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Abstract

Over the past decade, the rate of drug attrition due to clinical trial failures has risen substantially. 

Unfortunately it is difficult to identify compounds that have unfavorable toxicity properties before 

conducting clinical trials. Inspired by the effective use of Sabermetrics in predicting successful 

baseball players, we sought to use a similar “moneyball” approach that analyzes overlooked 

features to predict clinical toxicity. We introduce a new data-driven approach (PrOCTOR) that 

directly predicts the likelihood of toxicity in clinical trials. PrOCTOR integrates properties of a 

compound’s targets and its structure to provide a new measure, the PrOCTOR score. Drug target 

network connectivity and expression levels, along with molecular weight, were identified as 

important indicators of adverse clinical events. Altogether, our method provides a data-driven 

broadly applicable strategy to identify drugs likely to possess manageable toxicity in clinical trials 

and will help drive the design of therapeutic agents with less toxicity.
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Introduction

Failures in all phases of clinical trials have skyrocketed over the past three decades, with a 

substantial portion occurring for safety reasons (Hay et al., 2014; Ledford, 2011). This is 

occurring despite improvements in all stages of the drug development pipeline (Scannell et 

al., 2012). One of the key areas of improvement has been the screening for drugs likely to 

fail clinical trials.

Drug-likeness measures have been widely accepted as a useful guide for filtering out toxic 

molecules in the early stages of drug discovery. Lipinski first proposed this concept over a 

decade ago with his Rule of 5 (Ro5), a set of four physicochemical features associated with 

orally active drugs that were derived from analyzing clinical drugs that reached Phase II 

trials or beyond(Lipinski et al., 1997). This concept enhanced the drug discovery process by 

providing a set of practical filters that became widely adopted in drug development 

pipelines. However Lipinski noted that the Ro5 is a very conservative predictor and passing 

the rule does not guarantee drug-likeness (Lipinski, 2004). Modified rule sets have since 

been proposed, such as Veber’s Rule(Veber et al., 2002) and Ghose’s Rule(Ghose et al., 

1999), to include more properties associated with bioavailability, such as Polar Surface Area, 

and to improve upon the concept proposed by Lipinski. More recently, the Quantitative 

Estimate for Drug-likeness (QED) was proposed as an alternative to rule-based methods 

(Bickerton et al., 2012).

The adoption of drug-likeness concepts early in the drug discovery process has been shown 

to reduce attrition rates (Leeson and Springthorpe, 2007). However despite these advances in 

identifying potentially toxic drugs, clinical trial attrition rates have continued to rise (Hay et 

al., 2014). While oral bioavailability is highly relevant to drug toxicity, there are other 

factors that also contribute to clinical trial toxicity events. To address this problem, we 

propose a new approach for predicting odds of clinical trial outcomes (PrOCTOR).

Results

Analysis of clinical trials data reveals limitations of structural-based approaches

Drug-likeness approaches have been important and informative in guiding the drug 

development process. However they cannot distinguish drugs with unmanageable toxicity 

profiles from safe ones (Bickerton et al., 2012; Leeson and Springthorpe, 2007). We verified 

this quantitatively by comparing drugs that have failed clinical trials with FDA approved 

drugs. To this end, we downloaded data from The Database for Aggregate Analysis of 

ClinicalTrials.gov (AACT) at ClinicalTrials.gov and extracted the names of the drugs 

associated with 108 clinical trials of any phase that were annotated as having failed for 

toxicity reasons. The comparative list was developed from the 1013 FDA approved drugs 

that were annotated as FDA approved in the DrugBank database(Law et al., 2014).

For the drugs in these lists, we tested existing methods for their ability to distinguish 

approved drugs from those that failed for toxicity in trials (FTT drugs). Most FDA approved 

drugs pass Lipinski’s Rule of Five(Lipinski et al., 1997) (80.6%) and Ghose’s(Ghose et al., 

1999) (64.9%) rules, but so do most of the FTT drugs (73% Lipinski, 54% Ghose). In 
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contrast, Veber’s rule(Veber et al., 2002) appears to be a far too conservative measure, with 

75.2% of approved and 92% of FTT drugs being predicted to fail. Finally the QED 

approach, which calculates a continuous score(Bickerton et al., 2012), is also unable to 

significantly distinguish the two classes (p=0.1069, D=0.10703, Kolmogorov-Smirnov Test). 

This analysis further highlights the unmet need to develop strategies for predicting the 

likelihood of toxicity in clinical trials.

Computational approach accurately predicts likelihood of clinical trial failure

Because all of the drug-likeness methods consider only the chemical properties of a 

molecule, we reasoned that a new approach that includes overlooked features related to the 

results of a drugs performance could prove to be highly impactful, similar to the effect that 

adopting sabermetrics had on the baseball scouting process as described in Michael Lewis’s 

Moneyball(Lewis, 2003). A specific example is the consideration of target-related 

properties, such as tissue selectivity (an ideal target would be found only in diseased tissue 

and sparsely anywhere else). We suggest that such considerations could be useful in 

determining potential toxic effects.

The inferences gained from the analysis of the various methods and the consideration of 

additional characteristics in the prediction of tolerable toxicity in clinical trials led to the 

development of our new approach for predicting odds of clinical trial outcomes using 

random-forest (PrOCTOR). PrOCTOR integrates established informative chemical features 

of the drugs with target-based features to produce a classifier that is able to distinguish FDA 

approved drugs from FTT drugs. Random forest(Breiman, 2001), a decision tree based 

machine learning model, is used to address the classification problem of clinical trial drug 

toxicity (Fig.1). The random forest model builds a set of 50 decision trees with a subset of 

features (see below) within each tree and assigns the predicted outcome to be the consensus 

of the trees.

The set of 48 features describing each drug contains 10 molecular properties, 34 target-based 

properties and 4 drug-likeness rule features (see Supplementary Table S1). Given their 

established validity, we chose to include the molecular properties considered by the Lipinski, 

Veber and Ghose rules. We found that, individually, some of these properties had slight but 

significant power to discriminate between FDA approved drugs and FTT drugs when applied 

to our lists of drugs in the two categories (Fig.2a). Additional features represent the 

compatibility of the compounds with the drug-likeness approaches. Each drug’s known 

targets were annotated from the DrugBank dataset (Law et al., 2014) and used to derive an 

additional set of target-based properties. We considered the median expression of the gene 

targets in 30 different tissues, such as the liver and the brain, calculated from the Genotype-

Tissue Expression (GTEx) project(Consortium, 2015). Other target-based features represent 

the network connectivity of the target, with gene degree and betweenness features, computed 

using an aggregated gene-gene interaction network(Aksoy et al., 2013; Das and Yu, 2012; 

Khurana et al., 2013), and a feature that represents the loss of function mutation frequency in 

the target gene, extracted from the Exome Aggregation Consortium (ExAC) 

database(Exome Aggregation Consortium (ExAC)). Like the chemical properties, we found 

that some of these target-based features also were able to weakly but significantly 
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discriminate between FDA approved drugs and FTT drugs (Fig.2b). Not surprisingly, many 

of the features within the target-based or the chemical category were highly correlated with 

each other. Since we found the target expression values to be highly correlated (Fig.S1, see 
supplemental text), principle component analysis was applied to all target expression 

values in order to reduce the feature dimensionality. In place of the raw expression values, 

the first three principle components were instead used. However there was little correlation 

between the two classes of features (maximum Pearson correlation of r=0.1942). Thus the 

target-based features add information independent of the chemical features into the model. 

The full description of the features used in the model is described in Supplementary Table 
S1.

The approach was tested by performing 10-fold cross validation on a set of 784 FDA 

approved drugs with known targets and the drugs associated with 100 FTT that had at least 

one annotated target and known chemical structure. We found that PrOCTOR had significant 

predictive performance, with an area under the receiver operator curve (AUC) of 0.8263 

(Fig.3a). At the optimal point of the curve the method achieved an accuracy (ACC) of 

0.7529, with both high sensitivity (true positive rate (TPR) of 0.7544), and high specificity 

(true negative rate (TNR) of 0.7410). By comparison, on this same dataset the Ro5 and 

Ghose rules had a TPR of 0.8030 and 0.6468, respectively, and a TNR of 0.27 and 0.46 

respectively. Application of the Veber method achieved a TPR of 0.2465, and a TNR of 0.92. 

(Fig.3a). The ROC curve of both the unweighted and weighted versions of the QED method 

fell significantly below that of PrOCTOR’s ROC curve (AUC=0.581, p<2.2e-16, Wilcoxon 

signed rank test), indicating that PrOCTOR is able to better distinguish the FTT and 

approved drug classes. Furthermore, PrOCTOR’s approval probability allows for the 

separation of the drugs of the FFT and FDA approved classes (D=0.5343, p< 2.2e-16, 

Kolmogorov-Smirnov test) (Fig.3b) on a continuous scale.

We further assessed the approach by applying PrOCTOR to drugs that are approved in 

Europe (EMA-Approved) or in Japan (JP17) but not annotated as being FDA approved in 

our dataset. When compared to the FTT drugs in our training set, we found that EMA-

Approved (p<2.2e-16, Mann–Whitney UTest) and JP17 drugs (p=9.84e-14, Mann–Whitney 

U Test) were predicted to be significantly safer and had a similar distribution of PrOCTOR 

scores to the class of FDA Approved Drugs (Fig.3c).

Next, we applied PrOCTOR to 3,236 drugs that were in DrugBank and not in our training 

set (Supplementary Table 2). We found that the predicted toxic drugs had significantly 

more frequent reports of serious adverse events, such as death and renal failure, than 

predicted safe drugs in the openFDA resource of drug adverse events (https://open.fda.gov) 

(Fig.3d). Furthermore, we found that safe predictions were enriched for classes of drugs that 

are known to be relatively safe, such as antidepressants, stimulants, and serotonin-related 

drugs. In comparison, toxic predictions were enriched for known toxic classes of drugs, such 

as immunosuppressive agents and antineoplastic agents (Supplementary Table 3).

We also applied our approach to 137 drugs annotated as most-DILI-concern and 65 drugs of 

no-DILI-concern by the FDA. We found that the most-DILI-concern drugs had 1.5-fold 

higher odds of being classified as toxic by PrOCTOR than the no-DILI-concern drugs. More 
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generally, the most-DILI-concern drugs had higher PrOCTOR scores than the no-DILI-

concern drugs (p= 0.0005, Mann–Whitney UTest). This suggests that our model is able to 

generalize beyond the training set.

Identification of FDA drugs with increased likelihood of toxicity events

Next we looked to evaluate the predictions of our approach by analyzing PrOCTOR’s 

predictions for FDA approved drugs. A PrOCTOR score expressing the log2(odds of 

approval) was calculated taking the log2 of the ratio of the PrOCTOR-predicted probability 

of approval to the probability of failure.

The three molecules identified by PrOCTOR as most likely to receive FDA approval were 

phenindamine, carbinoxamine, and chlorcyclizine (Fig.3e). All three of these drugs are FDA 

approved antihistamines with highly tolerable side effects. Interestingly, all three of these 

drugs pass the Ro5 but have relatively low QED values (0.311, 0.242, and 0.499 

respectively).

The three molecules with the worst PrOCTOR score and thus predicted as most likely to fail 

clinical trials for toxicity reasons were docetaxel, bortezomib, and rosiglitazone (Fig.3f). Of 

note, all are FDA approved drugs that have been associated with serious toxicity events. 

Docetaxel is a chemotherapy agent used to treat a number of cancers(Massacesi et al., 2004; 

Puisset et al., 2007). The most frequent adverse event associated with docetaxel is 

neutropenia, a potentially life threatening event that often results in delay of 

treatment(Puisset et al., 2007). It also fails the Ro5 and has an extremely low QED of 0.147, 

suggesting that this prediction is consistent with other drug screening methods. Bortezomib 

is a proteasome inhibitor used for treatment of relapse multiple myeloma that has a moderate 

QED value of 0.476 and passes the Ro5. While it was FDA approved due to its significant 

antitumor activity, it has been associated with frequent adverse events, such as peripheral 

neuropathy, that are thought to in part be due to nonproteasomal targets (Arastu-Kapur et al., 

2011). Rosiglitazone is an antidiabetic drug that also passes the Ro5 and has a high QED 

value of 0.825. However it has been linked with an elevated risk of heart attack(Nissen and 

Wolski, 2007) and consequently was withdrawn from the market in Europe in 2010(Blind et 

al., 2011). This suggests that existing methods were not necessarily able to foresee the 

adverse events associated with these latter two compounds.

These compounds bring to attention the importance of context when considering toxicity 

events. In general, more frequent and serious side effects will be acceptable for drugs that 

are used to treat severe and otherwise untreatable conditions, such as cancer. This is an 

important consideration to keep in mind when determining acceptable score ranges in drug 

development. Additionally, it highlights the shortcomings of rule-based methods, which are 

unable to quantify the extent to which a drug may have undesirable characteristics since a 

molecule that just barely fails one requirement is equivalent to one that substantially fails all 

requirements.

We further assessed what insights the predictions from PrOCTOR can offer regarding toxic 

effects using the SIDER side effect resource database (Kuhn et al., 2010). We hypothesized 

that drugs with better PrOCTOR scores would have less frequent severe side effects reported 
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due to their more tolerable toxicity profiles. We first compared all drugs predicted to be 

approved by PrOCTOR (via cross-validation), including those misclassified, to those 

predicted to be of the FTT class. We found that the predicted FTT drugs had significantly 

more frequent severe side effects, such as neutropenia (37.3% vs 14.3%, p=1.78×10−7, 

Fisher-Exact test) (Fig.4A). When comparing the drugs with the top 10% best PrOCTOR 

scores to those within the bottom 10%, this distinction was even greater with severe toxic 

events, such as neutropenia (54.8% vs 13.4%, p=1.72×10−6, Fisher-Exact test) and pleural 

effusion (47.6% vs 5.2%, p=2.59×10−7, Fisher-Exact test), occurring far more frequently in 

the predicted FTT class (Fig.S2).

Furthermore, we found that these severe side effects were significantly negatively correlated 

with the PrOCTOR score. For example, the spearman’s correlation coefficient of the binned 

pleural effusion frequency against the PrOCTOR score was ρ=−0.9792 (Fig.4b) and for 

neutropenia was ρ=−0.9613 (Fig.4c). In comparison, the frequent side effect of dizziness 

still occurred more frequently in the predicted toxic drugs but had a much weaker correlation 

of ρ=−0.5070. Thus the predictions of PrOCTOR are consistent with reported adverse 

events, with the PrOCTOR score negatively correlating with the reported severe side effects 

that would ultimately contribute to a drug’s success in clinical trials.

Model reveals insights about how various properties can contribute to or help avert 
toxicity

We evaluated what insights PrOCTOR can offer about successful drugs. A feature 

importance analysis showed that both the chemical and target-based features contribute 

significantly to the performance of the PrOCTOR algorithm. The first expression principle 

component, QED metric, polar surface area, and the drug target’s network connectivity 

emerged as the four most important features (Fig.S3a), thus target-based features were 

identified as highly important features for predicting toxicity. Using target-based features 

alone, PrOCTOR achieved a significant predictive performance (ACC=0.7115). Our 

approach relies on existent annotation of drug targets to calculate these features. However 

this information is often not available during the drug development stage. We found that our 

method is robust to removal of targets (Fig.S3b) and additionally maintains a significant 

predictive performance (ACC= 0.6708) in absence of known target information. However 

PrOCTOR’s performance remains strongest when including both the chemical and target-

based features (ACC=0.7529).

We next investigated the relationships between the features in the model. We found that 

certain combinations of uncorrelated features provided greater discriminative power. For 

example, Bickerton et al. (Bickerton et al., 2012) reported that the QED approach 

outperformed other drug-likeness methods when the threshold was set at 0.35. We found that 

75% of drugs with QED<0.35 were approved. However when high testis expression 

(FPKM>10) was added into consideration, 88.5% of FTT drugs were accurately be 

classified (Fig.S4a). Additionally, tissue selectivity is a useful consideration in determining 

potential toxic effects. We hypothesize that this may be due to some tissue-specific toxicity 

events being associated with the drug target’s expression in normal tissue. We found that 

84% (38/45) of drugs with high molecular weight (MW>500) but low general tissue 

Gayvert et al. Page 6

Cell Chem Biol. Author manuscript; available in PMC 2017 October 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression (PC1< −2) were FDA approved. Thus if a gene appears to be a promising target 

for mechanistic reasons while appearing ill-suited due to high global expression profiles, it 

still may remain a viable candidate given that certain molecular properties are satisfied. To 

fully interpret how the model generated by PrOCTOR was able to capture these 

dependencies, we created a consensus decision tree which can be found in Figure S4b.

Discussion

Drug-likeness approaches, as first proposed by Lipinski almost two decades ago, have 

become a key tool for the pre-selection of compounds that are likely to have manageable 

toxicity in clinical studies. However all these methods consider only the molecular 

properties of the drug itself. We have proposed a data-driven approach (PrOCTOR) for 

predicting likelihood of toxic events in clinical trials that moves beyond existing drug 

likeness rules and measures by not only considering the chemical properties of a molecule, 

but also the properties of the drug’s target. When trained on failed clinical trials and FDA 

approved drugs, the PrOCTOR score performs at high accuracy, specificity and sensitivity. 

Furthermore, the PrOCTOR score strongly correlates with reported severe adverse events.

While phase I trials are designed to investigate safety, drugs can fail at any stage for toxicity 

reasons and additionally can fail phase I trails for non-safety reasons. Lipinski’s Ro5 was 

derived using the set drugs that had succeeded to phase II trials, under the assumption that 

undesirable drugs would have been eliminated in Phase I (Lipinski et al., 1997). However it 

has been observed that a substantial number of drugs fail in Phase II trials and beyond for 

safety reasons (Ledford, 2011). Additionally many of the drug-likeness measures were 

developed using larger representative datasets in place of clinical trial data(Bickerton et al., 

2012). While these methods are important, they are focused on subtly different problems 

such as bioavailability. We have shown above that these approaches are not able to 

sufficiently capture clinical trial safety. There have been a number of other methods that 

have been developed to predict toxicity events as well. A recent DREAM Challenge focused 

on predicting cytotoxicity in lymphoblastoid cell lines, however primarily focused on 

environmental toxins(Eduati et al., 2015).

Similarly, the EPA’s extensive ToxCast dataset is covered predominantly by non-therapeutic 

chemicals(USEPA, 2016). Other toxicity prediction methods, such as those in AMBIT, have 

been developed to address other toxicity-based questions, including model organism and 

tissue-specific toxicities(Jeliazkova and Jeliazkov, 2011). QSAR models are also frequently 

used for toxicity prediction. However they have generally been applied to the prediction of 

specific toxicity endpoints, such as drug LD50 values, tissue-specific toxicity events or for 

the estimation of maximum tolerated dose levels (Patlewicz and Fitzpatrick, 2016). Finally, 

PK/PD models are highly valuable tools for identifying toxicological properties of drugs 

preclinically, but must be independently constructed for every drug and thus would benefit 

from more high-throughput methods for toxicity prediction(Sahota et al., 2016). 

Consequently, we selected the set of drugs that failed any phase of clinical trials for toxicity 

reasons to develop our approach.
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We have also only addressed the issue of general clinical trial toxicity. However some 

indications, such as cancers, have more critical needs and consequently allow for higher 

toxicity levels. As a result, our model may predict some promising anti-cancer drugs to have 

unmanageable toxicity levels. Since PrOCTOR outputs a score, instead of just a prediction, a 

different threshold for allowable toxicity may be considered for different indications. A 

preliminary testing of this idea on cancer-only drugs with cancer type added as a feature 

demonstrated improved predictive power on this subset of drugs (ACC=0.74, AUC=0.80). 

However given the small sample size of this training set (n=89), this cancer-specific model is 

not optimal at this time. Additionally many new therapies are currently being developed to 

target specific isoforms and mutations. While our model is not currently accounting for these 

specific targets, it can straightforwardly be adapted using publicly available or user-provided 

target-based information. There are also areas in which PrOCTOR could be further 

improved such that leads to better predictive capacities. The use of 3D fingerprinting 

methods may allow for the structural features to be better represented. Co-expression 

networks from the GTEx data may also be useful features, as they may provide a stronger 

biological signal. Biological interaction networks are generally incomplete and also vary 

between cellular contexts and populations, which may limit the power of the network 

metrics. Finally, our method is largely dependent on existing target annotation for drugs, 

which is generally incomplete. Thus we will likely benefit from advancements in drug target 

identification.

Furthermore over two-thirds of clinical trials fail for other reasons, including efficacy, 

strategic and financial reasons (Ledford, 2011). The problem of efficacy is a highly complex 

issue, since each drug must demonstrate improvement over existing drugs in addition 

proving a context-specific efficacy. Thus while this problem remains important, it is not 

likely to be tractable using this style of approach.

Our approach has the potential to impact the preclinical drug development pipeline by 

quantifying how likely a given compound is to have manageable toxicity in clinical trials. In 

order to facilitate interaction with and application of our model, we have developed an 

interactive tool that we have made available on github (https://github.com/kgayvert/
PrOCTOR). PrOCTOR may also help flag drugs for increased post-approval surveillance of 

adverse effects and toxicity. Perhaps even more importantly, the model will help design 

better drugs by providing insights about how various chemical and target-based properties 

can contribute to or help avert toxicity.

MATERIALS AND METHODS

Clinical Trials Training Set

We downloaded data from ClinicalTrials.gov from The Database for Aggregate Analysis of 

ClinicalTrials.gov (AACT) 10 10. To extract the names of the drugs associated with clinical 

trials that failed toxicity reasons, we identified any clinical trials that were annotated as 

“Terminated”, “Suspended” or “Withdrawn” and described as failing for toxicity reasons. 

The list of FDA approved drugs was obtained from the drug annotations within the 

DrugBank 4.0 database (Law et al., 2014).
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Model Feature Derivation

Chemical Features—The structures (sdf format) were downloaded for all of the drugs in 

DrugBank. The molecular weight, polar surface area, hydrogen bond donor and acceptor 

counts, formal charge and number of rotatable bounds were extracted from the sdf file for 

each of these compounds. When that information was missing, it was filled in by querying 

PubChem or by computationally estimating these values using ChemmineR in R. The rule 

outcomes were then derived from these features. The QED values were computed using the 

author-released script.

Network features—We constructed the aggregated biological network by taking the union 

across multiple databases of gene-gene interactions. (Aksoy et al., 2013; Das and Yu, 2012; 

Khurana et al., 2013). The network degree of a gene was calculated as the number of gene 

neighbors that a particular gene has. For drug’s with multiple genes, the maximum value 

was take. The network betweenness for a particular gene (i.e. vertex) is defined as the 

number of shortest paths that travel through the vertex. This was calculated using the 

betweenness function in R’s igraph package(Csardi and Nepusz, 2006).

Tissue features—The Gene RPKM RNA-Seq data from the Genotype-Tissue Expression 

(GTEx) project(Consortium, 2015) was downloaded from http://www.gtexportal.org/home/. 

This dataset has 2921 samples spanning 30 tissues. For each tissue, the median RPKM was 

calculated for each gene. For drugs with more than one target gene, the maximum RPKM 

was used.

Target Loss Frequency—The Exome Aggregation Consortium (ExAC) database 

(Exome Aggregation Consortium (ExAC)) was downloaded from 

www.exac.broadinstitute.org. For each gene, we counted the deleterious and total number of 

mutations that was reported. We calculated the loss frequency to be percentage of mutations 

that were reported in the gene that were deleterious.

The PrOCTOR Model

We trained the PrOCTOR approach on the clinical trials dataset using the features described 

above. It was trained using the random forest model, an ensembl decision tree based 

approach, which constructs 50 bootstrapped decision trees. A sub-sampling approach was 

used to account for the imbalanced ratio of approved drugs to FTT drugs, by randomly 

sampling the FDA approved class of samples to the size of the FTT drugs. To reduce the 

odds of poor representatives being sampled, this was repeated 30 times.

The labels were assigned by taking the consensus across the set of bootstrapped trees and 

replicates. This approach also yields a probability for each test sample. This probability was 

used to calculate an odds . To better visualize the distribution of 

this score, the log2 of the odds score was used.
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Independent Datasets

To further assess our approach, we applied PrOCTOR to European (EMA) and Japanese 

(JP17) approved drugs, as well as 3236 drugs in DrugBank (version 4.2) (Law et al., 2014). 

The list of EMA-approved drugs were downloaded from the EMA website (http://

www.ema.europa.eu/ema) and the JP17 list was downloaded from KEGG(Anders et al., 

2015). Drugs that were already annotated as FDA approved were removed from these lists 

and the trained PrOCTOR model was used to make predictions for the remaining drugs. The 

openFDA resource (https://open.fda.gov) was used to query adverse events of drugs in the 

DrugBank dataset but not in our training set. FDA annotated drug-induced liver toxicity 

(DILI). The DILI dataset was downloaded from the FDA website at http://www.fda.gov/

ScienceResearch/BioinformaticsTools/LiverToxicityKnowledgeBase/ucm226811.htm. The 

SIDER side effect resource database (Kuhn et al., 2010) was used to annotate side effects of 

each drug in the clinical trials dataset. The meddra_adverse_effects.txt table was used to 

extract reported adverse events, using the MedDRA Preferred Term descriptor to group 

similar side effects.

Statistical Analyses

We used area under the receiver operating characteristic (ROC) curve and 10-fold cross 

validation to evaluate the predictive power of our approach. For the independent analysis of 

predictions in the DrugBank dataset, we tested for enrichment of drug classes using the 

binomial test. We tested for differences of serious adverse event frequency between 

predicted toxic (score<−1) and predicted safe (score>1) drugs in the DrugBank dataset and 

not in the training set using the unpaired Student’s t-test. For the EMA, JP17, and DILI 

datasets, we tested for differences in PrOCTOR scores between predictions using the Mann-

Whitney U Test. For the side effects of drugs in the training set, we used the Fisher’s Exact 

Test to identify the side effects that occurred more frequently in predicted toxic drugs using 

a p-value cutoff of 0.01.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Computational approach predicts the likelihood of clinical trial toxicity

• Identification of molecule and target properties associated with clinical 

toxicity

• Development of a tool to facilitate interaction and interpretation of the 

model
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Figure 1. 
Method Schematic. Our approach integrates chemical properties, drug-likeness measures 

and target-based properties of a molecule into a random forest model to predict whether the 

drug is likely to be a member to fail clinical trials for toxicity reasons.
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Figure 2. 
Distributions of select (a) chemical features, and (b) target-based model features. The 

Kolmogorov-Smirnov D statistic and p-value are shown for the comparison of failed toxic 

clinical trial (FTT) drugs (red) and FDA approved drugs (blue).
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Figure 3. 
Benchmarking Model performance. (a) Receiver operating characteristic (ROC) curves for 

PrOCTOR, three drug-likeness rules (Ro5, Veber, Ghose) and both the weighted and 

unweighted QED metrics. (b) PrOCTOR scores and the Q.E.D. metric for approved and 

failed toxic clinical trial (FTT) drugs. (c) PrOCTOR scores for the FDA approved and FTT 

drugs in the training set, as well as EMA-Approved and Japanese-Approved (JP17) drugs 

after removal of FDA approved drugs. Statistical significance was assessed for FDA, EMA, 

and JP17 vs FTT drugs using the Mann-Whitney U Test. (d) Reported frequencies, 

normalized to the most frequently reported adverse event, in the openFDA database for 

predicted toxic (red, score<−1) and predicted safe drugs from the DrugBank dataset. (e) The 

top three molecules predicted by PrOCTOR as most likely to be FDA approved are 

phenindamine, carbinoxamine, and chlorcyclizine. (f) The three molecules predicted by 

PrOCTOR as most likely to fail clinical trials for toxicity reasons are docetaxel, bortezomib, 

and rosiglitazone.
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Figure 4. 
Side Effects. (a) Adverse events that occur more frequently in predicted failed toxic clinical 

trial (FTT) drugs compared to predicted approved drugs. (b) Binned frequency of pleural 

effusion across PrOCTOR score bins. (c) Binned frequency of neutropenia across PrOCTOR 

score bins.
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