptide crystallized as a dimer with the histone-

binding site being partially in the dimeric interface, hence precluding us to carry out detailed 

analysis of the binding mechanism (Fig. S4). We note that concurrent mutation of both Trp 

residues to alanine results in an unfolding of the protein, which infers that these residues 

also play a role in structural stability of the CW domain. Interestingly, the CW domain of 

KDM1B, a demethylase that demethylates H3K4me2/me1 (Ciccone, 2009), contains both 

tryptophan residues (Fig. 4a), however NMR titration experiments showed that the KDM1B 

CW domain does not interact with the H3K4me2 peptide, suggesting that for certain CW 

domains the presence of two Trp residues is necessary but not sufficient for the binding (Fig. 

4f).

Substitution of Asp407, Gln408 and Gln412 residues that are involved in polar contacts in 

some of the MORC3-CW complexes had little effect on the interaction with H3K4me3 (Fig. 

5a). However, binding of the Q408A/D424A mutant was reduced ~40-fold, pointing to the 

important contribution of the salt bridge formed between Asp424 and H3R8 to the 

interaction. We also found that the first two residues of histone H3, A1 and R2, are required 

for the interaction of the CW domain, as no binding was detected to the peptide containing 

residues T3-S10 of histone H3 (Fig. 5d).

MORC3-CW interacts with the ATPase domain

Considering the close proximity of CW to the ATPase domain, which are separated by about 

12 residues in MORC3, we next asked whether the two modules are in contact. We 

generated an isolated ATPase domain of MORC3, purified the His-tag fusion protein and 

titrated it into an NMR sample containing 15N-labled MORC3-CW E453A (Fig. 6a and Fig. 

S5; we used His-tagged ATPase due to its solubility and the E453A mutant and H3K4me0 

peptide to avoid slow exchange regime and thus be able to compare the patterns of 

resonance changes in CW). Substantial chemical shift perturbations in CW E453A and 

broadening and loss of signal intensities in 1H,15N transverse relaxation optimized 

spectroscopy (TROSY) experiments upon addition of His-ATPase indicated that the two 

domains of MORC3 form a complex (~50 kDa in size). Although the pattern of resonance 

changes was distinctly different from the pattern of resonance changes induced in MORC3-

CW E453A by the histone H3K4me0 peptide, many amides of CW were perturbed by either 

ligand, suggesting that binding interfaces may partially overlap or substantial 

conformational changes accompany these interactions (compare upper panels in Fig. 6a). 

Thermodynamic parameters for the MORC3-CW E453A:His-ATPase complex, obtained 

from ITC measurements, revealed a 1:1 stoichiometry of the complex and a Kd of 9 μM for 

the isolated, i.e. unlinked domains (Fig. 6b). Clearly, this interaction should be tighter when 

the two domains are physically linked.

To establish the relationship between the two binding partners of CW, we titrated H3K4me0 

peptide into the CW E453A:His-ATPase (1:1 molar ratio) complex and collected 1H,15N 

TROSY spectra (Fig. 6a, lower-left panel). An appearance of the crosspeaks corresponding 

to the CW E453A:H3K4me0 complex and simultaneous shifting of the ATPase-perturbed 

resonances to their positions in the apo-state of CW suggested that the histone peptide 
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displaces the ATPase domain from the CW domain. Reverse titration of the His-ATPase 

domain into the CW E453A:H3K4me0 (1:4) complex led to the disappearance of some 

crosspeaks due to formation of the large CW E453A:His-ATPase complex. Although at this 

molar ratio of the interactors, ATPase could not efficiently displace H3K4me0, small 

shifting of the histone-perturbed resonances toward their positions in the apo-state also 

suggested that the ATPase domain disrupts the CW E453A:H3K4me0 complex. Collectively, 

these results indicate that MORC3-CW has two binding partners – H3 and the ATPase 

domain, and their binding-sites are, at least in part, overlap.

MORC3 possesses ATPase activity that requires DNA

Previously, MORC2, a homologue of MORC3, was reported to have ATPase activity; 

however, this function in MORC3 has not been evaluated. To determine if the GHKL-type 

ATPase domain of MORC3 is capable of hydrolyzing ATP, we carried out an assay that 

couples the release of inorganic phosphate, produced by the hydrolysis of ATP to ADP, to 

the enzymatic conversion of 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) 

by nucleoside phosphorylase (PNP). This results in a shift in the wavelength maximum 

absorbance from 330 nm for MESG to 360 nm for the product. Following incubation of the 

MORC3 His-ATPase domain with ATP, MESG and PNP, the release of inorganic phosphate 

was quantified by measuring an increase in the absorbance at 360 nm. As shown in Figure 

6c, the His-ATPase domain of MORC3 hydrolyzed ATP with the rate of 0.47 ± 0.03 μmol 

min−1 at 22 °C. The rate of ATP hydrolysis was increased to 0.77 ± 0.06 μmol min−1 in the 

presence of 14mer dsDNA in the reaction and to 0.80 μmol min−1 in the presence of a 

mixture of mono- and di-nucleosomes. A similar ~two-fold increase in the enzymatic 

activity was observed at 30 °C and a ~three-fold increase was detected with a Widom 601 

(147 bp) DNA. These data demonstrate that the ATPase activity is an intrinsic function of 

MORC3, which is enhanced in the presence of either free or chromatinized DNA.

To assess whether the ATPase domain directly binds DNA, we used electrophoretic mobility 

shift assays (EMSA). Increasing amounts of His-ATPase were incubated with Widom 601 

DNA or reconstituted nucleosome core particles (NCPs) and the reaction mixtures were 

resolved on a 5% native polyacrylamide gel (Fig. 6d, e). A gradual increase in MORC3 His-

ATPase concentration in the assays resulted in a shift of the DNA and/or NCP bands, 

indicating direct interaction of the ATPase domain with either free or nucleosomal DNA.

CW negatively regulates DNA-dependent ATPase activity

Because the CW and ATPase domains physically interact, we examined whether the CW 

domain modulates the ATPase activity of MORC3. We generated a MORC3 construct 

harboring linked ATPase and CW domains and tested it in the ATPase assay (Fig. 6c). We 

found that although the linked CW domain has little negative effect on the intrinsic catalytic 

activity of the ATPase domain, it considerably decreased the rate of hydrolysis in the 

presence of DNA. Modeling of the MORC3 ATPase domain structure suggests highly 

positively charged surface potential (data not shown), which likely allows this domain to 

bind negatively charged DNA. Because the CW domain, and particularly its H3-binding site, 

is highly negatively charged, we hypothesized that binding of CW to the ATPase domain 

precludes binding of the ATPase to DNA. Indeed, EMSA experiments with 601 DNA 
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showed that the DNA-binding function of His-ATPase-CW of MORC3 is impaired (Fig. 6f). 

Of note, the CW domain itself does not bind DNA, as no significant chemical shift 

perturbations were detected in 1H,15N HSQC spectra of 15N-labeled MORC3-CW when 601 

DNA was titrated in (Fig. 6g). Interestingly, addition of the H3 peptide to His-ATPase-CW 

led to a slight increase in the rate of hydrolysis suggesting that binding of CW to H3 could 

release the ATPase domain from CW and enhance its catalytic activity (Fig. 6c). Overall, 

these results suggest that CW negatively regulates the DNA-dependent MORC3 ATPase 

activity likely through hindering DNA binding of the ATPase domain (Fig. 6h).

Histone binding function is essential for the recruitment of MORC3 to chromatin and 
accumulation in NBs

Our findings suggest that MORC3 is capable of engaging chromatin via multivalent 

contacts. To determine whether the interaction of MORC3-CW with H3 is necessary to 

recruit MORC3 to chromatin in vivo, we investigated cellular localization of Flag-tagged 

full length MORC3 in HeLa cells using chromatin association assays (Fig. 7a). Both wild-

type (WT) MORC3 and mutants carrying mutations in the CW domain that either disrupt the 

CW structure (C416S and C416A) or abrogate binding to the histone H3 tail (W419A) were 

tested. Cells were harvested by trypsinization 48 hours post transfection, and FLAG-

MORC3 in biochemically separated chromatin and soluble fractions was examined by 

immunoblotting. Chromatin fractionation experiments revealed that WT FLAG-MORC3 

purifies in the chromatin and soluble fractions, but MORC3 mutants impaired in H3 binding 

did not associate with chromatin and were found only in the soluble fractions. This data 

demonstrate that interaction with H3 is necessary and sufficient for MORC3 to retain on 

chromatin.

MORC3 was previously shown to concentrate in NBs (Mimura et al., 2010; Takahashi et al., 

2007). To define the role of the CW domain in this function, HeLa cells were transfected 

with 3xFLAG-MORC3 transgenes, and 48 hours post transfection, FLAG-tagged proteins 

were visualized using anti-FLAG antibodies by confocal fluorescence microscopy. As 

shown in Figure 7b, WT FLAG-MORC3 was found localized to NBs; however, FLAG-

MORC3 W419A and FLAG-MORC3 C416A mutants that are unable to bind histones 

diffused throughout the nucleus. Collectively, these results underscore a direct link between 

histone binding of MORC3 through its CW domain and the function of MORC3 as a 

chromatin-associated ATPase and a NB factor.

Some cancer-relevant mutations decrease binding of MORC3-CW to H3

To date, 168 cancer-relevant aberrations, including mutations, reading frame-shifts and 

deletions, have been identified in MORC3; 7 of which reside in the CW domain (Fig. S6a, 

cBioPortal). Particularly, MORC3-CW R420Q mutation is found in multiple cancer types, 

such as prostate and stomach cancers and melanoma. To determine whether the cancer-

related mutations affect binding of MORC3 to H3, we generated Q408H, R420Q, D424H, 

P430S, D440Y, R444G and P449R mutants of MORC3-CW found in breast, prostate, 

cervical, stomach, melanoma, liver and lung cancers and glioblastoma and tested the 

corresponding 15N-labeled proteins by NMR (Fig. S6). We found that while all the mutants 

were stable, binding of R420Q and Q408H to H3K4me3, compared to WT, was decreased 
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~200-fold and ~80-fold, respectively, whereas binding of D424H was slightly reduced, and 

P430S, D440Y, R444G and P449R were able to associate with H3K4me3 as strong as the 

WT protein (Fig. S6d, e).

Mapping the cancer-relevant mutations on the structure of the CW:H3K4me3 complex 

reveals that some of the mutated residues are positioned to either mediate a proper fold of 

the domain or make contacts with the histone peptide. For example, three hydrogen bonds 

formed between the guanidino group of Arg420 and the backbone carbonyls of Asn445, 

Val448 and Pro449 bridge the C-terminal loop, which contains the end-wall residues, to the 

core of the CW domain. Mutating Arg420 to a glutamine would result in a loss of these 

bonds and may subsequently yield an incorrect conformation of the C-terminal loop. Both 

Gln408 and Asp424 are involved in the interactions with the side chain of histone H3R8, 

and, as we anticipated, mutations of these residues led to a decrease in histone binding of the 

CW domain. Together, our structural and mutational analyses demonstrate that two of the 

seven cancer-relevant mutants of MORC3-CW have compromised histone-binding activity – 

and thus suggest a possible relationship between this function of MORC3 and the disease.

Concluding Remarks

In this work, we present comprehensive genetic, biochemical and structural analyses of 

MORC3. We show that MORC3 is markedly upregulated in DS across different individuals, 

tissues and species, and that genetic abnormalities in MORC3 are associated with cancer. 

Overexpression of MORC3 in multiple T21 experimental systems is particularly notable as 

very few genes (15, Fig. 1e) display conserved changes across our datasets. Other genes in 

this conserved group, including IFNAR1, IFNAR2 and HMGN1, have previously been 

implicated in DS pathology (Hallam and Maroun, 1998; Lane et al., 2014; Maroun et al., 

2000; Sullivan et al., 2016). Although we do not yet know what exact role MORC3 plays in 

DS, the consistency of its upregulation is conspicuous and merits further investigation.

At the molecular level, we determined the structural mechanism by which MORC3-CW 

recognizes histone H3 tail. This distinctive mechanism provides an explanation for the 

ability of MORC3 to robustly interact with tri-, di-, or monomethylated H3K4 species. 

Interestingly, MORC3-CW binds to unmodified histone H3 although ~10-fold weaker but 

still with the appreciable binding affinity of 6.8 μM, which is somewhat uncommon for an 

H3K4me-targeting reader, and a similar ~8-fold decrease in the binding affinity and a Kd of 

14.6 μM have also been reported by (Liu et al., 2016). Association of readers with the N-

terminus of the histone H3 tail is often mediated by methylation of H3K4 (Musselman and 

Kutateladze, 2011; Musselman et al., 2012). Readers that possess an aromatic cage, such as 

PHD fingers or double chromodomains, recognize H3K4me3 but bind much more weakly to 

H3K4me0. Conversely, binding of the H3K4me0-specific readers, including ADD domains 

and some PHD fingers, to the histone tail is substantially compromised or blocked by 

trimethylation of H3K4. The difference in binding affinities for H3K4me3 vs H3K4me0 can 

be as high as three orders of magnitude. In this context, the MORC3 CW domain represents 

a distinctive H3K4me-reader that utilizes its aromatic cage to affix lysine 4 irrespective of its 

methylation state, reverberating a H3K9me-reader, the SAWADEE domain, that does not 

differentiate between the methylation states and binds H3K9me3/me2/me1 with a similar 
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affinity of ~2 μM (Law et al., 2013). Structural analysis of the MORC3-CW complexes with 

trimethylated, monomethylated and unmodified H3K4 peptides reveals that this ability is 

due to the presence of the negatively charged residues in the end-wall position of the H3K4-

binding aromatic groove of MORC3-CW. The end-wall residues augment interaction with 

the low methylation states by providing additional water-mediated hydrogen bonds and 

increasing electrostatic attraction forces. It will be essential in future studies to establish 

whether the ability of MORC3 to recognize H3K4me3/me2/me1 tails almost equally well 

and, to a lesser extent, unmodified H3 plays a role in promoting binding and/or stabilization 

of this ATPase at various genomic regions enriched in these marks, including active, 

repressed, or condensed chromatin.

We found that the ATPase and CW domains interact and that MORC3 has intrinsic ATPase 

activity that is enhanced by DNA. Direct linking of CW to the ATPase domain results in a 

decrease in ATPase stimulation by DNA, which is likely a result of CW hindering the 

ATPase domain from engaging with DNA. A similar autoinhibition mode through blocking 

DNA/RNA-binding sites of ATPase motors by chromodomains and other domains have been 

reported for Chd1, CHD4 and Dbp5 ATPases (Hauk and Bowman, 2011; Hauk et al., 2010; 

Narlikar et al., 2013; Watson et al., 2012). In the case of Chd1, a negatively charged α-helix 

of the double chromodomains packs between two halves of the ATPase domain, blocking 

binding of DNA, and this inhibition can be relieved by nucleosomes, possibly through 

engagement of CHD1 regions outside chromodomains (Hauk et al., 2010).

What is the mechanism for the release of the MORC3 ATPase inhibition? Although in-depth 

investigation is required to fully understand this mechanism, our current model suggests that 

the negative regulatory function of CW and inhibition of the ATPase catalytic activity could 

be alleviated through binding of the CW domain to histone H3. A similar control of catalytic 

function by a reader domain has been reported for the histone demethylase KDM5A: 

binding of the first (PHD1) finger of KDM5A to histone H3K4me0 tail stimulates activity of 

the neighboring demethylase domain (Torres et al., 2015). Another example is the de novo 
DNA methyltransferase DNMT3A that contains an ADD domain (a reader, specific for 

H3K4me0) next to the catalytic methyltransferase domain. Recent elegant structural study 

has demonstrated that DNMT3A exists in an autoinhibitory form, in which the ADD domain 

interacts with and impedes enzymatic function of the catalytic domain through blocking its 

DNA-binding activity (Guo et al., 2015). Binding of ADD to H3K4me0 (but not to 

H3K4me3) disrupts the ADD-catalytic domain complex, resulting in a large rearrangement 

of ADD with respect to the catalytic domain and stimulation of the enzymatic activity (Guo 

et al., 2015).

Our cell data demonstrate that binding of the CW domain to histone H3 is required for the 

recruitment of MORC3 to chromatin and localization to NBs. Given the high sequence 

similarity between MORC3 and MORC4 and the fact that the CW domains of both proteins 

recognize H3K4me (Liu et al., 2016), it is likely that the chromatin-binding mode and the 

regulatory crosstalk of the reader (CW) and the catalytic domain (ATPase) are conserved in 

MORC4. However, the CW domains of MORC1 and MORC2, the other two human MORC 

proteins, lack one of the aromatic groove residues (W410 in MORC3, Fig. 4a) and do not 

interact with histone H3. This inability to bind H3 suggests that the mechanisms for 
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chromatin engagement and regulation of MORC1 and MORC2 are distinctly different than 

that of MORC3. Considering that the MORC proteins are evolutionarily conserved and that 

deregulation of MORCs is associated with various disease states, it is imperative to elucidate 

and compare such mechanisms. Understanding how MORC proteins engage and modify 

chromatin at the molecular level could provide insight into the cellular function of this 

family of ATPases.

METHODS

Cell Culture and RNA-seq

Fibroblasts were obtained from the Coriell Cell Repository and cultured in DMEM with 

10% FBS. Lymphoblastoids were obtained from the Nexus BioRepository and cultured in 

DMEM with 10% FBS. HeLa were obtained from ATCC and cultured in DMEM with 10% 

FBS and 1x penicillin/streptomycin. Total RNA was harvested from ~5×106 cells using the 

Qiagen RNeasy kit per manufacturer’s instructions including on-column DNAse digestion. 

500 ng of RNA was used to prepare sequencing libraries using the Illumina TruSeq mRNA 

Library Prep Kit. Libraries were sequenced with an Illumina HiSeq2000.

Statistical Analysis

Data quality control was performed using FastQC (v0.11.2). Reads were aligned to 

GRCh37/hg19 with Tophat2 (v2.0.13), and high quality mapped reads (MAPQ>10) were 

filtered with SAMtools (v0.1.19). Gene level counts used for RPKM calculation were 

obtained with HTSeq (v0.6.1), and differential expression was determined with DESeq2 (v.

1.6.3), as described (Sullivan et al., 2016). Briefly, read counts were modeled with a negative 

binomial distribution and normalized for library size using the geometric mean. Dispersions 

were modeled with the empirical Bayes method and fold changes calculated. Significance 

was calculated using a Wald test to generate p-values and multiple hypothesis correction 

performed using the Benjamini-Hochberg method to generate adjusted p-values.

Isolation of Monocytes and T cells by Florescence Activated Cell Sorting (FACS)

Peripheral blood was collected in EDTA vacutainer tubes from 10 T21 patients and seven 

D21 controls. Blood was centrifuged at 500 rcf for 15 minutes to separate plasma, buffy 

coat, and red blood cells (RBCs). Peripheral Blood Mononuclear Cells (PBMCs) were 

isolated from the buffy coat fraction by RBC lysis and 1x PBS wash according to 

manufacturer’s instructions (BD, 555899). After RBC lysis and PBS wash, PBMCs were 

stained for sorts at 10–20×107 cells/ml then diluted to approximately 5×107 cells/ml in flow 

cytometry sorting buffer (1x PBS, 1 mM EDTA, 25 mM HEPES pH 7.0, 1% FBS). All 

staining was performed in flow cytometry sorting buffer with fluorochrome-conjugated 

antibodies for at least 15 min on ice while protected from light. Single cell suspensions were 

stained with CD45 (eBioscience, HI30), CD14 (Biolegend, 63D3), CD3 (Biolegend, OKT3), 

CD 16 (Biolegend, B73.1), CD19 (Biolegend, HIB19), CD56 (Biolegend, 5.1H11) and 

CD34 (Biolegend, 561) antibodies. CD45+CD14+CD19−CD3−CD56− Monocytes and 

CD45+CD3+CD14−CD19−CD56− T cells were FAC-sorted into (1x Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 4.5g/L D-Glucose, L-Glutamine, and 5% FBS) 
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on the MoFlo Astrios (Beckman Coulter) at the CU-SOM Cancer Center Flow Cytometry 

Shared Resource.

Protein expression and purification

The human MORC3 CW domain (aa 401-455 and 407-455) was cloned into a pGEX 6p-1 

vector. MORC3 ATPase (aa 1-392) and ATPase-CW (aa 1-455) constructs were cloned into 

a pET28a vector. Unlabeled and uniformly 15N-labeled proteins were expressed in Rosetta2 

(DE3) pLysS in LB or minimal media supplemented with 15NH4Cl (and 50 μM ZnCl2 for 

CW). Protein expression was induced with 0.5 mM IPTG for 16 h at 18 °C. The His-ATPase 

and His-ATPase-CW proteins were purified on Ni-NTA agarose beads (QIAGEN). The 

protein-bound beads were washed at least 3 times with a 10 mM HEPES pH 7.4 buffer, 

containing 500 mM NaCl and 20 mM imidazole, and the His-tagged proteins were eluted 

with a 10 mM HEPES pH 7.4 buffer, containing 300 mM NaCl and 200 mM imidazole. The 

GST-CW proteins were purified on glutathione Sepharose 4B beads (GE Healthcare) in 50 

mM sodium phosphate pH 6.8 buffer, supplemented with 100 mM NaCl and 2 mM DTT. 

The GST tag was cleaved overnight at 4°C with PreScission protease. Unlabel ed proteins 

were further purified by size exclusion chromatography and concentrated in Millipore 

concentrators (Millipore). All mutants were generated by site-directed mutagenesis using the 

Stratagene QuikChange mutagenesis protocol, grown and purified as wild-type proteins.

NMR experiments

NMR experiments were carried out on Varian INOVA 500 MHz, 600 MHz and 900 MHz 

spectrometers. The 1H,15N HSQC and 1H,15N TROSY spectra of 0.1 mM uniformly 15N-

labelled wild type or mutated MORC3-CW (or KDM1B CW) were recorded at 298K. 

Experiments with the ATPase domain, shown in Figs. 6a and S5, were performed in 10 mM 

HEPES pH 7.4 buffer, supplemented with 100 mM NaCl, 1 mM TCEP and 7% D2O, 

whereas all other NMR titration experiments with CW were performed in 50 mM phosphate 

pH 6.8 buffer, supplemented with 100 mM NaCl, 2 mM DTT and 7% D2O. Binding was 

characterized by monitoring chemical shift changes in the proteins induced by histone 

peptides (synthesized by the University of Colorado Peptide Core Facility), 601 DNA, or the 

His-ATPase domain. The dissociation constants (Kd) were determined by a nonlinear least-

squares analysis in Kaleidagraph using the equation:

where [L] is concentration of the peptide, [P] is concentration of the protein, Δδ is the 

observed chemical shift change, and Δδmax is the normalized chemical shift change at 

saturation. Normalized chemical shift changes were calculated using the equation 

, where Δδ is the change in chemical shift in parts per million 

(ppm).
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Crystallization and structure determination of MORC3-CW in complex with H3K4me3, 
H3K4me1 and H3K4me0

MORC3 CW domain (residues 407-455) was concentrated to 15 mg/mL and incubated on 

ice with H3K4me3, H3K4me1, or H3K4me0 in a 1:1.5 molar ratio for 1 hour prior to 

crystallization. Crystals of the CW:H3K4me0 complex were grown using the hanging-drop 

diffusion method at 18 °C by mixing equal volumes of protein-peptide solution with well 

solution composed of 1.6 M sodium citrate (pH 6.5). Crystals of the CW:H3K4me1 and 

CW:H3K4me3 complexes were grown via hanging-drop by combining equal volumes of 

peptide-protein solution with well solution comprised of 2.5 M (NH4)2SO4 supplemented 

with 0.1 M sodium acetate. X-ray diffraction data were collected from single crystals at 100 

K on a beamline 4.2.2 at the Advance Light Source administrated by the Molecular Biology 

Consortium. Datasets were integrated and scaled using HKL2000, imosflm and SCALA. 

The structures were obtained by molecular replacement using the CW domain (Protein Data 

Bank [PDB] ID 2RR4) as a search model. The Refmac, and Phenix were used in the 

refinement and the models were built using Coot. The crystallographic data are summarized 

in Table S3.

EMSA

601 DNA and NCPs were produced as described in (Klein et al., 2016). Increasing amounts 

of MORC3 His-ATPase domain (1 to 20 molar excess) were incubated with 601 DNA (3 

pM) or with NCPs (3 pM) in 20 mM Tris-HCl pH 7.5 buffer, 150 mM NaCl, 2 mM DTT for 

1 hour at room temperature. The reaction mixtures were loaded on 5% polyacrylamide gels 

and electrophoresis was performed in 0.2 x TB buffer at 150 V for 1 hour on ice. Gels were 

stained with ethidium bromide and visualized with AlphaImager (AlphaInotech).

ATPase assays

The ATPase assays were performed using EnzChek Phosphate Assay Kit (Molecular 

Probes). The reactions were carried out on 1.5–3.0 μM of MORC3 His-ATPase or His-

ATPase-CW, 3 mM ATP, in the presence and absence of 20–40 μg/mL either dsDNA 

(14mer, GCTTTGCTGTAAGG; Integrated DNA Technologies), 20 μg/mL mono/

dinucleosomes (Reaction Biology Corp.) or 1 μM 601 DNA in a buffer containing 50 mM 

Tris-HCl, pH 7.5, 1 mM MgCl2, 0.1 mM sodium azide, 200 μM MESG, and 1 U of PNP. 

Reaction mixtures were incubated for 20 mins at 22 °C or 30 mins at 30 °C, and the release 

of inorganic phosphate was monitored by measuring the absorbance at 360 nm on a 

Nanodrop 2000c spectrophotometer (Thermo Scientific). In the presence of inorganic 

phosphate, produced by the hydrolysis of ATP to ADP, MESG is enzymatically converted to 

ribose 1-phosphate and 2-amino-6-mercapto-7-methylpurine by PNP, resulting in a shift in 

the wavelength absorbance from 330 nm for MESG to 360 nm for the product. Error was 

calculated as the standard deviation between at least three separate experiments (two 

experiments for ATPase-CW with DNA or H3 at 30 °C). Due to the sensitivity to inorganic 

phosphate, HEPES buffer was used during purification of the proteins for this assay.
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Chromatin Association Assays

The cDNA encoding full-length human MORC3 was acquired from the CCSB Human 

ORFeome Collection, version 5.1 and was cloned as an N-terminal 3xFLAG fusion into 

pSEB-N3F (generous gift of Dr. Tong-Chuan He, University of Chicago). Amino acid 

substitutions were introduced by Quick Change site-directed mutagenesis (Strategene). 

Asynchronously growing HeLa cells were harvested by trypsinization 48 hours post 

transfection with the indicated FLAG-tagged MORC3 constructs. Pellets were washed once 

with cold 1x PBS, snap frozen in liquid N2 and either processed immediately or stored at 

−80°C. Cell pellets were resuspended in 1 x volume CSK buffer (10 mM PIPES pH 7.0, 300 

mM sucrose, 100 mM NaCl, 3 mM MgCl2, 0.1% Triton X-100 and 1x Complete EDTA-

Free protease inhibitor cocktail from Roche) and incubated on ice for 20 min. Total protein 

was quantified by Bradford Assay (BioRad), and 10% of this total fraction was combined 

with an equivalent volume of CSK buffer supplemented with Universal Nuclease (Thermo, 

1:5,000). Note that the concentration of the total fraction is now 0.5x. The remaining cell 

lysate was centrifuged at 1,300 × g for 5 min at 4°C. The supernatant (soluble fraction) was 

collected. The chromatin pellet was resuspended in 1x volume CSK buffer and kept on ice 

for 10 min before being spun again at 1,300 × g for 5 min at 4°C. The supernatant was 

discarded and the chromatin pellet was solubilized in CSK buffer supplemented with 

Universal Nuclease. 1–5 μg of protein from each fraction (estimated from Bradford on total 

extract) was resolved by SDS-PAGE, transferred to PVDF membrane (Thermo), and probed 

with the indicated antibodies (Flag, Sigma #F1804, 1:5,000; β-tubulin, Millipore #05-661, 

1:5,000, H3, Epicypher #13-0001, 1:25,000).

Immunofluorescence

Asynchronously growing HeLa cells were cultured in Nunc Lab-TeK II chamber slides 

(Thermo) and transiently transfected with 3xFLAG-MORC3 transgenes using TurboFect 

transfection reagent (Thermo). Cells were washed with 1x PBS 48 hours post transfection 

and fixed with cold methanol at −20°C for 10 min. Fixed cells were blocked for 30 min in 

PBS containing 1% (w/v) BSA prior to being labeled with an anti-FLAG antibody (Sigma 

#F7435, 1:200) in PBS containing 1% BSA for 1 hour at 25°C. Following washing with 

PBS, cells were incuba ted with an Alexa Fluor 647-conjugated secondary antibody (Life 

Technologies #A21245, 1:1000) for 1 hour at 25°C protected from light. Cells were washed 

with PBS and mounted using SlowFade Gold Antifade mountant with DAPI (Thermo). 

Images were acquired using a Nikon A1+ RSi confocal microscope using a 100X objective 

following excitation with 403-nm and 6400-nm solid-state lasers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• MORC3 is upregulated in Down syndrome and is linked to cancer

• MORC3 CW domain binds to methylated histone H3K4

• The CW-H3K4me interaction is essential for MORC3 recruitment to 

chromatin

• The CW domain negatively regulates MORC3 DNA-dependent ATPase 

activity
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Figure 1. MORC3 is consistently upregulated in Trisomy 21 cells
(a) Box and whisker plots of MORC2, MORC3 and MORC4 expression levels across tissue 

types from the GTEx Portal. (b–d) Box and whisker plots of MORC3, MORC2 and MORC4 
expression in D21 and T21 fibroblasts (b), lymphoblastoid cell lines (c), and patient 

monocytes and T cells (d). mRNA expression values are in reads per kilobase per million 

(RPKM). Benjamini-Hochberg adjusted p-values were calculated using DESeq2. (e) Venn 

diagram of differentially expressed genes in Down syndrome from human fibroblasts, 

human lymphoblastoids, and mouse brains. See also Figure S1.
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Figure 2. MORC3-CW binds to the histone H3 tail
(a) Architecture of MORC3. (b) Representative scanned image of a peptide microarray 

hybridized with GST-MORC3 CW domain. Red spots are bound MORC3. Green spots are 

an internal printing control and are used to filter false negatives from quantified datasets (see 

(Rothbart et al., 2012)). (c) Scatter plot of relative signal intensities from two microarrays 

hybridized with GST-MORC3 CW domain. Average signal intensities from quantified arrays 

were normalized to the most intense series of peptide spots and plotted on a relative scale 

from 0 (weak binding) to 1 (strong binding). The correlation coefficient was calculated by 

linear regression analysis using GraphPad Prism v5. (d) Normalized average microarray 

signal intensities measuring the interaction GST-MORC3 CW domain with the indicated 

histone peptides. Error represents ± s.e.m. from two arrays. (e) Superimposed 1H,15N HSQC 

spectra of MORC3-CW collected upon titration with H3K4me3 and H3K4me0 peptides 

(residues 1–12 of H3). Spectra are color coded according to the protein:peptide molar ratio. 

(f) Binding affinities of wild type MORC-CW for the indicated histone peptides measured 

by tryptophan fluorescence. (g) Representative binding curve used to determine the Kd 

values by fluorescence. See also Tables S1 and S2.
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Figure 3. The molecular basis for recognition of H3K4me3 and H3K4me1 by MORC3-CW
(a) The ribbon diagram of the MORC3 CW domain in complex with H3K4me3 peptide 

(yellow). Dashed lines represent intermolecular hydrogen bonds. The protein residues 

involved in the interactions with A1, R2, K4me3, Q5, R8 and K9 of the peptide are colored 

wheat, blue, salmon, light green, pink and brown, respectively. (b) The surface cartoon of 

CW domain with histone peptide shown in ribbon and stick. (c) A 2Fo−Fc map was 

calculated and contoured at 1.0σ as a yellow mesh around the model of histone peptide and 

grey mesh around Trp-groove residues. (c) Overlay of the structures of the MORC3 

CW:H3K4me3 and MORC3 CW:H3K4me1 complexes. (d) A zoom-in view of the 

superimposed K4me1- and K4me3-binding grooves. Water molecules are shown as red 

spheres. See also Table S3.
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Figure 4. The end-wall residues control selectivity of MORC3-CW
(a) Alignment of the CW domain sequences: absolutely, moderately and weakly conserved 

residues are colored red, yellow and light purple, respectively. The residues of MORC3-CW 

involved in contact with each residue of histone H3 are indicated by arrows. An asterisk 

indicates E453. (b) A close-up view of the overlaid K4me3-binding sites in MORC3 (wheat) 

and ZCWPW1 (grey). (c) Binding affinities of the MORC3-CW mutants as determined by 

intrinsic tryptophan fluorescence. (d) Superimposed 1H,15N HSQC spectra of mutated 

MORC3-CW, collected upon titration with H3K4me3 peptide. Spectra are color coded 

according to the protein:peptide molar ratio. (e) A close-up view of the overlaid K4me3-

binding sites in MORC3-CW (wheat) and PHD fingers of JARID1A (cyan) and ING2 

(purple). (f) Superimposed 1H,15N HSQC spectra of KDM1B CW, recorded as H3K4me2 

was titrated in. See also Figure S2.
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Figure 5. The critical role of the histone-binding site residues of MORC3-CW
(a) Binding affinities of the MORC3-CW mutants as determined by tryptophan fluorescence 

(a) or NMR (b). (b) Superimposed 1H,15N HSQC spectra of the MORC3-CW mutants, 

collected upon titration with H3K4me3. Spectra are color coded according to the 

protein:peptide molar ratio. (c) Representative binding curves used to determine the Kd 

values by NMR. (d) Superimposed 1H,15N HSQC spectra of MORC3-CW, recorded as H3 

peptide (residues T3-S10) was titrated in. See also Figures S3 and S4.
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Figure 6. MORC3 is an ATPase
(a) Superimposed 1H,15N TROSY (top-left and bottom row) spectra and 1H,15N HSQC 

spectra (top-right) of MORC3-CW E453A, collected upon titration with indicated ligands. 

Spectra are color coded according to the protein:ligands molar ratio. (b) Representative ITC 

binding curves observed for the interaction between MORC3 His-ATPase and CW. (c) The 

rate of ATP hydrolysis by MORC3 His-ATPase. Error represents SD between at least three 

separate experiments (two experiments for His-ATPase-CW with DNA or H3 at 30 °C). (d, 
e) EMSA with NCPs (d) or 601 DNA (e) in the presence of increasing amounts of His-

ATPase, as described in methods. (f) EMSA with 601 DNA in the presence of increasing 
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amounts of His-ATPase-CW. (g) Superimposed 1H,15N HSQC spectra of MORC3-CW upon 

titration with 601 DNA. (h) A model for the regulation of MORC3. See also Figure S5.
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Figure 7. The CW domain is required for the recruitment of MORC3 to chromatin
(a) Chromatin association assays for FLAG-tagged MORC3 (WT) or the indicated mutants 

from asynchronously growing HeLa cells. Mock, no DNA control. (b) Representative 

confocal microscopy images of FLAG-tagged wild-type and mutant forms of MORC3 in 

HeLa cells. Scale bars, 10 μm. See also Figure S6.
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