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Abstract Repetitive proteins are thought to have arisen through the amplification of subdomain-

sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based

replication and catalysis, and required the RNA to assume their active conformation. In search of

the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat

(TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive

proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes

structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a

TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2–5

point mutations per repeat. The mutations were neutral in the parent organism, suggesting that

they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by

amplification from an ancestral helical hairpin.

DOI: 10.7554/eLife.16761.001

Introduction
Most present-day proteins arose through the combinatorial shuffling and differentiation of a set of

domain prototypes. In many cases, these prototypes can be traced back to the root of cellular life

and have since acted as the primary unit of protein evolution (Anantharaman et al., 2001;

Apic et al., 2001; Koonin, 2003; Kyrpides et al., 1999; Orengo and Thornton, 2005; Ponting and

Russell, 2002; Ranea et al., 2006). The mechanisms by which they themselves arose are however

still poorly understood. We have proposed that the first folded domains emerged through the repe-

tition, fusion, recombination, and accretion of an ancestral set of peptides, which supported RNA-

based replication and catalysis (the RNA world Bernhardt, 2012; Gilbert, 1986) (Alva et al., 2015;

Lupas et al., 2001; Söding and Lupas, 2003). Repetition would have been a particularly prominent

mechanism by which these peptides yielded folds; six of the ten most populated folds in the Struc-

tural Classification of Proteins (SCOP) (Murzin et al., 1995) – including the five most frequent ones –

have repetitive structures. In all cases, their amplification from subdomain-sized fragments can also

be retraced at the sequence level in at least some of their members.

One of these highly populated repetitive folds is the aa-solenoid (SCOP a.118), whose most

widespread superfamily is the tetratricopeptide repeat (TPR; a.118.8). This was originally identified

as a repeating 34 amino-acid motif in Cdc23p of Saccharomyces cerevisiae (Sikorski et al., 1990) –

hence its name. Since then, TPR-containing proteins have been discovered in all kingdoms of life,

where they mediate protein-protein interactions in a broad range of biological processes, such as

cell cycle control, transcription, protein translocation, protein folding, signal transduction and innate

immunity (Cortajarena and Regan, 2006; Dunin-Horkawicz et al., 2014; Katibah et al., 2014;

Keiski et al., 2010; Kyrpides and Woese, 1998; Lamb et al., 1995; Sikorski et al., 1990). The first

crystal structure of a TPR domain (Das et al., 1998) showed that the repeat units are helical hairpins,
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stacked into a continuous, right-handed superhelical architecture with an inner groove that mediates

the interaction with target proteins (Forrer et al., 2004). The hairpins interact via a specific geome-

try involving knobs-into-holes packing (Crick, 1953) and burying about 40% of their surface between

repeat units. This tightly packed, superhelical arrangement of a repeating structural unit is typical of

all aa-solenoid proteins (Di Domenico et al., 2014; Kajava, 2012; Kobe and Kajava, 2000).

Comparison of TPRs from a variety of proteins reveals a high degree of sequence diversity, with

conservation observed mainly in the size of the repeating unit and the hydrophobicity of a few key

residues (D’Andrea and Regan, 2003; Magliery and Regan, 2004). Nevertheless, almost all known

TPR-containing proteins can be detected using a single sequence profile (Karpenahalli et al., 2007),

underscoring their homologous origin. As their name implies, TPR proteins generally contain at least

two unit hairpins in a repeated fashion. The few that have only one hairpin, notably the mitochon-

drial import protein Tom20 (Abe et al., 2000), are clearly not ancestral based on their phylogenetic

distribution and functionality, implying that the ancestor of the superfamily already had a repeated

structure. In searching for the origin of TPRs, we hypothesized that the hairpin at the root of the fold

might either have been part of a different, non-repetitive fold or have given rise to both repetitive

and non-repetitive folds at the origin of folded domains. Either way we hoped that we might find a-

hairpins in non-repetitive proteins that are similar in both sequence and structure to the TPR unit,

suggesting a common origin. Here we show that such hairpins are detectable and that one of them,

from the ribosomal protein RPS20 (Schluenzen et al., 2000), can be customized to yield a TPR fold

by repetition, with only a small number of point mutations that are neutral for the parent organism.

Ribosomal proteins most likely constitute some of the oldest proteins observable today and are still

intimately involved in an RNA-driven process: translation (Fox, 2010; Hsiao et al., 2009). They are

mostly incapable of assuming their folds outside the ribosomal context (Peng et al., 2014) and thus

belong to a class of intrinsically disordered proteins that become structured upon binding to a mac-

romolecular scaffold (Dyson and Wright, 2005; Habchi et al., 2014; Oldfield and Dunker, 2014;

eLife digest All life is built upon the chemical activity of proteins. For this activity, proteins need

to fold into specific 3D structures. Protein folding is complicated and easily disrupted, and its

evolutionary origin remains poorly understood. A possibility is that folded proteins arose through

different genetic processes from shorter pieces of protein called peptides, which participated in an

ancient, primordial form of life. One of these processes involves the same peptide being repeated

within one protein chain.

In 2015, researchers identified 40 primordial peptides whose sequences appear in seemingly

unrelated proteins. The study suggested that repetition allows peptides that are unable to fold by

themselves to yield folded proteins. Now, Zhu et al. – who are members of the same research group

who performed the 2015 study – have explored experimentally whether one of these peptides could

indeed yield a folded protein by repetition.

The studied primordial peptide gave rise to several protein folds seen today, including – by

repetition – a type of fold called TPR. Zhu et al. tried to retrace the emergence of the TPR fold by

taking a descendant of the primordial peptide from a ribosomal protein, which is unable to fold

without the assistance of an RNA scaffold, and repeating it three times within the same protein

chain. The ribosome is a central component of all living cells and evolves very slowly, and so the

peptide Zhu et al. took from it is likely to retain many properties of its primordial ancestor.

Further experiments found that the repeated peptide was indeed able to fold into a TPR-like

structure, but needed several mutations to do so. Introducing these mutations back into the

ribosomal protein, however, did not affect the survival and growth of the cell. Thus, they could have

occurred without adverse effects during evolution.

Structure is a prerequisite for chemical activity, but it is activity that is under selection in living

beings. Having produced a new protein, Zhu et al. will now explore ways of endowing it with a

selectable activity.

DOI: 10.7554/eLife.16761.002
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Peng et al., 2014; Varadi et al., 2014). This hairpin therefore plausibly retains today many of the

properties likely to have been present in the ancestral peptide that gave rise to the TPR fold.

Results and discussion

Recently amplified TPR arrays in present-day proteins
Repetitive folds with variable numbers of repeats, such as HEAT, LRR, TPR or b-propellers, usually

have some members with a high level of sequence identity between their repeat units (Dunin-

Horkawicz et al., 2014). In these proteins, the units are more similar to each other than to any other

unit in the protein sequence database, showing that they were recently amplified. In a detailed study

of b-propellers (Chaudhuri et al., 2008), we found that this process of amplification and differentia-

tion has been ongoing since the origin of the fold. TPR proteins show a similar evolutionary history.

In some proteins, most of the repeats can be seen to have been amplified separately and to a differ-

ent extent in each ortholog, pointing to their recent origin (Figure 1a); in others, the amplification

must have occurred much earlier, as their ancestor already had fully differentiated repeats

(Figure 1b). In recently amplified proteins, such as the ones shown in Figure 1a, within which

repeats frequently have >80% pairwise sequence identity, tracking the probable a-hairpin at the

root of the amplification is a fairly straightforward proposition. We wondered, however, whether it

might be possible to go much further back in time and track the original a-hairpin from which the

first TPR protein was amplified. We therefore searched for TPR-like a-hairpins in non-repetitive pro-

teins as present-day descendants of the original hairpin.

Identification of helical hairpins resembling the TPR unit
We had previously developed a profile-based method, named TPRpred, specially designed for the

detection of TPRs and related repeat proteins with high sensitivity from sequence data

(Karpenahalli et al., 2007). Here, in a first step, we used TPRpred to scan protein sequences in the

Protein Data Bank (PDB) (Berman et al., 2000) for peptides that share statistically significant similar-

ity to the TPR sequence profile and yet have not been annotated as TPR in Pfam (Finn et al., 2014);

we used a p-value cutoff = 1.0e�4, which leads to an estimated false discovery rate of 1.0%, see

Materials and methods. We ignored tandem repeats in the hit list and focused only on the singleton

cases. Subsequently, we compared the structures of these helical hairpin singletons to the average

TPR hairpin and removed non-hairpin-like structures. This yielded 31 helical hairpins that are similar

to the TPR unit with respect to both sequence and structure. Among them, 22 are part of solenoid-

like structures and were discarded. The remaining nine hits belong to three families: (I) mitochondrial

import receptor subunit Tom20; (II) microtubule interacting and transport (MIT) domain including

katanin (Iwaya et al., 2010); and (III) 30S ribosomal protein S20 (RPS20) (Figure 2).

The similarity of Tom20 and MIT domains to TPR proteins has been noted before (Abe et al.,

2000; Iwaya et al., 2010; Scott et al., 2005), but the similarity of RPS20 was surprising and drew

our attention particularly due to the ancestrality attributed to ribosomal proteins. To further explore

the similarity between the helical hairpin in RPS20 (in short, RPS20-hh) and TPR, we used TPRpred to

rank the RPS20 sequences in Pfam (Finn et al., 2014). The top-scoring hit was RPS20-hh from Ther-

mus aquaticus (NCBI accession number = WP_003044315.1, UniProt id = B7A5L8_THEAQ), which

matches the TPR unit sequence profile at a p-value of 5.4e�07, almost an order of magnitude better

than the second hit (see Supplementary file 1D). Furthermore, we examined the surface residues of

RPS20-hh fragments to assess their suitability to occur in a tandem repeat mode, as in TPRs. To this

end, we first defined five interface positions on the TPR helical hairpin and transferred the definition

to RPS20-hh according to their structure alignment (positions 3, 7, 10, 21 and 28 using TPR unit

numbering). Then, we searched for RPS20-hhs with as many hydrophobic residues as possible at

these interface positions. We found 42 RPS20-hhs that contain at least three hydrophobic residues

out of the five interface positions. Among them, the only RPS20-hh predicted to match the TPR unit

profile above a p-value of 1.0e�4 was again the RPS20 from T. aquaticus, in which three of the five

interface residues are hydrophobic (L10, I21 and V28). We therefore chose this helical hairpin

(RPS20-hhta) to construct a TPR-like solenoid by amplification (Figure 3).
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Figure 1. Two evolutionary scenarios for TPRs, illustrated by neighbor-joining phylogenetic trees. (a) Amplification from single helical hairpin, as seen in

TPR proteins from Cyanobacteria. (b) Divergent evolution of a TPR with multiple repeat units, as seen in the TPR domains of Serine/threonine-protein

phosphatase 5 (Ara: Arabidopsis thaliana, Dan: Danio rerio, Hom: Homo sapiens, Mus: Musca domestica, Sac: Saccharomyces cerevisiae, The: Theileria

annulata, Xen: Xenopus (Silurana) tropicalis). Since evolutionary reconstructions are subject to Occam’s razor and reflect the hypothesis with the fewest

assumptions, we have postulated here one amplification event from one precursor hairpin. Our findings would however also be fully compatible with

the precursor hairpin yielding a population of homologous variants, some of which were independently amplified to TPR-like folds; one or more

survivors among these would have become the ancestor(s) of today’s TPR proteins. In this more complex scenario, the homology of TPR proteins, which

Figure 1 continued on next page
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Design of a TPR array from a RPS20
We focused on the construction of three-repeat TPRs, which represent the most common form of

this fold (D’Andrea and Regan, 2003; Sawyer et al., 2013). For instance, 18 of the 54 non-identical

TPR domains in the extended Structural Classification of Proteins database (SCOPe v2.05)

(Fox et al., 2014) have three repeats. A previously designed three-repeat TPR protein, CTPR3, was

also demonstrated to be highly stable, even more so than natural three-repeat TPR proteins

(Main et al., 2003b). We concatenated three copies of RPS20-hhta as an initial construct, connected

by the TPR consensus loop sequence (DPNN). We annotate the two helices in each repeat unit as

helix Ai and Bi, where i is the index of the repeat unit (i = 1, 2 or 3) (Figure 3). Under the hypothesis

of common descent between TPR and RPS20 from the same ancestral peptide and retention of

ancestral features in RPS20, this basic construct would fold as a TPR solenoid with a minimal number

of mutations, ideally none.

When we experimentally made a construct containing no mutations (M0, Table 1), it was soluble

but remained unfolded under all conditions tested (see Section 2.4). We therefore introduced point

mutations into the sequence of RPS20-hhta, aimed at favoring the target structure. Here, we fol-

lowed the principle of consensus design (Forrer et al., 2004; Main et al., 2003a), which requires

the mutation positions to be occupied by the most commonly observed residues in homologous pro-

teins (Forrer et al., 2004). Consensus design methods have been successful in engineering several

different repeat proteins with solenoid folds, including ankyrin repeats (Binz et al., 2003;

Kohl et al., 2003; Mosavi et al., 2002), TPRs (Doyle et al., 2015; Kajander et al., 2007;

Main et al., 2003b), pentatricopeptide repeats (PPRs) (Coquille et al., 2014; Shen et al., 2016) and

leucine rich repeats (Rämisch et al., 2014; Stumpp et al., 2003). Following these principles, four dif-

ferent sites of mutation (L4W, K7L/R, V9N, I23D/Y, see Figure 4) were considered to improve inter-

face hydrophobicity or preserve coevolved positions observed in TPRs (Sawyer et al., 2013) (see

Materials and methods). Furthermore, as natural TPR proteins tend to exhibit zero net charge

(Magliery and Regan, 2004), four positively charged residues were also targeted (K2E, K6N, K22E,

R25Q/E, see Figure 4). This resulted in a set of eight candidate mutation sites. In order to preserve

the character of the RPS20-hhta sequence, we restricted the number of mutations in any repeat unit

to be at most five.

In most TPR proteins, there is an a-helix at the C-terminus, which interacts with the last TPR unit

by covering the hydrophobic surface. This so-called C-terminal ’stop helix’ had been observed in all

known TPR structures and was considered essential for the solubility of natural TPR proteins

(D’Andrea and Regan, 2003; Das et al., 1998; Main et al., 2003b). Most other designed TPRs

employ purpose-designed stop helix sequences. Here, we chose to use the RPS20 C-terminal helix

to become a natural stop helix, since it is already known to interact favorably with RPS20-hhta (Fig-

ure 3). Further, we inserted two residues (Asn-Ser) before the first TPR unit as an N-terminal cap to

the first helix (Aurora and Rose, 1998; Kumar and Bansal, 1998), in analogy to a previously

designed idealized TPR protein, CTPR3 (Main et al., 2003b).

To model the structure of the designed proteins in silico, we fused two structures to create a

hybrid template: We used CTPR3 (PDB id: 1na0 chain A) as the structural template for the three

RPS20-hhta fragments, and the best-resolved RPS20 structure (PDB id: 2vqe chain T; 2.5 Å) for helix

B3 and the stop helix. We built structural models on this hybrid template and tested a variety of

mutants using the Rosetta programs fixbb and relax, which perform fixed-backbone design and

structural refinement (Das and Baker, 2008; Doyle et al., 2015; Park et al., 2015;

Figure 1 continued

we trace through the comparison of individual hairpins, is still given, but the TPR fold could have arisen from several independent amplifications, and

not just a single one.

DOI: 10.7554/eLife.16761.003

The following figure supplements are available for figure 1:

Figure supplement 1. Multiple sequence alignments of recently amplified TPR repeat units.

DOI: 10.7554/eLife.16761.004

Figure supplement 2. Multiple sequence alignments of the three TPR repeat units in serine/threonine-protein phosphatase 5 from seven taxa.

DOI: 10.7554/eLife.16761.005
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Figure 2. TPR-like hairpins found in non-repetitive proteins in the PDB. (a) Structure gallery of non-repetitive helical hairpins in the PDB that share both

sequence and structure similarity to TPR unit hairpin. Only the 34 amino-acid helical hairpins are shown. The helical hairpins in 30S ribosomal protein

s20 (RPS20), mitochondrial import receptor subunit (Tom20), and microtubule interacting and transport domain (MIT) are depicted in cyan, green, and

yellow, respectively. The structure of a TPR with a consensus sequence, CTPR3, is shown in the center with the middle TPR unit highlighted in red. PDB

Figure 2 continued on next page
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Parmeggiani et al., 2015). The Rosetta energy score of the models calculated for all mutants is

depicted in a boxplot (Figure 4—figure supplement 2). Among them, five were selected for further

testing in vitro (see Materials and methods). These five tested mutants are termed M2, M4E, M4N,

M4RD and M5. Their primary structures are listed in Table 1.

Biophysical characterization of designed TPRs and RPS20
We cloned the five TPR designs plus the unmutated construct M0 into pET vectors for expression in

Escherichia coli. Three proteins (M0, M4RD and M5) could be purified from soluble extracts; the

other constructs were insoluble and were refolded from inclusion bodies. In far UV circular dichroism

(CD) spectra, all proteins displayed a strong alpha-helical pattern, except M0 and M4RD, which

appeared to be unfolded, but not prone to aggregation and precipitation, even at high concentra-

tions. When we studied the melting curves, M4N showed cooperative unfolding with a Tm of 77˚C
(Supplementary file 1F), while the unfolding of M2, M4E and M5 did not conform to a classical two-

state transition, consistent with an unstable molten globule-like state. On the other hand, non-coop-

erative unfolding processes have been demonstrated for perfectly stable TPR repeats and suggested

to be common for various types of repeat proteins (Cortajarena and Regan, 2006; Kajander et al.,

2007; Stumpp et al., 2003). To clarify this point, urea-induced unfolding transitions were monitored

by CD. Like M4N, the three variants M2, M4E and M5 yielded typical cooperative denaturation

curves, indicative of folded polypeptides (Figure 5—figure supplement 2). The DGU-F
H2O values

agree well with those reported for other designed TPRs (Supplementary file 1F) (Main et al.,

2005). In line with these findings, M5, the only protein containing tryptophan residues, had a lmax of

336 nm in fluorescence emission spectra, as expected for partially shielded aromatic residues. We

conclude that four of the five designed TPR variants, M2, M4E, M4N and M5, result in well-folded

repeat proteins. To determine the oligomeric state of our folded proteins, we performed static light

scattering experiments. Surprisingly, all four constructs were exclusively dimers (Supplementary file

1F).

We also examined the ribosomal parent protein RPS20. Within the ribosome, RPS20 is partially

embedded in the 16S rRNA, making many nucleic acid contacts. Like many other ribosomal proteins,

it is not expected to adopt a stable structure in isolation. Indeed, it has a biased amino acid

Figure 2 continued

IDs and chain names of the proteins are given in parentheses. In the superposition, all helical hairpins are superimposed onto the middle TPR unit of

CTPR3. (b) Multiple sequence alignment of the helical hairpin sequences listed in (a). The eight TPR signature positions are marked by dots in CTPR3.

Columns with sequence identity � 80% are in black, and columns with sequence identity � 50% are in gray.

DOI: 10.7554/eLife.16761.006

Figure 3. The design of TPR using RPS20. RPS20-hh is identified by TPRpred to match the sequence profile of TPR units. Their structures are also very

similar (helices are shown as cylinders), except for the last four residues (colored in light and dark magenta). We designed a TPR protein using a RPS20-

hh with up to five mutations (yellow strips) in each repeat unit. The C-terminal loop in the TPR unit (dark magenta loop) is used to replace the

corresponding C-terminus (light magenta cylinder) of RPS20-hh to connect adjacent repeats. The C-terminal helix in RPS20 (white cylinder) was used as

the stop helix in the design.

DOI: 10.7554/eLife.16761.007
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composition and is predicted to be largely unstructured by many prediction programs (Figure 4—

figure supplement 1, see also Supplementary file 1J). It had been shown previously that isolated

RPS20 exhibits only one third helical content by CD (Paterakis et al., 1983). For Thermus RPS20

specifically, simulations predict a flexible conformation in solution (Burton et al., 2012). We cloned

RPS20 from T. aquaticus and its close relative T. thermophilus. Upon expression, both proteins were

insoluble and had to be refolded. In static light scattering measurements, both proteins behaved as

monomers (Supplementary file 1F). Based on CD spectra, which showed a high proportion of ran-

dom structure, and the absence of defined melting and urea-denaturation curves

(Supplementary file 1F), we conclude that RPS20 indeed exhibits considerable conformational varia-

tion in solution.

Structure of a designed TPR
To obtain high-resolution structural information on our designed proteins, we set up crystallization

trials for all four folded constructs. We obtained crystals and solved the structure of M4N to a resolu-

tion of 2.2 Å (Figure 5a). The asymmetric unit (ASU) contains three polypeptide chains of almost

identical structure (all pairwise C
a

RMSD values below 1.4 Å). Notably, all three chains exhibit the

desired TPR architecture with three repetitive hairpins, which interact via knobs-into-holes packing

between helices Ai and B(i-1), as is characteristic of TPR hairpins. A superposition to the CTPR3

Table 1. The primary structures of the six designed proteins using RPS20-hhta tested in vitro. Point

mutations introduced into RPS20-hhta are shown in bold and underlined. The C-terminal four

residues in RPS20-hhta were replaced by the consensus loop sequence DPNN in TPRs

(underlined). The sequence of the stop helix is italicized. M4NDC is M4N without stop helix.

Name Mutations Sequence

M0 - NS

IKTLSKKAVLLAQEGKAEEAIKIMRKAVSLDPNN

IKTLSKKAVLLAQEGKAEEAIKIMRKAVSLDPNN

IKTLSKKAVLLAQEGKAEEAIKIMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M2 K7L, I23Y NS

IKTLSKLAVLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSKLAVLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSKLAVLLAQEGKAEEAIKYMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M4E K2E, K7L, V9N, I23Y NS

IETLSKLANLLAQEGKAEEAIKYMRKAVSLDPNN

IETLSKLANLLAQEGKAEEAIKYMRKAVSLDPNN

IETLSKLAVLLAQEGKAEEAIKYMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M4N K6N, K7L, V9N, I23Y NS

IKTLSNLANLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSNLANLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSNLAVLLAQEGKAEEAIKYMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M4RD K2E, K7R, V9N, I23D NS

IETLSKRANLLAQEGKAEEAIKDMRKAVSLDPNN

IETLSKRANLLAQEGKAEEAIKDMRKAVSLDPNN

IETLSKRAVLLAQEGKAEEAIKDMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M5 K2E, L4W, K7L, V9N, I23Y NS

IETLSKLANLLAQEGKAEEAIKYMRKAVSLDPNN

IETWSKLANLLAQEGKAEEAIKYMRKAVSLDPNN

IETWSKLAVLLAQEGKAEEAIKYMRKAVSLIDKA

AKGSTLHKNAAARRKSRLMRKVQKL

M4NDC K6N, K7L, V9N, I23Y NS

IKTLSNLANLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSNLANLLAQEGKAEEAIKYMRKAVSLDPNN

IKTLSNLAVLLAQEGKAEEAIKYMRKAVSLIDKA

AK

DOI: 10.7554/eLife.16761.008
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Figure 4. Sequence positions considered for optimizing the designed proteins. (a) Sequence logo of the TPR motif. A TPR consensus sequence

(Main et al., 2003b) (PDB: 1na0, chain A) and its secondary structure determined by DSSP (Kabsch and Sander, 1983) are aligned below the sequence

logo. The eight TPR signature positions are underscored in the consensus sequence. The five interface positions are highlighted in yellow. (b) Sequence

logo of RPS20-hh. The RPS20-hhta sequence and its predicted secondary structure using Quick2D (Biegert et al., 2006) is aligned below the sequence

logo. The derived interface positions are highlighted in yellow. The four residues subjected to mutations are colored in red. The four positively charged

residues selected for mutation to lower the surface charge are in blue. (c) The locations of the interface positions displayed on a TPR (left) and a RPS20

structure (right). In both structures, the interface positions are labeled and highlighted as yellow spheres. The TPR structure is CTPR3 (PDB: 1na0, chain

A), which is shown as a cartoon and is colored using the same scheme as the secondary structure representation in (a). The stop helix is in gray. The

RPS20 structure is from T. thermophilus (PDB: 4gkj, chain T), in which the RPS20-hh fragment is colored using the same scheme as the secondary

structure representation in (b). The sequence logos were generated using WebLogo (Crooks et al., 2004). Sequences from representative proteome

Figure 4 continued on next page
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structure yields C
a

RMSD values below 2.6 Å (supplementary file 1I). An unexpected difference to

the canonical TPR structure is that the stop helix of M4N is not resolved in any of the three chains.

However, this missing helix is compensated for by a specific dimerization mode of two M4N proto-

mers. Therein, the C-terminal TPR units of the two protomers form a tight interface, in which the B3

helix of each chain substitutes for the stop helix of the other, mimicking the capping effect of the

stop helix (Figure 6). A superposition of this mimicry to the last TPR unit and stop helix of CTPR3

yields C
a

RMSD values as low as 1.2 Å over 44 residues. The third chain of the ASU, however, was

found as a monomer, capping its C-terminal TPR unit in a more unspecific manner by packing it

orthogonally against the two A1 helices of the dimer (Figure 5a).

Analysis by mass spectrometry revealed that the M4N stop helix had been partially proteolyzed

upon expression of the protein (Figure 5—figure supplement 3). Although we did not observe pro-

teolysis in the other folded constructs (M2, M4E and M5), which were also all dimeric, we analyzed

whether proteolysis might have favored the dimerization of M4N. Extending the stop helix with a

C-terminal His6-tag prevented proteolysis, but did not affect stability or dimerization (M4N-His;

Supplementary file 1F). We conclude that in the amplified constructs, the observed interactions are

more favorable than the interaction with the native stop helix, releasing it and rendering it prone to

degradation. This led us to ask whether this helix is in fact dispensable. Indeed, an M4NDC con-

struct, which terminates with the B3 helix, showed the same stability and dimerization as M4N. We

obtained two structures for M4NDC from different crystal forms at 2.0 Å and 1.7 Å resolution,

respectively, the first (CF I) with two dimers in the ASU and the second (CF II) with a single chain in

the ASU, for which we constructed the dimer by crystallographic symmetry. All three dimers super-

impose to the M4N dimer with C
a

RMSD below 1.9 Å (Figure 7, Supplementary file 1I). We con-

clude that the stop helix is dispensable for folding, dimerization and the stability of our designed

constructs.

The geometry of dimerization in M4N has not been observed in TPR structures before. Although

there have been reports on the self-association of TPR-containing proteins involved in various regula-

tory biological processes (Bansal et al., 2009a, 2009b; Ramarao et al., 2001; Serasinghe and

Yoon, 2008), only a small number of oligomeric TPR structures have been determined to date

(Krachler et al., 2010; Lunelli et al., 2009; Zeytuni et al., 2012, 2015; Zhang et al., 2010). None

of these resemble the ring-shaped dimer of M4N.

Mutations introduced into RPS20-hhta are neutral to Thermus
The results shown above suggest that the mutations we made to RPS20-hhta were crucial for obtain-

ing the TPR fold. If RPS20 and TPR proteins indeed share a common ancestor, such mutations may

have been sampled in the course of evolution. Since we cannot reconstruct the ancestor and do not

know what its function was beyond a general expectation of RNA binding, we decided to test

whether the mutations we introduced impaired the interaction between RPS20 and its cognate RNA,

as an indication of their compatibility with RNA interaction. Each mutation in M2 and M4N occurs in

natural RPS20 sequences (see Supplementary file 1A), but no RPS20 sequence has all four muta-

tions simultaneously and we therefore tested if they can be tolerated in vivo. As genetic engineering

in T. aquaticus turned out to be unfeasible, we performed these tests in T. thermophilus HB8, which

Figure 4 continued

75% (Chen et al., 2011) downloaded from Pfam families TPR_1 and Ribosomal_S20p were used as input to WebLogo (9338 and 972 sequences,

respectively). The structures were rendered using PyMOL (Schrödinger, 2010).

DOI: 10.7554/eLife.16761.009

The following figure supplements are available for figure 4:

Figure supplement 1. Mutual information plot (a and b) and direct coupling analysis plot (c and d) for TPR repeat sequences.

DOI: 10.7554/eLife.16761.010

Figure supplement 2. Rosetta energy scores (fixbb+relax) for TPR designs based on RPS20-hhta sequence and various sets of mutations.

DOI: 10.7554/eLife.16761.011

Figure supplement 3. Prediction of intrinsically disordered regions in RPS20 of Thermus aquaticus (NCBI gi: 489134531, accession: WP_003044315.1)

using a) IUPred (http://iupred.enzim.hu/); b) DisEMBL (http://dis.embl.de/) and c) PONDR (http://www.pondr.com/).

DOI: 10.7554/eLife.16761.012
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is a well-established model organism. The RPS20 helical hairpins in T. aquaticus and T. thermophilus

differ only at four positions, of which two are highly conservative substitutions (Figure 8a).

We first attempted to substitute the chromosomal RPS20-encoding gene, rpsT, with a kanamycin

resistance cassette, to obtain T. thermophilus strain KM4 (Figure 8b). For complementation we

introduced plasmids bearing wild type rpsT from T. thermophilus (TT) or T. aquaticus (TA), rpsT from

T. aquaticus carrying the mutations from M2 (TA2) or M4N (TA4), or merely empty plasmids as nega-

tive control (E). We monitored the substitution of rpsT by a PCR screening protocol, which will

amplify a 1500 bp region if WT rpsT is substituted and an 800 bp region otherwise (Figure 8b).

Under selection pressure from kanamycin, only the 1500 bp product was obtained in all cases where

Figure 5. The X-ray structure of M4N. (a) The three chains A, B and C in the asymmetric unit are colored green, blue and yellow, respectively. Chains A

and B form a dimer. (b) Superposition of the three chains. Only Ca traces are shown for clarity. (c) Superposition of M4N (chain A, green) and the

designed consensus TPR CTPR3 (PDB: 1na0, chain A, gray).

DOI: 10.7554/eLife.16761.013

The following figure supplements are available for figure 5:

Figure supplement 1. The interaction of M4N molecules in the crystal.

DOI: 10.7554/eLife.16761.014

Figure supplement 2. Urea denaturation of designed TPR repeats.

DOI: 10.7554/eLife.16761.015

Figure supplement 3. Mass spectrometry (MS) analysis of M4N.

DOI: 10.7554/eLife.16761.016
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plasmid-borne rpsT was introduced, whether in wild-type or mutated form (Figure 8c panels 1 and

2, lanes TT, TA, TA2 and TA4), showing that the chromosomal gene had been fully substituted. In

contrast, PCR screening of strain KM4 complemented with an empty plasmid produced both 800 bp

and 1500 bp fragments (Figure 8c panels 1 and 2, lane E). Since T. thermophilus HB8 is a polyploid

organism (minimally tetraploid [Ohtani et al., 2010]), this result shows that rpsT can be reduced in

copy number, but not fully eliminated, suggesting that the gene is essential.

To assess the level of substitution achieved with the various plasmids, we designed a second PCR

screening protocol to specifically detect chromosomal rpsT via a 300 bp product. At low kanamycin

concentrations this protocol always generated a product (Figure 8d panel 1), but at increased kana-

mycin concentration we did not obtain product for any rpsT allele (Figure 8d panel 2, lanes TT, TA,

TA2 and TA4). This demonstrates that plasmid-borne rpsT and its mutants were able to complement

the chromosomal rpsT and that the latter was displaced from the population to a level that left it

undetectable by PCR. In contrast, we could never completely suppress chromosomal rpsT in strain

KM4 complemented with an empty plasmid, even under high kanamycin conditions (120 mg/ml).

In E. coli and Salmonella enterica, rpsT has been reported to be non-essential, but its deletion

significantly lowers growth rates (Bubunenko et al., 2007; Tobin et al., 2010). We found that rpsT

is essential in T. thermophilus, but that its loss could be complemented by wild-type and mutant T.

aquaticus rpsT, and that this complementation restored wild-type levels of growth (Figure 8e).

Moreover, when the selection pressure from kanamycin was removed, no reversal in the PCR prod-

ucts was detected for any strain (Figure 8c and d, panel 3), which confirms that chromosomal rpsT

was substantially displaced during kanamycin treatment. We conclude that rpsT from T. aquaticus

and its two mutated alleles are neutral with respect to survival and growth for T. thermophilus. This

demonstrates that the mutations we introduced do not affect negatively the interaction between

RPS20 and its cognate RNA, and that therefore such mutations could have been sampled multiply

and in a cumulative fashion by neutral drift during the course of evolution.

Implications for the emergence of folded proteins
Proteins are the most complex macromolecules synthesized in nature and by and large need to

assume defined structures for their activity. This folding process is complicated and easily disrupted,

witness the elaborate systems for protein folding, quality control and degradation universal to all liv-

ing beings. Despite the widespread problems to reach and maintain the folded state, natural pro-

teins nevertheless form a best-case group, since the overwhelming majority of random polypeptides

Figure 6. Mimicry of the stop helix in the M4N dimer. The C-terminal TPR unit in chain A (green) and the C-terminal helix B3 in chain B (blue) are

superposed to the last TPR unit plus the stop helix in CTPR3 (gray).

DOI: 10.7554/eLife.16761.017

Zhu et al. eLife 2016;5:e16761. DOI: 10.7554/eLife.16761 12 of 26

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.16761.017
http://dx.doi.org/10.7554/eLife.16761


do not appear to have a folded structure (Keefe and Szostak, 2001; Wei et al., 2003). It thus seems

impossible that, at the origin of life, the prototypes for the folded proteins we see today could have

arisen by random concatenation of amino acids. We have proposed that folding resulted from the

increasing complexity of peptides that supported RNA replication and catalysis, and that these pep-

tides assumed their structure through the interaction with the RNA scaffold (Lupas et al., 2001;

Söding and Lupas, 2003). In this view, protein folding was an emergent property of RNA-peptide

coevolution. We have recently described 40 such peptides whose conservation in diverse folds sug-

gests that they predated folded proteins (Alva et al., 2015). These peptides are enriched for

nucleic-acid binders, particularly in the context of the ribosome.

Due to its extremely slow rate of change, the ribosome essentially represents a living fossil, pro-

viding the possibility to study the chronology of ancient events in molecular evolution (Hsiao et al.,

Figure 7. M4NDC structures of two different crystal forms and their comparison to the M4N dimer. (a) Two dimers in the ASU of M4NDC CF I. (b) Dimer

constructed by applying the crystallographic symmetry to the single chain in the ASU of M4NDC CF II. (c) Superposition of all the four M4N and

M4NDC dimers. The M4N dimer is in green and blue. The three M4NDC dimers are in different shades of gray as in (a) and (b). (d) Superposition of all

the chains in the M4N and M4NDC dimers (eight chains in total). Only Ca traces of proteins are shown for clarity.

DOI: 10.7554/eLife.16761.018
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Figure 8. RPS20 variants M2 and M4N are functional proteins. (a) The 34 amino-acid long RPS20-hh fragments in T. aquaticus and T. thermophilus differ

only at four positions, including two conservative mutations (V9I and I21L). (b) Scheme of the rpsT region before (upper) and after (lower) substitution of

rpsT with the kanamycin resistance cassette (kat). Base pair (bp) values indicate the PCR products that can be amplified. Regions depicted with the

same pattern are identical. Regions in solid black and gray also contain genes which are not marked for clarity. (c) PCR to detect substitution of rps20

by the kat gene and (d) PCR to detect the presence of chromosomal rpsT in T. thermophilus strains (WT: T. thermophilus HB8; KM4:T. thermophilus

Figure 8 continued on next page

Zhu et al. eLife 2016;5:e16761. DOI: 10.7554/eLife.16761 14 of 26

Research article Computational and Systems Biology

http://dx.doi.org/10.7554/eLife.16761


2009). Thus, core ribosomal proteins offer a window into the time when proteins were acquiring the

ability to fold. Those close to the catalytic center almost entirely lack secondary structure. Further

away from the center, their secondary structure content gradually increases and at the periphery,

these secondary structure elements become arranged into topologies that parallel those seen in

cytosolic proteins (Hsiao et al., 2009). Collectively, the structures of ribosomal proteins chart a path

of progressive emancipation from the RNA scaffold. Even the peripheral proteins, however, still

mostly assume their structure only in the context of the ribosomal RNA, as exemplified by RPS20 in

our study (Supplementary file 1F, see also Paterakis et al., 1983).

The simplest mechanism to achieve an increase in complexity is the repetition of building blocks

and nature provides many examples for this, at all levels of organization. The dominant role of repe-

tition in the genesis of protein folds has been documented in many publications since the 1960s

(Alva et al., 2007; Blundell et al., 1979; Broom et al., 2012; Eck and Dayhoff, 1966; Kopec and

Lupas, 2013; Lee and Blaber, 2011; McLachlan, 1972, 1987; Remmert et al., 2010; Söding et al.,

2006). As a test of this mechanism, we explored whether a peptide originating from a ribosomal

protein that is disordered outside the context of the ribosome, could form a folded protein through

an increase in complexity afforded by repetition. For this, we chose a present-day representative of

one of the 40 fragments we reconstructed (Alva et al., 2015); this fragment is naturally found in

a single copy in several different folds, including that of ribosomal protein RPS20, and repetitively in

one fold, TPR. Simple repetition was not sufficient in our case, but the repeat protein was so close

to a folded structure that only two point mutations per repeat were necessary to allow it to fold reli-

ably. The mutations needed for this transition did not appear to affect negatively the interaction

with the RNA scaffold, raising the possibility that they could have been among the variants sampled

multiply in the course of evolution.

Our experiments recapitulate a scenario for the emergence of a protein fold by a widespread and

well-documented mechanism, and show that this could have proceeded in a straightforward way.

These experiments represent a proof of concept, starting with a modern peptide likely to still retain

many features of an ancestral aa-hairpin that gave rise to a number of folds, including TPR. Rather

than proposing proto-RPS20 as the parent of TPR domains, we see it as one of many proteins

emerging from this ancestral hairpin. Given the ease with which repetition of the RPS20 hairpin

yielded a TPR-like fold, we consider it likely that the hairpins belonging to the ancestral group were

amplified many times during the emergence of folded proteins to yield a range of TPR-like offspring,

of which only one may have survived to this day (but see also the figure legend to Figure 1). The rea-

son for this limited survival may lie in the fact that a structure is a prerequisite for protein function,

but it is the function that is under biological selection. It could be that the newly emerged TPR-like

folds required many additional changes to achieve a useful activity and that therefore only very few

– possibly just one – survived. We consider a different scenario more probable, however. All pres-

ent-day TPR domains whose function has been characterized mediate protein-protein interactions by

binding to linear sequence motifs in unstructured polypeptide segments (D’Andrea and Regan,

2003; Zeytuni and Zarivach, 2012). This activity would have been particularly relevant at a time of

transition from peptides dependent on RNA scaffolds for their structure, to autonomously folded

polypeptides. Functions relevant in this context would have been to prevent aggregation and

increase the solubility of newly emerging (poly)peptides, to promote autonomous folding, to serve

as assembling factors for RNA-protein and protein-protein complexes, and to recognize targeting

sequences in the emerging cellular networks. It therefore seems likely to us that many of the newly

evolved TPR-like folds became established in one or the other of these activities, only to be subse-

quently displaced by folding becoming a general property of cellular polypeptides and by more

advanced, energy-dependent folding factors, which offered much better regulation. Exploring the

extent to which our new TPR protein could fulfill such functions represents the next frontier in our

studies.

Figure 8 continued

KM4) carrying various plasmids (TT: pJJSpro-rpsTTt; E: pJJSpro; TA: pJJSpro-rpsTTa; TA2: pJJSpro-rpsTTaM2; TA4: pJJSpro-rpsTTaM4N; -: No

plasmid) after sequential grow under different selective pressures (1: 30 mg/ml kanamycin; 2: 120 mg/ml kanamycin; 3: 0 mg/ml kanamycin). (e)

Corresponding growth curves of the host bacteria with various substitutions and plasmids.

DOI: 10.7554/eLife.16761.019
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Materials and methods

Phylogeny for recently amplified TPR arrays
All sequence similarity searches in this work were performed using the Web BLAST (RRID:SCR_

004870) from the National Institute for Biotechnology Information (NCBI; http://blast.ncbi.nlm.nih.

gov; Boratyn et al., 2013) and in the MPI Bioinformatics Toolkit (RRID:SCR_010277, https://toolkit.

tuebingen.mpg.de/; Alva et al., 2016). Examples of recently amplified repeat units in TPR were

taken from a previous investigation (Dunin-Horkawicz et al., 2014). The TPR domain in serine/threo-

nine-protein phosphatase 5 was chosen as a representative three-repeat TPR, the most common

TPR form in natural proteins (D’Andrea and Regan, 2003; Sawyer et al., 2013), to study divergent

evolution of TPR. We ran BLAST on the non-redundant protein sequence database (nr) with an

E-value threshold of 0.05 using the TPR domain of serine/threonine-protein phosphatase 5 from

Homo sapiens as query (Das et al., 1998). From the results, we chose seven taxa to cover a diverse

range of life.

TPRpred program (Karpenahalli et al., 2007) was used to help identify tandem repeats of TPR

units. The construction of multiple sequence alignments (MSAs) for TPR units was straightforward as

all TPR units are of the same size (34 aa) and no indels were allowed in the MSAs. We used Clustal X

2.1 (Larkin et al., 2007) to build phylogenetic trees using the neighbor-joining clustering algorithm

and 1000 bootstrap trials (Bootstrap N-J Tree). SplitsTree4 (Huson and Bryant, 2006) was used to

render the phylogenetic trees.

Identification of helical hairpins resembling the TPR unit
To find proteins homologous to the TPR unit, we first employed the TPRpred program

(Karpenahalli et al., 2007) to identify proteins that share significant sequence similarity to the TPR

sequence profile, then filtered them by comparing to the TPR structures.

First, TPRpred program with TPR profile tpr2.8 was used to identify TPR unit like sequences from

all protein sequences of known structures in the Protein Data Bank (PDB, RRID:SCR_012820)

(Berman et al., 2000). Protein sequences from the SEQRES record in PDB files were downloaded

from the PDB. We only considered sequences with at least 34 residues, which is the length of the

TPR unit. Redundancy was removed by keeping only non-identical sequences. In total, 68,197

sequences were scanned by using TPRpred with default parameters. Only fragments predicted to be

TPR with a p-value lower than 1.0e�4 were retained (646 hits). We estimated the false discovery rate

(FDR) (Noble, 2009) associated with this p-value cutoff using a simulated sequence dataset gener-

ated by using the amino-acid composition derived from the PDB sequences. The dataset contains

the same number of sequences of the same length distribution as the PDB sequences. The FDR was

estimated to be the ratio of the number of hits in the simulated dataset to the number of detected

hits in the PDB sequences (Noble, 2009). We repeated the simulation 100 times and the FDR was

estimated to be 1.0 ± 0.4%.

Within the 646 hits, we kept only TPR unit singletons, which are TPR units that have no other TPR

units close to them within a distance of 10 residues in the same sequence. TPR units of identical

sequences are considered only once. Subsequently, these TPR unit singletons were filtered by

removing those annotated to belong to clan TPR (CL0020) in Pfam 27.0 (RRID:SCR_004726).

The structures of the predicted TPR units obtained from the previous step were then compared

to an average TPR unit structure. A predicted TPR unit was discarded if the C
a

RMSD of the 34 resi-

dues is greater than 2.0 Å after superposition. The average TPR unit structure was generated by

considering all proteins belonging to family tetratricopeptide repeat (TPR) (a.118.8.1) in SCOP 1.75

(RRID:SCR_007039) (Murzin et al., 1995). TPR repeats in these proteins were again detected using

TPRpred and a per-repeat p-value cutoff of 1.0e�4 was used. In total, 50 non-redundant TPR repeat

fragments were identified and superposed using a multiple structure alignment tool MultiProt

(Shatsky et al., 2004). The average C
a

positions were calculated from the 50 structures after super-

position. We obtained 31 fragments after the structure filtering step (Supplementary file 1C). We

then inspected the protein structures using PyMOL (RRID:SCR_000305) (Schrödinger, 2010). Among

them, 22 were observed to be involved in the formation of solenoid or tandem repeat structures

and were thus not further considered.
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Identification of TPR homologs in RPS20
We applied TPRpred to scan all RPS20 sequences belonging to Pfam 27.0 family Ribosomal S20p

(PF01649), including sequences from both datasets ’full’ and ’ncbi’. There are 4402 and 2284

sequences in the two sets. We merged the two sets and removed identical sequences to create a

dataset of 3742 RPS20 sequences. TPRpred was used to detect TPR unit homologs in them. We

obtained 24 hits in these RPS20 sequences predicted by TPRpred to match TPR unit profile with a

p-value smaller than 1.0e�4 (see Supplementary file 1D).

We defined ’interface positions’ in the TPR unit and then transferred the definition to RPS20-hh

according to their structure superposition. We considered the residues on the outer side of the two

helices facing neighboring TPR units. Both helix A and helix B in the TPR unit are a-helices, which

have on average 3.6 residues per turn. Thus, every third or fourth residue always appears on the

same side of the helix. They are positions 3, 7 and 10 in helix A and positions 17, 21, 24 and 28 in

helix B. According to the TPR sequence profile compiled by Main et al. (Main et al., 2003b), the

most common residues at these positions are hydrophobic except for positions 17 and 24, where

the most common residues are both Tyr (see also Figure 4a). Therefore, positions 17 and 24 were

not included in the definition of interface positions. Furthermore, the residue at position equivalent

to position 24 in RPS20 structure faces its C-terminal helix and is already an interface residue

(Figure 4c). Thus, it was not considered as an interface position to be checked in the study. In the

end, only positions 3, 7, 10, 21 and 28 in RPS20-hh were defined to be interface positions to be

examined, because they are exposed to the solvent or interact with the RNA molecules in the ribo-

some, but would interact with neighboring repeats in the TPR fold.

We searched all RPS20 sequences in Pfam 27.0 family Ribosomal_S20p (PF01649), including both

datasets ’full’ and ’ncbi’, for candidates in which the interface positions are occupied by as many

hydrophobic residues as possible. In the MSA provided by Pfam, we extracted the 34 columns that

correspond to the sequence fragment of RPS20-hh from Thermus aquaticus, which was found by

TPRpred to be the hit with the best p-value and was thus used as the reference RPS20-hh. We

obtained 1370 sequence fragments that do not contain any indels, in which the interface positions

were examined for hydrophobicity. Here, Ala, Ile, Leu, Met, Phe, Val were considered as hydropho-

bic residues. Trp was not included as its side chain may be too large to be accommodated at the

interface.

We employed several low-complexity / intrinsically disordered region prediction methods (SEG

[Wootton, 1994], PONDR [Romero et al., 2001], DisEMBL [Linding et al., 2003], IUPred

[Dosztányi et al., 2005a, 2005b]) to investigate putative intrinsically disordered regions in the

RPS20 of Thermus aquaticus. We ran SEG with three sets of recommended parameters

(Wootton and Federhen, 1996) and the other approaches with default parameters.

Optimization of RPS20-hh in the designed TPRs
We considered eight positions (2, 4, 6, 7, 9, 22, 23 and 25) in RPS20-hhta for optimization apart

from the four residues at the C-terminus.

Main et al. (Main et al., 2003b) discovered a set of eight ’TPR signature residues’ in the consen-

sus design: W4, L7, G8, Y11, A20, Y24, A27 and P32. Six of them are missing in RPS20-hhta except

A20 and A27. Following the principle of consensus design, we introduced L4W and K7L into RPS20-

hhta. K7 is also one of the interface positions that ought to be mutated to hydrophobic residue for

better packing at interfaces. A8 and L11 were not optimized because they are the second and third

most common residues at positions 8 and 11 in the TPR profile, respectively. M24 was also retained

because it seems long hydrophobic side chains are favored at position 24 though Met is not one of

the three most common residues (YFL). P32 was introduced to replace D32 in RPS20-hhta as part of

the C-terminal consensus loop (DPNN) between repeats.

Co-evolution is commonly observed between physically interacting residues (de Juan et al.,

2013). We investigated if any positions we optimized are involved in a co-evolution relationship so

that we can preserve such correlations. We performed a direct coupling analysis (Morcos et al.,

2011) and computed the mutual information using MatrixPlot (Gorodkin et al., 1999) between all

positions in TPR repeat sequences. The results of both approaches revealed that the highest correla-

tion occurs between positions 7 and 23 (Figure 4—figure supplement 1), with the most commonly

observed combinations being R7-D23 and L7-Y23. Therefore, we always mutated I23 to the most
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commonly observed residue tyrosine (I23Y) in the TPR consensus sequence together with aforemen-

tioned mutation K7L. In addition, we considered combination K7R and I23D together. Combination

K7-I23D was also tested because of highly similar physicochemical properties between Lys and Arg

side chains.

The hydrophobic side chain of valine at position 9 in RPS20-hhta is buried between helices in

RPS20, but would be exposed on the surface of the designed protein except in the last repeat, in

which V9 interacts with the stop helix. Therefore, it is considered to be mutated to the most com-

mon residue asparagine (V9N) in the TPR repeat consensus except in the last repeat (Figure 4c).

RPS20-hhta sequence and surface is enriched with positively charged residues (Figure 4b). This

would lead to the exceedingly high theoretical iso-electric point (pI) of the designed proteins. Natu-

ral TPR proteins tend to exhibit zero net charge (Magliery and Regan, 2004). Hence, we decided to

randomly mutate the positively charged residues (Lys and Arg) in the two helices of RPS20-hhta to

the corresponding most common residues in TPR sequence profile (K2E, K6N, K22E, R25Q/E). K26

was not mutated as Lys is already the most common residue in the TPR profile.

At the C-terminus of the designed TPR, the last four residue of RPS20-hhta (IDKA) were replaced

with the TPR consensus loop sequence (DPNN) between repeat units. The reason is as follows. The

secondary structure of the TPR unit is helix (13 aa) – loop (3aa) – helix (14 aa) – loop (4aa), while the

secondary structure of the RPS20-hhta identified to be homologous to TPR unit is helix (13 aa) –

loop (3 aa) – helix (18 aa) (Figures 2 and 4). The last four residues may have been included in the

prediction by TPRpred merely to fulfill the size requirement of TPR repeat (34 aa). Indeed, when we

scanned RPS20-hhta sequence using the hidden Markov model constructed for Pfam family TPR_1,

only positions 2–28 were found to be similar to the TPR_1 profile using HMMER 3.0 (RRID:SCR_

005305) (Eddy, 2009), even if all filters were switched off. So the four very C-terminal residues in

RPS20-hhta were not used in the designed TPR between repeat units. They were not replaced in the

last repeat unit (Figure 3).

Structure modeling and refinement in silico
CTPR3 structure of an idealized TPR repeat (Main et al., 2003b) (PDB id: 1na0, chain A) was taken

as the main template to build an initial TPR structure model using RPS20-hhta. Helix B3 and the stop

helix in our designed protein are different from natural TPRs, but more similar to natural RPS20s. So

we also used a RPS20 protein as the structure template for the last repeat and the stop helix. The

structure of RPS20 from Thermus thermophilus HB8 (PDB id: 2vqe, chain T) was used because it was

the structure with the best resolution (2.5 Å). The C-terminal loop in 2vqeT was discarded. The two

structures 1na0A and 2vqeT were merged into a hybrid template based on the superposition of their

homologous helical hairpins: the third TPR unit in 1na0A and the RPS20-hh in 2vqeT (the very C-ter-

minal four residues were not used). We then modeled the designed TPR sequences using RPS20-

hhta onto the hybrid structure template using Rosetta programs fixbb and relax (Das and Baker,

2008). The Rosetta fixed backbone design application fixbb was used to make the initial model.

Subsequently, these models were relaxed using the Rosetta structure refinement application relax.

The two steps were iterated three times. See the Supplementary file 1E for the command lines.

Rosetta 3.4 was used in the work.

We selected five constructs for further testing in vitro (Table 1). They are among the best-scoring

constructs according to the in silico simulation (Figure 4—figure supplement 2). If two constructs

have comparable scores (they are adjacent in the score ranking), the one with fewer mutations was

preferred. The selected constructs all differ at least at two positions in their sequences. When we

searched these optimized RPS20-hhta fragments in the NCBI nr database using BLAST

(Camacho et al., 2009), the top hits were still RPS20s.

Cloning, protein expression and purification
DNA sequences coding for the designed TPR repeats were gene-synthesized in codon-optimized

form (Eurofins) and cloned into vector pET-28b (Novagen) using NcoI/HindIII restriction sites, and

into pETHis_1a to generate proteins with an N-terminal cleavable His6-tag. RPS20 T. aquaticus and

T. thermophilus genes were amplified from genomic DNA and cloned likewise. Recombinant plas-

mids were transformed into E. coli strain BL21-Gold (DE3) grown on LB agar plates containing 50
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mg/ml kanamycin. For expression, cells were cultured at 25˚C and induced with 1 mM isopropyl-D-

thiogalactopyranoside (IPTG) at an OD600 of 0.6 for continued growth overnight.

Bacterial cell pellets were resuspended in buffer A (50 mM Tris pH 8, 150 mM NaCl), supple-

mented with 5 mM MgCl2, DNaseI (Applichem) and protease inhibitor cocktail (cOmplete, Roche).

After breaking the cells in a French Press, the suspension was centrifuged twice at 37,000 g. Soluble

His6-tagged proteins were purified by binding proteins to Ni-NTA columns (GE Healthcare) in buffer

A (50 mM Tris pH 8.0, 300 mM NaCl) and elution with increasing concentrations of imidazole up to

0.6 M. Eluted proteins were dialyzed against buffer A for cleavage by His6-TEV-protease (50 U/mg

protein). Cleavage leaves two additional residues (Gly-Ala) as N-terminal extension to all proteins

produced in this manner. After incubation overnight, cleaved proteins were re-run on Ni-NTA col-

umns and collected in the flow-through. They were finally purified by gel size exclusion chromatogra-

phy (Superdex G75, GE Healthcare) in buffer A containing 0.5 mM EDTA. Insoluble proteins were

dissolved in 6 M guanidinium chloride and refolded by dialysis overnight against buffer A. Refolded

proteins were further purified by sequential anion-exchange (Q Sepharose HP) and cation-exchange

(SP Sepharose HP) chromatography using 0–500 mM NaCl salt gradients in buffer D (20 mM Tris pH

8, 1 mM EDTA), and by gel size exclusion chromatography (Superdex G75) in buffer A.

Biophysical characterization
To determine the native molecular mass of designed TPR repeats, static light scattering experiment

was performed by applying samples onto a superdex S200 gel size exclusion column to which a mini-

DAWN Tristar Laser photometer (Wyatt) and an RI 2031 differential refractometer (JASCO) were

coupled. Runs were performed in buffer A. Data analysis and molecular mass calculations were car-

ried out with ASTRA V software (Wyatt). Tryptophan fluorescence spectra were recorded on a Jasco

FP-6500 spectrofluorometer at 23˚C; excitation was at 280 nm, emission spectra were collected from

300–400 nm. Circular dichroism (CD) spectra from 200–250 nm were recorded with a Jasco J-810

spectropolarimeter at 23˚C in buffer E (30 mM MOPS pH 7.2, 150 mM NaCl). Cuvettes of 1 mm

path length were used in all measurements. For melting curves and determination of Tm, CD meas-

urements were recorded at 222 nm from 20–95˚C, the temperature change was set to 1˚C per min-

ute, using a Peltier-controlled sample holder unit. For equilibrium-unfolding experiments performed

at 23˚C, native protein was mixed with different concentrations of urea in buffer A. After equilibra-

tion, circular dichroism was monitored at 222 nm. The fraction of unfolded protein fU was deter-

mined based on fu = (yF – y)/(yF – yU), where yF and yU are the values of y typical of the folded and

unfolded states. Data were fitted to a two-state model with the software ProFit (6.1) as described

(Grimsley et al., 2013), assuming a linear urea [D] dependence of DG: DGU-F
D = DGU-F

H2O – m[D],

where DGU-F
D is the free energy change at a given denaturant concentration, DGU-F

H2O the free

energy change in the absence of denaturant, and m the sensitivity of the transition to denaturant.

Fragment sizes of M4N were determined by ESI-micrOTOF mass spectrometry (Bruker Daltonics,

Max Planck Institute core facility Martinsried), followed by bioinformatic analysis using the Find-Pept

tool (ExPASy).

Crystallization, structure solution and refinement
For crystallization, the M4N and M4NDC protein solutions were concentrated to 70 and 30 mg/ml,

respectively, in buffer A. The buffer for M4NDC additionally contained 0.5 mM EDTA. Crystallization

trials were performed at 295 K in 96-well sitting-drop vapor-diffusion plates with 50 ml of reservoir

solution and drops consisting of 300 nl protein solution and 300 nl reservoir solution in the case of

M4N, and 400 nl protein solution and 200 nl reservoir solution in the case of M4NDC. Crystallization

conditions for the crystals used in the diffraction experiments are listed in Supplementary file 1H

together with the solutions used for cryo-protection. Single crystals were transferred into a droplet

of cryo-protectant before loop-mounting and flash-cooling in liquid nitrogen. For experimental phas-

ing, crystals of M4N were soaked overnight in a droplet containing reservoir solution supplemented

with 5 mM K2PtCl4 prior to cryo-protection and flash-cooling. All data were collected at beamline

X10SA (PXII) at the Swiss Light Source (Paul Scherrer Institute, Villigen, Switzerland) at 100 K using a

PILATUS 6M detector (DECTRIS) at the wavelengths indicated in Supplementary file 1H. Diffraction

images were processed and scaled using the XDS program suite (Kabsch, 1993). Using SHELXD

(Sheldrick, 2008), three strong Pt-sites were identified in the M4N derivative dataset. After density
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modification with SHELXE, the resulting electron density map could be traced by Buccaneer (Cow-

tan, 2006) to large extents, and revealed three chains of M4N in the asymmetric unit (ASU), orga-

nized as one dimer and one monomer. Refinement was continued using the native dataset. The two

different crystal forms of M4NDC, CF I and CF II, were solved by molecular replacement on the basis

of the refined M4N coordinates. Using MOLREP (Vagin and Teplyakov, 2000), two copies of the

dimeric assembly of the M4N structure were located in the ASU of CF I, and one monomer in the

ASU of CF II. All models were completed by cyclic manual modeling with Coot (Emsley and Cow-

tan, 2004) and refinement with PHENIX (RRID:SCR_014224) (Adams et al., 2010). Analysis with

PROCHECK (Laskowski et al., 1993) showed excellent geometries for all structures. Data collection

and refinement statistics are summarized in Supplementary file 1H. The three structures are depos-

ited in the PDB (Berman et al., 2000) with accession codes: 5FZQ (M4N), 5FZR (M4NDC CF I), 5FZS

(M4NDC CF II).

Testing mutations in T. thermophilus
T. thermophilus HB8 and T. aquaticus YT-1 were obtained from the German Collection of Microor-

ganisms and Cell Cultures (DSMZ). Growth in liquid medium was performed under mild stirring

(160 rpm) in long necked flasks at 68˚C with DSMZ Medium 74 for T. thermophilus and DSMZ

Medium 878 for T. aquaticus. Agar (1.6% w/v) was added to the medium for growth on plates.

When required, kanamycin (30 mg/ml) and bleocin (10 mg/ml) were added to the media. For purifica-

tion experiments 25 ml cultures were grown to an optic density of 0.7 OD600 (~12 hr) and then re-

inoculated in the same volume to an optical density of 0.035 OD600. The process was repeated seri-

ally three times and two 5 ml samples were taken in each step for glycerol stocks and DNA purifica-

tion. Transformation of T. thermophilus was performed as described previously (Nguyen and

Silberg, 2010). Genomic and plasmid DNA from Thermus were purified from 5 ml cultures using the

QIAamp DNA Mini Kit and the QIAprep Spin Miniprep Kit, respectively.

T. thermophilus KM4 strain was generated by gene replacement as follows: two PCR products

comprising each one 1 Kb of DNA upstream and downstream of rpsT were amplified from T. ther-

mophilus HB8 genomic DNA and then fused by overlapping PCR. The resulting fragment, in which

rpsT is substituted by a PstI site, was cloned in the KpnI/XbaI sites of plasmid pBlueScript II SK (+).

Next, a fragment from plasmid pKT1 (Biotools, Spain), which contains the thermostable kanamycin

resistance Kat gene under the control of the constitutive PslpA promoter, was inserted into the new

PstI site. Direction of the Kat cassette insertion was selected, so transcription from the PslpA pro-

moter continues through thx, a gene that is located downstream and is predicted to form an operon

with rpsT. The 3 Kb final construct cloned in pBluescript was subsequently amplified by PCR and the

linear product was purified and transformed by electroporation in T. thermophilus HB8. Integration

of the Kat cassette was selected by growth in kanamycin.

For the complementation in trans of rpsT from T. thermophilus, a PCR product of rpsT was

amplified from genomic DNA and cloned in the SpeI/PstI sites of plasmid pJJSpro (Nguyen and Sil-

berg, 2010) generating plasmid pJJSpro-rpsTTt. The same approach was followed for rpsT in T.

aquaticus (pJJSpro-rpsTTa) and in T. aquaticus rpsT alleles with two (pJJSpro-rpsTTaM2) and four

(pJJSpro-rpsTTaM4N) amino-acid substitutions. The PCR product for the two later constructs was

amplified using the plasmids in which the synthesized genes were delivered as a template.
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Alva V, Söding J, Lupas AN. 2015. A vocabulary of ancient peptides at the origin of folded proteins. eLife 4:
e09410. doi: 10.7554/eLife.09410

Anantharaman V, Koonin EV, Aravind L. 2001. TRAM, a predicted RNA-binding domain, common to tRNA uracil
methylation and adenine thiolation enzymes. FEMS Microbiology Letters 197:215–221. doi: 10.1111/j.1574-
6968.2001.tb10606.x

Apic G, Gough J, Teichmann SA. 2001. Domain combinations in archaeal, eubacterial and eukaryotic proteomes.
Journal of Molecular Biology 310:311–325. doi: 10.1006/jmbi.2001.4776

Aurora R, Rose GD. 1998. Helix capping. Protein Science 7:21–38. doi: 10.1002/pro.5560070103
Bansal PK, Mishra A, High AA, Abdulle R, Kitagawa K. 2009a. Sgt1 dimerization is negatively regulated by
protein kinase CK2-mediated phosphorylation at Ser361. Journal of Biological Chemistry 284:18692–18698.
doi: 10.1074/jbc.M109.012732

Bansal PK, Nourse A, Abdulle R, Kitagawa K. 2009b. Sgt1 dimerization is required for yeast kinetochore
assembly. Journal of Biological Chemistry 284:3586–3592. doi: 10.1074/jbc.M806281200

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein
data bank. Nucleic Acids Research 28:235–242. doi: 10.1093/nar/28.1.235

Bernhardt HS. 2012. The RNA world hypothesis: the worst theory of the early evolution of life (except for all the
others)(a). Biology Direct 7:1–10. doi: 10.1186/1745-6150-7-23
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