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Abstract

Background—Adolescence is a critical period for emotional maturation and is a time when 

clinically significant symptoms of anxiety and depression increase, particularly in females. 

However, few studies relate developmental differences in symptoms of anxiety and depression to 

brain development. Cerebral blood flow (CBF) is one brain phenotype that is known to have 

marked developmental sex differences.

Methods—We investigated whether developmental sex differences in CBF mediated sex 

differences in anxiety and depression symptoms by capitalizing upon a large sample of 875 youths 
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who completed cross-sectional imaging as part of the Philadelphia Neurodevelopmental Cohort. 

Perfusion was quantified on a voxelwise basis using arterial spin labeled MRI at 3T. Perfusion 

images were related to trait and state anxiety using a general additive model with penalized 

splines, while controlling for gray matter density on a voxelwise basis. Clusters found to be related 

to anxiety were evaluated for interactions with age, sex, and puberty.

Results—Trait anxiety was associated with elevated perfusion in a network of regions including 

the amygdala, anterior insula, and fusiform cortex, even after accounting for pre-scanner state 

anxiety. Notably, these relationships strengthened with age and the transition through puberty. 

Moreover, higher trait anxiety in post-pubertal females was mediated by elevated perfusion of the 

left amygdala.

Conclusions—Taken together, these results demonstrate that differences in the evolution of 

cerebral perfusion during the adolescent period may be a critical element of the affective 

neurobiology underlying sex differences in anxiety and mood symptoms.
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INTRODUCTION

Adolescence is a critical developmental period where sex differences in behavior and 

appearance intensify. Additionally, increasing evidence suggests that adolescence also 

signals the emergence of sex differences in brain structure (1-3) and function (4-14). 

Furthermore, the disproportionate prevalence of anxiety and mood disorders in females also 

manifests in adolescence (15). Although anxiety is apparent in children, the incidence rates 

and diagnostic severity of anxiety and depression increase in adolescence and early 

adulthood (15-17). However, few studies use large samples to link sex differences in brain 

function to sex differences in psychiatric symptoms. The current study uses a measure of 

cerebral blood flow (CBF) to examine such relationships.

Prior studies on the functional neuroanatomy of anxiety disorders implicate a network of 

brain regions associated with emotion processing, affect regulation, and salience detection 

(18-20). Previous functional magnetic resonance imaging (fMRI) work links both anxiety 

and depressive disorders to greater activation in the amygdala, insula, and anterior cingulate 

cortex (ACC) compared to healthy participants (21,22). The concordance between findings 

in anxiety and depressive disorders is supported by factor analyses of clinical 

psychopathology data, which indicate the presence of an “anxious-misery” dimension of 

psychopathology encompassing highly comorbid mood and anxiety symptoms (23). The 

presence of anxious-misery symptoms is associated with ACC and medial prefrontal cortex 

dysfunction (24). Additionally, studies link brain activation measured with task-based fMRI 

paradigms to both transient, state anxiety (25,26) and long-standing, trait anxiety (27,28). 

Trait anxiety in particular is associated with both anxiety and mood symptoms and can be 

conceptualized as a measure of anxious-misery (29-31). Thus, convergent evidence across 

multiple studies suggests that anxiety and mood symptoms are associated with abnormalities 

in affective regions such as the amygdala and insula.
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Despite such research, evidence regarding sex differences in affective circuitry relevant to 

anxiety and mood disorders is relatively limited. One relevant prior study suggested that 

higher anxiety is associated with greater amygdala responses to unattended fearful faces in 

females, but not males (32). Similarly, another report documented greater activation in the 

amygdala and anterior cingulate in women compared with men during fear conditioning 

(33). However, it remains unknown whether sex differences in brain development might in 

part explain differential vulnerability to anxiety and mood symptoms in females. 

Furthermore, most studies have considered relatively small samples, which limit joint 

analyses of anxiety, brain development, and sex differences during adolescence.

Prior studies have principally examined affective circuitry using task-based or resting-state 

fMRI, which measures changes in evoked or correlated brain function. Research suggests 

that CBF, which is tightly coupled to regional brain metabolism (34,35), may be a 

potentially important brain phenotype for understanding developmental sex differences in 

anxiety and mood symptoms. Previous work in adults has established that females have 

greater CBF than males (36-38). We recently demonstrated that this sex difference in CBF 

unfolds with puberty (13). Furthermore, prior research in adults also links regional CBF in 

affective regions such as the amygdala to symptoms of anxiety and depression (39-42). 

When considered together, these related findings suggest that age and sex-related differences 

in the risk of anxiety and mood disorders may be correlated with corresponding changes in 

CBF.

Accordingly, in this study we evaluated the hypothesis that emerging sex differences in the 

perfusion of affective circuits during adolescence mediates sex differences in anxiety. We 

leveraged a large sample of children, adolescents, and young adults imaged using arterial 

spin labeled (ASL) MRI as part of the Philadelphia Neurodevelopmental Cohort (PNC; 43) 

to test three specific predictions. First, we predicted that greater levels of anxiety would be 

associated with greater CBF in affective regions such as the amygdala. Second, following 

our prior work, we predicted that females would have higher perfusion in these affective 

regions as adolescence progresses. Third, we examined whether higher CBF in affective 

regions mediates higher levels of anxiety in females.

METHODS AND MATERIALS

Participants

A total of 1,601 youths were imaged as part of the PNC (43-45). Of these participants, 170 

were excluded for the following reasons: medical disorders that could impact brain 

functioning (n=73), non-psychiatric medication use that could affect CNS functioning 

(n=78), or substantial structural brain abnormalities resulting in frankly abnormal brain 

anatomy (n=20) (46); one subject was excluded on the basis of two criteria. Of the 

remaining 1,431 subjects, children under the age of 12 years were not considered in the 

present analyses (n=373) due to the recommendation of a 5th grade reading level for the 

State-Trait Anxiety Inventory (STAI; 47), which was our primary measure of anxiety and 

mood symptoms. Of these 1,058 participants, 183 participants were excluded for missing 

clinical data, missing STAI data, failure to complete perfusion imaging, or failing to meet 

image quality assurance protocols; many subjects were excluded for multiple reasons. This 
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yielded a final sample of 875 participants (mean age = 16.5 years; range = 12-23 years; SD 

= 2.7 years; 398 males), with similar numbers of males and females excluded. Among this 

final sample, 105 participants (12%) were taking psychotropic medications at the time of 

imaging. The impact of medication use was evaluated in sensitivity analyses, as described 

below.

Clinical assessment

Lifetime psychopathology was determined using Diagnostic and Statistical Manual of 

Mental Disorders, 4th edition, Text Revision criteria (48). Demographic data by screening 

category are summarized in Table 1. As for prior work in this dataset (13), puberty was 

coded as a categorical variable with three classes: early pubertal (Tanner stages 1-3), mid-

pubertal (Tanner stage 4), and post-pubertal (Tanner stage 5); for the n in each pubertal 

stage, see supplementary Table S1. For additional details regarding the clinical assessment, 

see the Supplementary Methods section.

Dimensional characterization of mood and anxiety symptoms

The STAI measures transient, situational levels of anxiety (state anxiety) as well as general 

and long-standing levels of anxiety (trait anxiety). Past work examining the STAI has shown 

that trait anxiety is comprised of a mix of both anxiety and mood symptoms (29-31), 

consistent with the dimension of anxious-misery (23). To obtain a measure of state and trait 

anxiety free from response bias shown in previous research (30,49), we conducted separate 

factor analyses of each scale using a confirmatory bifactor model implemented in MPlus 

(50-53; see Supplementary Methods and supplementary Tables S2 and S3 for factor 

loadings). Relationships between the summary scores and demographic data such as age, 

sex, and pubertal phase were explored using linear models; all puberty analyses included age 

as a covariate. Additionally, we examined how summary scores of state and trait anxiety 

related to psychopathology screening categories.

Image acquisition, preprocessing, and perfusion quantification

Image acquisition and processing are reported in detail elsewhere (43,54); see 

Supplementary Methods for details. Briefly, a custom spin-echo pseudocontinuous arterial 

spin labeling (pCASL) sequence was used to image brain perfusion. Following distortion 

correction, data were processed with FSL (55) including skull removal, motion-correction, 

spatial smoothing (6mm FWHM), and intensity normalization. CBF was quantified from 

control-label pairs using ASL Toolbox (56). As prior (13), the T1 relaxation parameter was 

modeled on an age- and sex-specific basis (57). This model accounts for the fact that T1 

relaxation time differs according to age and sex, and has been shown to enhance the 

accuracy and reliability of results in developmental samples (58). Participant-level CBF 

images were co-registered to T1 images using boundary based registration (59), normalized 

to the Montreal Neurologic Institute 152 1mm template using the top-performing SyN 

deformable registration included in ANTs (60-62), and downsampled to 2mm voxels prior to 

analysis. All transformations were concatenated so that only one interpolation was 

performed.
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Group-level analyses

As a first step, in order to identify regions where perfusion was related to summary scores of 

state or trait anxiety, we conducted a whole-brain voxelwise analysis. Both linear and 

nonlinear age effects were flexibly modeled using penalized splines within a generalized 

additive model (GAM; 63,64). Furthermore, in order to control for confounding effects of 

brain structure on estimates of CBF (65), gray matter density calculated using Atropos (60) 

was modeled on a voxelwise basis.

where vox = voxels. Type I error for voxelwise whole-brain analyses was controlled using 

AFNI AlphaSim (66) with a minimum voxel significance of z > 2.58 and a corrected cluster 

significance of p < 0.0001 (minimum cluster size k = 146).

Supplementary analyses tested alternative models and covariates such as: excluding 

participants taking psychoactive medication, including race and maternal education as 

covariates, examining the effect of the motion covariate, modeling state and trait in separate 

models, and using raw STAI scores that were not factor analyzed to remove response bias. 

For details regarding group level analyses, see the Supplementary Methods section. 

Additionally, we examined whether regions associated with dimensional symptom severity 

were specifically linked to certain diagnostic groups with at least 100 participants (see 

Supplementary Methods for details); results are reported as covariate-adjusted effect sizes 

(Cohen’s d).

Analyses of interactions with age and puberty

Based on our previous work in this dataset showing that CBF is higher in females than males 

during puberty (13), we next evaluated whether interactive effects with age and sex were 

present within regions identified by the voxelwise analysis as anxiety-relevant. Analyses 

included modeling interactions between anxiety and age, between sex and age, as well as 

between anxiety and pubertal stage (while controlling for age). For additional details 

regarding each of these analyses, see the Supplementary Methods section. To control for 

multiple comparisons across clusters, we used the False Discovery Rate (FDR; Q < 0.05).

Mediation analysis

As described below, the above analyses revealed that post-pubertal females have higher trait 

anxiety and also that higher CBF in affective regions was associated with greater trait 

anxiety. Accordingly, as a final step, we investigated whether higher levels of anxiety in 

post-pubertal females were mediated by higher CBF. The indirect effect of sex on trait 

anxiety through the proposed mediator (perfusion) was tested using both the Sobel test and 

bootstrapping procedures (67; see Supplementary Methods for details).
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Amygdala resting state functional connectivity

As a final step, in order to further evaluate the functional significance of increased left 

amygdala perfusion, we conducted a seed-based functional connectivity analysis in a sample 

of 592 participants who also received resting-state imaging as part of the PNC, using 

previously-detailed methods (54,68-70; see Supplementary Methods for details). Group level 

analyses used the same procedures, models, and type I error correction as for ASL data.

RESULTS

Post-pubertal females have higher trait anxiety

Sex differences in trait anxiety levels were found in post-pubertal adolescents, with females 

endorsing higher levels of trait anxiety than males (t(449) = 2.50, p = .013). No significant 

sex differences were found for trait anxiety in the early- or mid-pubertal groups (p ≥ .194). 

Females also endorsed higher levels of state anxiety in both the post-pubertal (t(449) = 2.09, 

p = .038) and mid-pubertal groups (t(274) = 2.18, p = .030) but not in the early-pubertal 

group (p = .54). As displayed in Figure S1, the levels of state and trait anxiety were high 

across all screening diagnostic categories (which due to comorbidity are not mutually 

exclusive categories) compared to typically developing youth.

Trait but not state anxiety is associated with elevated perfusion of affective regions

We used voxelwise mass-univariate analyses to test the prediction that greater levels of 

anxiety would be associated with greater CBF in affective circuitry. Even while controlling 

for state anxiety, higher levels of trait anxiety were associated with increased perfusion in a 

network of regions involved in emotion processing including the left amygdala, bilateral 

insula, and bilateral fusiform gyrus (Figure 1; see Table 2 for a complete list of regions). The 

dorsal anterior cingulate was significant at a slightly more liberal cluster threshold (Table 

S4).

State anxiety was associated with decreased perfusion in lateral occipital cortex (k = 206, 

maximum z = 3.6, peak MNI coordinates: −40 −86 −10), but this result was not stable in 

supplementary analyses. In contrast, trait anxiety results were consistent over a range of 

models, sub-samples, and covariates. Specifically, trait anxiety results was similar when 

state and trait anxiety were analyzed in separate models (Table S5), when participants taking 

psychotropic medications were excluded and participant race and maternal education were 

also included in the model (n = 766; Table S6), and when raw total scores from STAI were 

used instead of factor scores (Table S7). Notably, these results could not be attributed to 

motion: CBF in left amygdala was related to motion (see Figure S2) but motion was not 

related to trait anxiety (r = −.01, p = .86).

We additionally examined whether elevated amygdala perfusion was associated with specific 

screening diagnostic categories. Notably, differences in amygdala perfusion between 

screening diagnostic categories and typically developing youth showed small to medium 

effect sizes for all categories (d = .15-.30). See supplementary Table S8 for covariate-

adjusted Cohen’s d for each screening category.
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Brain regions associated with trait anxiety show developmental sex differences

In our prior work in this dataset, we have demonstrated developmental sex differences in 

cerebral perfusion, whereby CBF becomes higher in females than males as adolescence 

progresses (13). Accordingly, we next tested the prediction that there would be prominent 

sex differences in the regions identified by their significant association between CBF and 

trait anxiety. As expected, perfusion in these regions showed a divergent pattern between 

males and females in adolescence (Figure 2 and Table 3): while perfusion declined 

throughout adolescence in males, perfusion displayed a quadratic or increasing pattern in 

females. As a result, perfusion was greater in females than males in the post-pubertal period 

but not in other pubertal stages. These results demonstrate that regions where trait anxiety is 

associated with CBF show marked sex differences in their developmental patterns.

The association between perfusion and trait anxiety increases with development

Next, we investigated how the association between trait anxiety and CBF differs with age 

and puberty within those regions. Multiple comparison-corrected results revealed significant 

trait anxiety-by-age interactions in the left amygdala (t(864) = 2.66, pfdr = .017), left insula 

(t(864) = 2.50, pfdr = .017), and right insula (t(864) = 2.40, pfdr = .017; Figure 3). No other 

regions had a significant trait anxiety-by-age interaction. These results suggest that the 

association between trait anxiety and perfusion of affective regions becomes stronger with 

age. Next, in clusters where a significant anxiety-by-age effect was present, we examined 

whether this effect could be specifically attributable to puberty, while controlling for age. 

Notably, there was a significant trait anxiety-by-puberty interaction in the left amygdala 

following correction for multiple comparisons (t(854) = 2.48, pfdr = .039). As displayed in 

Figure 4a, this interaction suggests that the relationship between amygdala perfusion and 

anxiety is higher in later pubertal stages in this sample, above and beyond the effects of age. 

No significant interactions between trait anxiety and puberty were found in the left or right 

insula (pfdr ≥ .073). All sensitivity analyses revealed the same significant pattern of results.

Elevated levels of anxiety in post-pubertal females is mediated by amygdala perfusion

Having established that post-pubertal females have higher levels of both anxiety and 

amygdala perfusion, as a final step we tested the prediction that amygdala perfusion 

mediates post-pubertal sex differences in trait anxiety. Mediation analysis revealed a 

significant indirect effect (95% CI [.02, .12]; z = 2.29, SE = .03, p = .022), suggesting that 

higher trait anxiety levels in post-pubertal females may be mediated in part by higher 

perfusion in the left amygdala (Figure 4b). The significance of this mediation effect is 

emphasized by the fact that, when controlling for mean perfusion in the left amygdala, the 

relationship between sex and trait anxiety became non-significant.

Trait anxiety is associated with left amygdala-insula connectivity

A seed analysis using the left amygdala cluster where CBF was associated with anxiety 

revealed that higher levels of trait anxiety were associated with increased connectivity with 

the left insula (k = 153, maximum z = 3.49, peak MNI coordinates: −40 6 −10; see Figure 

5). No other clusters achieved significance. Additionally, there were no age by sex, anxiety 

by age, or anxiety by puberty interactions within this cluster.
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DISCUSSION

The current study related sex differences in perfusion in the amygdala, insula, and other 

regions to sex differences in trait anxiety that emerge in adolescence. Leveraging a large 

sample of youth imaged as part of the PNC, we delineate five inter-related results describing 

how the development of brain perfusion may relate to anxiety. First, as expected, sex 

differences in anxiety were apparent, with post-pubertal females showing higher levels of 

trait anxiety than post-pubertal males. Second, trait anxiety was associated with greater 

perfusion in a network of regions including the amygdala, anterior insula, and fusiform 

cortex. This effect was present even while accounting for in-scanner state anxiety. Third, 

these regions showed substantial developmental sex differences, with females demonstrating 

higher perfusion than males in the post-pubertal period. Fourth, across both males and 

females, the relationship between trait anxiety and perfusion in affective regions increased in 

strength with age and puberty. Finally, higher trait anxiety levels observed in post-pubertal 

females were mediated by elevated perfusion of the left amygdala. Taken together, these 

results suggest a new mechanism for understanding sex differences in anxiety and mood 

symptoms.

The results of this study are convergent with and extend results from prior studies that link 

elevated perfusion to clinically-diagnosed anxiety disorders (39,40) or to task-induced 

anxiety/stress (41,42). Trait anxiety encompasses symptoms of both anxiety and depression 

(30,49,71), and thus may be conceptualized as a measure of “anxious misery,” which is 

consistently identified by factor analyses of large-scale studies of psychopathology (23). 

Remarkably, the regions we found associated with trait anxiety are localized within the 

social cognition network and are critical for processes including face perception, emotion 

identification, detection of social threat, and emotion regulation (72-75). Furthermore, many 

of the regions implicated including the anterior insula belong to the cingulo-opercular 

network (76-78), which has frequently been implicated in anxiety disorders in the past (79).

Prior research has demonstrated that CBF is tightly linked to regional metabolism, and thus 

local neural activity (80,81). Current results suggest that heightened activity in affective 

circuitry associated with anxiety may result in higher regional metabolism and CBF. Along 

with prior reports from clinical samples (39,40), these results suggest that perfusion in 

affective regions may reflect the presence of long-standing symptoms of anxiety, and thus 

may be a candidate biomarker for longitudinal studies of development, drug discovery, and 

clinical trials of novel interventions for ameliorating anxiety. Furthermore, connectivity 

analyses showed that the left amygdala cluster where CBF was associated with anxiety was 

related to increased connectivity with the left insula, suggesting that amygdala-insula 

coupling is an important circuit associated with trait anxiety.

As suggested by previous work in adults (82), sex differences in were marked. As in our 

prior work (13), CBF diverged with pubertal stage, such that females showed higher 

perfusion than males by the end of adolescence. While the PNC did not include hormonal 

measures such as circulating androgen or estrogen levels, based on animal models (83,84) 

and studies of ovarian hyperstimulation in the context of fertility treatment (85,86), we 

speculate that such developmental sex differences may be associated with rising estrogen 
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levels in females. The amygdala has both estrogen and androgen receptors (87-89) and the 

influx of estrogen enhances the acquisition of fear conditioning in female mice (83,84). 

Therefore, the amygdala may be particularly susceptible to the hormonal changes that occur 

during pubertal development. Likewise, developmental sex differences may also be 

influenced by the increase in testosterone in males, as testosterone treatment reduces anxious 

behaviors in rodents (90,91).

In addition to the presence of developmental sex differences, the relationship between 

perfusion in affective regions and trait anxiety was stronger in the older adolescents/young 

adults. Thus, perfusion of affective regions may be associated with differential risk in 

specific developmental epochs. Of note, greater trait anxiety was associated with higher 

perfusion only in the left amygdala and not the right amygdala in the current study. This 

lateralization of amygdala perfusion is consistent with previous work showing greater 

activity in the left but not the right amygdala in response to negative emotional information 

(82,92). Furthermore, prior studies of major depression has also shown a greater left 

amygdala activity (93) which may suggest a potential common marker for anxious-misery 

symptoms across disorders.

While increased amygdala perfusion was associated with higher anxiety in the post-pubertal 

period in both males and females, post-pubertal females have both higher anxiety and higher 

perfusion. We tested the link between these effects using a mediation analysis, and found 

that higher trait anxiety levels in post-pubertal females were mediated by higher perfusion in 

the left amygdala. This suggests that greater perfusion in affective regions in post-pubertal 

females may represent an important developmental vulnerability to trait anxiety. 

Intriguingly, during adolescence females also display enhanced development of social 

cognition, demonstrating clear superiority over males (8). Future studies could evaluate 

whether elevated perfusion in affective regions during adolescence may allow for 

improvements in social cognition while also conferring vulnerability to anxiety and mood 

disorders.

Examination of specific screening diagnostic categories demonstrated that elevated CBF in 

the amygdala was relatively similar across diagnostic screen categories, with small to 

medium effect sizes. PTSD showed the largest effect size, consistent with previous research 

demonstrating that PTSD shows a closer relationship with the anxious-misery dimension 

than the fear dimension (94). However, all diagnostic categories (including ODD and 

ADHD) showed similar effect sizes, suggesting that these findings may potentially be 

indicative of general psychopathology rather than specific to anxiety or depression. It should 

be noted that the observed effect sizes may in part result from the use of a community-based 

sample with lower levels of psychopathology than treatment-seeking clinical populations. 

However, this approach provides enhanced power to investigate important dimensional 

effects that are present across traditional diagnostic categories.

Several limitations of the present work should be noted. First and foremost, direct causal 

effects regarding sex differences cannot be inferred from the results of this study. Sex 

differences in brain functioning are the result of a complex interaction between both genetics 

and environmental factors (95,96). The associations described here are not “sexually 
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dimorphic,” consistent with research showing that brains show a mosaic of male and female 

features rather than being sexually dimorphic (97). Perfusion of affective regions is a 

continuous variable, with highly overlapping distributions among males and females. 

Indeed, the association between anxiety and perfusion was present for both sexes in this 

cross-sectional sample. Nonetheless, the presence of significant sex differences in perfusion 

does suggest particular relevance for females, and may represent a potentially important 

mechanism for sex differences in anxiety and mood disorders.

Second, while the PNC benefitted from a large sample size that allowed examination of 

interactive effects of age, sex, and anxiety, cross-sectional data limits the ability to infer 

developmental patterns. Future research would benefit from longitudinal designs that can 

better assess changes in the relationship between trait anxiety and perfusion over time and 

account for the temporal precedence between variables. Third, the pubertal assessment 

included in the PNC does not allow us to fully disentangle chronologic age and puberty. 

Future studies should gather measures of circulating hormones and also assess menstrual 

phase, which may impact functional brain phenotypes (98). Lastly, although generalizability 

of these results is enhanced by the use of a representative community sample, it would also 

be useful to investigate the association between anxiety and perfusion in clinically 

ascertained samples or in samples of children at risk for psychopathology because of 

environmental stressors or family history.

These limitations notwithstanding, our data suggest a novel mechanism for sex differences 

in anxiety and mood symptoms, which are associated with high morbidity and mortality in 

females worldwide. To the degree that elevated perfusion of affective brain regions may 

represent a risk phenotype for subsequent clinical disorders, it may aid in early identification 

of youth at risk for disabling symptoms. Through incorporation within clinical trials, 

elevated perfusion may become a useful biomarker for treatment of anxiety and mood 

disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Elevated perfusion in affective regions is associated with trait anxiety. Higher perfusion was 

associated with higher trait anxiety in the a) left amygdala, b) fusiform gyrus, c) left anterior 

insula, and d) right anterior insula (see Table 2 for a complete list). Images thresholded at z 

> 2.58, cluster corrected p < 0.0001.
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Figure 2. 
Regions where CBF is linked to trait anxiety also show marked developmental sex 

differences. CBF declined over time in males (blue), while perfusion increased in females 

(red) in the a) left amygdala, b) fusiform gyrus, c) left anterior insula, and d) right anterior 

insula (also see Table 3).
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Figure 3. 
The association between trait anxiety and regional perfusion becomes stronger with 

increasing age. An age-by-trait anxiety interaction was significant in the a) left amygdala, b) 

left anterior insula, and c) right anterior insula.
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Figure 4. 
Amygdala perfusion mediates trait anxiety in post-pubertal females. A) The relationship 

between amygdala perfusion and anxiety increases with pubertal stage (early, mid, or post-

pubertal), above and beyond effects of age. B) The relationship between higher trait anxiety 

levels in post-pubertal females was mediated by higher perfusion in the left amygdala. 

Mediation results show the unstandardized regression coefficients for the post-pubertal 

group in the left amygdala; when controlling for mean perfusion in the left amygdala, the 

relationship between sex and trait anxiety becomes non-significant (c’).
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Figure 5. 
Higher levels of trait anxiety were associated with increased connectivity between the left 

amygdala seed and the left insula. Analyses were conducted in a sample of n=592 PNC 

participants who also received a resting-state functional connectivity scan.
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Table 1

Summary of demographic data by screening category.

n Mean (S.D.)
Age

Female
(%)

Caucasian
(%)

Mean (S.D.) Years
Maternal Education

Typically
Developing

236 16.85 (2.88) 47 56.8 14.76 (2.62)

ADHD 140 15.55 (2.36) 42.1 38.6 14.07 (2.45)

Agoraphobia 62 16.39 (2.26) 75.8 29 13.63 (2.15)

Anorexia 10 16.47 (2.27) 70 40 13.1 (1.85)

Bulimia 4 18.31 (1.04) 100 100 15.5 (2.52)

Conduct Disorder 85 16.47 (2.31) 49.4 14.1 12.83 (2.02)

Major Depression 146 17.66 (2.17) 67.8 43.2 13.79 (2.34)

GAD 16 16.86 (2.47) 62.5 56.2 14.19 (2.83)

Mania 8 17.17 (3.06) 75 25 14.14 (1.86)

OCD 29 17.47 (2.42) 72.4 34.5 13.34 (2.33)

ODD 320 16.04 (2.37) 51.6 32.5 13.69 (2.39)

Panic 9 15.5 (3.02) 55.6 33.3 13.11 (1.45)

Specific Phobias 273 16.37 (2.52) 69.6 39.9 13.95 (2.32)

Psychosis-spectrum 302 16.24 (2.78) 54 29.1 13.67 (2.14)

PTSD 125 17.03 (2.55) 70.4 32 13.52 (2.26)

Separation Anxiety 41 16.79 (2.22) 68.3 56.1 14.1 (2.44)

Social Phobia 242 16.28 (2.52) 60.3 34.3 13.79 (2.37)

Note. Due to comorbidity, individual participants may be present in more than one category.
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Table 2

Regions where trait anxiety was associated with increased perfusion.

Region k Maximum z Peak MNI
coordinates

Fusiform 1036 4.39 −36 −58 −14

Left insula 560 4.00 −44 30 2

Left precentral gyrus 275 3.70 −48 −10 38

Left frontal pole 263 3.82 −26 44 36

Right insula 218 3.99 46 30 −8

Left inferior lateral occipital cortex 193 3.62 −38 −88 −8

Left amygdala 168 3.63 −20 −4 −16

Right frontal pole 148 3.75 30 40 −12

Note. Clusters considered significant if z > 2.58, k > 146 in a sample of 875 subjects.
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Table 3

Developmental sex differences (age by sex interaction) in regions where a significant association between trait 

anxiety and perfusion was present.

Region F p pfdr

Fusiform 9.05 0.003 0.003

Left insula 29.82 <0.001 <0.001

Left precentral gyrus 20.57 <0.001 <0.001

Left frontal pole 2.86 0.055 0.055

Right insula 25.45 <0.001 <0.001

Left inferior lateral occipital cortex 12.70 <0.001 0.001

Left amygdala 14.81 <0.001 <0.001

Right frontal pole 4.02 0.006 0.007

Note. Bold = significant at α < .05; pfdr = FDR corrected p-values
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