
THE JOURNAL OF CHEMICAL PHYSICS 145, 154113 (2016)

A fast, open source implementation of adaptive biasing potentials uncovers
a ligand design strategy for the chromatin regulator BRD4

Bradley M. Dickson,1,a) Parker W. de Waal,2 Zachary H. Ramjan,1 H. Eric Xu,2,3

and Scott B. Rothbart1,b)
1Center for Epigenetics, Van Andel Research Institute, 333 Bostwick Avenue, NE, Grand Rapids,
Michigan 49503, USA
2Laboratory of Structural Sciences, Van Andel Research Institute, 333 Bostwick Avenue, NE, Grand Rapids,
Michigan 49503, USA
3VARI/SIMM Center, CAS-Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica,
Chinese Academy of Sciences, Shanghai 201203, China

(Received 22 July 2016; accepted 30 September 2016; published online 19 October 2016)

In this communication we introduce an efficient implementation of adaptive biasing that greatly
improves the speed of free energy computation in molecular dynamics simulations. We investigated
the use of accelerated simulations to inform on compound design using a recently reported and
clinically relevant inhibitor of the chromatin regulator BRD4 (bromodomain-containing protein 4).
Benchmarking on our local compute cluster, our implementation achieves up to 2.5 times more force
calls per day than plumed2. Results of five 1 µs-long simulations are presented, which reveal a
conformational switch in the BRD4 inhibitor between a binding competent and incompetent state.
Stabilization of the switch led to a −3 kcal/mol improvement of absolute binding free energy.
These studies suggest an unexplored ligand design principle and offer new actionable hypotheses
for medicinal chemistry efforts against this druggable epigenetic target class. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4964776]

I. INTRODUCTION

Molecular dynamics (MD) simulations are often invoked
within the context of drug discovery as a means to score
ligands by their absolute binding affinity.1 In practice, MD
simulations are also very useful in the discovery process
if they contribute testable hypotheses that guide exploration
of the chemical space around a ligand.2,3 To be influential,
simulations need to provide actionable information on a short
time scale, such that a team of medicinal chemists cannot
make the same discovery empirically or find an alternative
route to success before simulation results are in hand.

The ability to explore the binding process and to compute
the free energy of binding within a relevant time frame in silico
depends on the rate at which the governing equations of motion
can be propagated (Figure 1). Standard MD is impractical for
describing ligand-protein binding/unbinding because more
than 0.5 × 109 force evaluations must be made before the
simulation reaches microsecond time scales. Meanwhile,
effective ligands may stay bound to their targets for tens of
minutes.4 With commonly used simulation tools, it takes about
a week to simulate a microsecond of a protein-ligand system
(Figure 3). Therefore, a considerable gap exists between the
rate at which one can perform ligand binding simulations and
the rate at which empirically driven progress can be made in
a drug discovery setting.

A recent approach to tackle this problem of time scales has
been the construction of very specialized computers,5,6 which

a)Electronic address: bradley.dickson@vai.org
b)scott.rothbart@vai.org

has generated some long trajectories of ligand binding.7,8

These specialized computers aim to make as many MD cycles
per unit time as possible. An alternative, more easily dispersed
approach is the use of algorithms that leverage formalities
of statistical mechanics to extract as much information as
possible from every iteration of the MD cycle. This approach
aims to reduce the number of cycles required to estimate
thermodynamic quantities such as free energy of binding.

In this study, we focus on the use of adaptive biasing
potential (ABP) to increase the efficiency of free energy
calculations and conformational exploration. ABP methods
supplement the system energy in a time-dependent manner so
that metastable states are slowly flooded with energy until they
are flattened away. The flooding leads to new forces that are
contributed by a time evolving biasing potential Vb (Figure 1).

In the MD cycle depicted in Figure 1, ABP methods
introduce computational overhead in evaluation of the biasing
force, and thus slow the rate of completing the MD cycle.
While native MD engines are typically faster at making cycles,
ABP schemes improve the statistical value of each cycle
by several orders of magnitude. The exact improvement of
statistical efficiency can be expressed as the ratio of unbiased
to biased partition functions, which quantifies exactly how the
ABP schemes improve sampling efficiency by shrinking the
Boltzmann-weighted volume of configuration space.

Given the statistical advantage brought about by ABP,
the inefficiency of the associated MD cycle is often taken
for granted. Here we show that by minimizing ABP network
communications within the MD engine and by minimizing
computational complexity of the ABP scheme, the efficiency
of the biased MD cycle can be drastically improved while

0021-9606/2016/145(15)/154113/8/$30.00 145, 154113-1 Published by AIP Publishing.

http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
http://dx.doi.org/10.1063/1.4964776
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:bradley.dickson@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
mailto:scott.rothbart@vai.org
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4964776&domain=pdf&date_stamp=2016-10-19

154113-2 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

FIG. 1. A basic schematic of the MD propagation cycle before (left) and after (right) the addition of an adaptive biasing potential. The number of trips around
the cycle per unit time expresses the speed of MD simulation.

maintaining the statistical advantage of ABP. On our local
compute cluster, we show efficiency gains of 25%–67%
over the commonly used plumed29 plugin. In Amazon’s
elastic cloud computing environment, we demonstrate a 36%
improvement in the MD cycle rate for a 26% reduction
of simulation costs compared to the same plumed2 plugin.
These improvements reduce the time gap between in silico
and in vitro drug discovery, and increase the affordability of
high throughput cloud applications. In light of the expanding
ABP usage base, these efficiency gains can also be projected to
generate substantial savings and an improvement in simulation
scope for the computational community.

As an example application, the results of 4 µs-long
simulations of a ligand-protein system are reported for a
clinically relevant inhibitor10 against the chromatin regulator
BRD4 (bromodomain-containing protein 4). Three of these
simulations were allowed to sample the full surface of
the protein and 60% of the simulation volume to fully
detail the protein-ligand interaction. These simulations show
several metastable states where the ligand aggregates on the
protein surface and suggest that better control over a ligand
conformation change could improve affinity. The current
ligand scaffolds present two conformations, only one of which
is binding competent.

Without the efficiency gains derived below, each one of the
µs-long simulations presented in this work would have taken
5.3 days longer to complete on exactly the same computer
hardware had the current gold standard ABP software been
used. Had all of the simulations been run in serial, they would
have taken 21 days extra to complete. In Amazon’s elastic
cloud computing environment, the simulations presented
below would cost an additional $1200 USD without the time-
saving advances described here. Extrapolating these savings
to the MD community projects years of saved compute time
and tens of thousands of dollars. Thus, the implementation
described below positively impacts computational throughput
and better optimizes the dollars spent funding computational
research.

II. RESULTS AND DISCUSSION

The efficiency of the ABP implementation has been
improved by considering two sources of computational
overhead: (1) computational complexity of the bias potential.
In our implementation, the master node of the simulation

handles the bias updates and bias force evaluation which
is a concern for load balancing. Thus, a major advance
in this implementation model has been the reduction of
computational complexity within the bias itself. We have
written the bias in terms of kernels, or “hills,” that have
compact support (Figure S1). These new hills result in a
significant reduction of operations (namely reduced memory
accesses and multiplies) when the bias is updated, leading to
better load balancing. Others have also used truncated kernels
to reduce complexity11 and below we demonstrate that this
one aspect of the implementation is not enough to ensure good
scalability. (2) Minimization of communications introduced by
the ABP scheme. In ABP schemes, a collective variable (CV)
must be computed. The CV is a coarse-grained description
of the system state, and as such, it requires atomic positions.
In most modern MD engines, the master node does not know
all of the current atomic positions, so some communication
is required. Additionally, once the master node computes
the biasing force, that force must be communicated back
to the nodes that are managing atoms in the CV. Details
regarding each of these aspects of development are given in
the supplementary material.

We implemented two bias potentials, with the default
being mollified adaptive biasing potential (mABP).12 This
bias potential was derived elsewhere12,13 and has been
shown to recover well-tempered metadynamics14 under an
approximation that destroys the mollifying properties of the
bias.13 Importantly, mABP is not a form of metadynamics.
Reference 13 shows that while mABP defines the bias
potential as the log of a histogram of sampling, all forms of
metadynamics write the bias potential as directly proportional
to a histogram of sampling. Following from this, a key
attribute of mABP is that the biasing force is an ensemble
average quantity. The metadynamics family tends toward
higher computational complexity than mABP. Boundary
corrections,15,16 for example, are not required in mABP and
are not supported in this distribution. Convergence behavior
for mABP and well-tempered metadynamics (WTmetaD) is
reported in supplementary material for alanine dipeptide to
test functionality with the compact hills (Figure S2).

It is known that metadynamics places strict conditions
on the hill functions17 and that the convergence time of
metadynamics scales exponentially with the hill width.13 We
observed a parameter dependent sensitivity to artifacts for
the well-tempered metadynamics method when using the

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-041639
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-041639

154113-3 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

hill functions introduced in this work (Figure S3). Artifacts
could be observed when WTmetaD was used to repeat the
simulations described below as well, though the artifacts
were much more difficult to diagnose. Therefore, we do not
recommend invoking the metadynamics method with the hills
implemented here. WTmetaD performs well for some hill
settings but not for others, leaving open the possibility of
undiagnosed failures when using the method.

A. Timing of the implementation
for a practical application

An application to ligand binding is given here to measure
overhead of the new implementation and as a demonstration
of the mABP method. The model system involves a recently
reported, clinically relevant, small molecule which binds the
first bromodomain of BRD410 (PDB:5hm0). BRD4 is an
acetyllysine binding protein that is emerging as a therapeutic
target for controlling expression of the “undruggable”
oncogenic transcription factor MYC.18 Inhibitors like the one
simulated here are part of an emerging class of epigenetic-
based therapeutics being tested clinically for the treatment of
haematological malignancies.19 The lead ligand (compound
3 of Ref. 10) in complex with bromodomain 1 of BRD4 is
shown in Figure 2.

A pair of RMSD CVs were chosen for the simulations.
One CV is the RMSD between a subset of atoms in the ligand
at its current (simulated) position and the X-ray structure. The
second CV is the RMSD between a different subset of ligand
atoms in its current (simulated) position and the X-ray. This
set of CVs projects the full ligand-accessible space onto the

FIG. 2. (Left) PDB entry 5hm0 is shown with the ligand in green sticks.
(Right) The 5hm0 entry is shown again where a clipping plane is used to
expose the entire ligand.

diagonal of the CV space because the two CVs are tightly
coupled (Figure S4). The base GROMACS input topologies
and tpr files for equilibration were built according to the
swissparam tutorial for preparing GROMACS topologies.20

Everything required to re-run these biased simulations (all
simulation parameters and inputs), including a general tutorial
for using the ABP code, can be found at the GitHub page
for this project.21 The tutorial itself allows one to perform
simulations of this ligand-protein system.

The performance of our ABP implementation is compared
against native GROMACSv5.0.5 and native GROMACSv5.1
for several numbers of compute cores. Because the
implementation builds on the GROMACS package, we call it
fABMACS for fast Adaptively Biased MAchine for Chemical

FIG. 3. (Top) Nanoseconds per day as a function of compute cores for GROMACS, mABP (fABMACS), and plumed2. (Bottom) Percent efficiency relative to
native GROMACS as a function of cores. All data points are an average of three runs.

154113-4 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

Simulations. The data shown in Figure 3 were selected to
minimize oscillations in the scaling of the native GROMACS
codes, representing the envelope of best performance for
the native GROMACS MD engine. In all cases, GROMACS
was allowed to choose the partitioning of PME and particle-
particle nodes, and in all cases we verified that all the data
at a particular node count were collected with the same
partitioning. For the fABMACS simulations, the CV space
was discretized into a 480 by 480 bin grid with an RMSD
range from 0 to 12 nm. Although irrelevant for timing, the
biasing parameters were c = 0.001 and b = 0.9. A range
of hill widths were considered, and the temperature was
300 K. Results are reported in units of nanonseconds per
day, which can be converted to the number of MD cycles
per day by multiplying by 500 000 (the MD timestep was
0.002 fs). See section 1 of the supplementary material for
the definition of the hill functions, Sp

a . The parameter
a fixes the width of the hill and p alters the shape. Section
III of the supplementary material covers how to think about
these hills in terms of the more common Gaussian hill.

Figure 3 also shows the performance of the plumed29

plugin running WTmetaD, which was plugged into GRO-
MACSv5.1. The fABMACS parameters were converted to
well-tempered metadynamics parameters according to Ref. 13
and the hill width used with plumed was within the range of
widths shown for fABMACS. The CV and CV discretizations
were identical for the plumed2 and fABMACS methods.
All of the various GROMACS codes were compiled with
the same configurations on the same hardware. We did not
observe inefficiency when running WTmetaD in fABMACS.
WTmetaD introduces three extra multiplies per grid point
during the bias update (to scale hill heights for the potential
and its forces), and one exponential evaluation (to determine
the hill height). On 72 cores, our implementation of WTmetaD
(without boundary corrections) averaged only 1 ns/day less
than mABP.

Our ABP implementation presents minimal overhead to
the underlying GROMACS engine, and the scalability of
GROMACS is intact. For this system, fABMACS achieves a
maximum of 125 ns/day on 72 compute cores spanning three
different machines. The maximum of the native GROMACS
code is 134 ns/day on 72 cores. It can be appreciated, as
expected, that the extra ABP-related communications are
slowing down the simulation as the number of cores is
increased (Figure 3, bottom).

Given the rise of cloud computing, it is pertinent
to consider timings in the cloud environment as well.
GROMACSv5.1, plumed2, and fABMACS were timed in
Amazon’s EC2 environment using “g2.8xlarge” compute
nodes. These nodes have 32 cores and four Nvidia GRID
GPUs. The cost of this EC2 instance is currently $2.60 USD
per hour. Table I shows the cost per microsecond for native
GROMACS, fABMACS, and plumed2 based on timings of
100 000 MD steps. Note that both plumed2 and fABMACS
should be expected to generate better sampling than native
GROMACS, due to the shrinking partition function, even
though native GROMACS is the least expensive per force call.
Running fABMACS costs $38 USD more per microsecond
than native GROMACS, while plumed2 costs an extra $326

TABLE I. Amazon elastic compute cloud results, cost in USD/µs, and
days/µs.

Software Biased ns/day $(USD)/µs Days/µs

GROMACSv5.1 No 82.027 760 12.2
fABMACS Yes 78.136 798 12.8
Plumed2 Yes 57.449 1086 17.4

USD per µs. We did not run simulations spanning multiple
machines in the cloud because projected costs did not suggest
any benefit.

Encouraged by the performance of the application tested
above, we also tested the performance of the built-in
NAMDv2.1123 and AMBERv16.0524,25 implementations of
adaptive biasing potentials for a larger universal benchmark.
The benchmark system is a small peptide in water, producing
a 99k atom system.22 All collective variables were 2 RMSDs
to an initial position with each CV having four atoms. Figure 4
reports results similar to what others have observed for
unbiased simulations.26,27 Here, we have used 28 cores spread
across 7 nodes and to gain insight into the performance
of the different MD packages, we watched the network
communications on the master node of the simulations via
ifconfig. The cumulative inbound traffic is shown in Figure 4
(bottom) for each MD package. All machine interconnects
were 40 GbE.

Figure 4 (bottom) suggests that PLUMED2 is inefficient
within the bias update and bias force computations but not in
network communications. This may be a load balance issue.
The built-in NAMD biasing seems limited by the underlying
speed of NAMD. The pmemd-AMBER implementation
appears to produce excessive network traffic when ABMD
is invoked. Activation of biasing within AMBER on GPU
also incurs efficiency losses either because excessive system
information is passed from the GPU to CPU for biasing
at every time step or because CPU speed is a bottleneck.
As we noted earlier, this demonstrates that minimization
of operational complexity in the bias11 is insufficient to
achieve good scalability although it is required for load
balancing.

B. Applications to ligand binding

The fABMACS package can be compiled for different
scenarios. To keep the code as streamlined as possible, a
number of options are hard-coded via a patching script. The
script sets a number of parameters for things like CV space
discretization, selection of mABP or WTmetaD, and what
type of restraint system to apply. There are two selectable
restraint types, a spherical or cylindrical restraint. There is
a third restraint that cannot be deselected, which limits the
maximum value of the CVs. This restraint can be obsoleted
by setting a large maximum limit. A full tutorial is available
on the project GitHub page,21 which walks through setting
up and running the simulations presented in this section. The
periodic simulation boundaries are unwrapped such that the
ligand is whole and such that the ligand does not “jump”
across the box. Unwrapping is not supported in some ABP

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-041639
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-041639

154113-5 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

FIG. 4. Universal benchmark using
99 137 atoms for adaptive biasing of
two 4-atom CVs, in the canonical en-
semble with partical mesh Ewald and
periodic boundaries.22 (TOP) Nanosec-
onds per day for different MD packages
on CPU or GPU. (BOTTOM) Network
traffic on a node for MD packages when
distributed across 7 compute nodes.

plugins,28 yet unwrapping is critical unless the simulation
system is designed such that the CVs are never broken by
periodicity.

We performed a total of four 1 µs simulations with the
lead ligand that used the spherical (Figure 5(a)) or cylindrical
(Figure 5(b)) restraint. The mABP simulations used hills with
compact support, called Sp

a , where p = 20 and a = 10 × ∆ξi
or p = 20 and a = 20 × ∆ξi, where the latter is labeled “wide”
in Figure 5(d). Plots of free energy for all of the simulations
are shown in 2-dimensions (Figure S4) and as 1-dimensional
projections (Figure 5(d)). We followed the formalisms of
Refs. 29 and 30 for estimating absolute binding free energy
with and without restraints, respectively.

The absolute free energy of binding estimated from each
of the simulations ranges from −5.18 to −7.63 kcal/mol.
All of the estimates are within 4 kBT of one another,
where kB is Boltzmann’s constant and T is temperature.
This is a surprising degree of similarity given that three of
the simulations were allowed to sample the entire protein
surface, and two of those started in an unbound conformation.

In each of the simulations using wide hills and the large
spherical restraint, the crystallographic ligand pose was
found only once. One of these simulations started in the
bound conformation, one started in an unbound conformation.
Both simulations found the crystallographic pose from an
unbound state. In the simulation using narrow hills and
starting in an unbound conformation, the crystallographic
ligand pose was found twice. (Figure S6) Simulations as
loosely restrained as these are very rarely performed and have
even been described as impossible.29 Indeed, we only tried
these simulations after being encouraged by the performance
of fABMACS. The simulation using the cylindrical restraint
found the crystallographic pose four times. Thus, the free
energy estimate from the cylindrical restraint is expected to
be most accurate.

The average absolute free energy of binding over the
four estimates is −6.56 kcal/mol with a standard error of
0.56 kcal/mol. The free energy estimate from simulation with
the cylindrical restraint was −6.16 kcal/mol. We did not
compare to binding free energy estimated from IC50 reported

154113-6 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

FIG. 5. (a) Snapshots of the ligand from a 1 µs simulation with a spherical restraint. The simulation box is shown in blue. (b) Snapshots of the ligand from a
1 µs simulation with a cylindrical restraint. (c) 1D projections of the free energy onto CV1. The “-S” indicates that the spherical restraint was used while “-C”
indicates that the cylindrical restraint was used. The narrow and wide designations are described in the main text. (d) Snapshots of the ligand where at least one
ligand atom is within 3.5 Å of the protein, highlighting some features of the landscape. Simulated ligand poses are shown in orange in the inset panels. Initial
ligand position is shown in red.

in Ref. 10 for two reasons. First, we did not parameterize the
ligand via ab initio methods. Second, the binding constant of
the competitor ligand must be known to make an accurate free
energy estimate,31 and details of the competitor ligand were
not reported.

It is also worth noting that most ligand development
efforts focus on dissociation constants rather than free energy
of binding. If simulation estimates leave a 1 kcal/mol
error in the free energy, there is a 5-fold error in the
dissociation constant. For a 2 kcal/mol error in the free
energy, there is a 29-fold error in the dissociation constant. In
general, it is more informative to generate structure-activity

trends than to compare simulation results to experimental
metrics.

The simulations using the spherical restraint sample a
number of configurations where the ligand is aggregated to
the protein surface (Figure 5(c)). We observe a large number
of states where the ligand is aggregated on the ZA-loop or
docked in the binding pocket with an incorrect pose. Most
binding pathways show the ligand aggregate to the pocket or
ZA-loop and then explore different ligand poses and azepine
ring conformations until the crystallographic pose is found.
Often, the ligand leaves the pocket area and moves back into
solvent before finding the correct pose.

FIG. 6. Binding landscapes without (left) and with (right) a rigid azepine. Contours are every 2kBT from 0 to 40 kJ/mol.

154113-7 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

Many attempted binding events were rejected by the
protein because the ligand adopted a binding incompetent
conformation. The benzoisoxazoloazepine ligand contains
an azepine ring that can adopt different puckering states;
(Figure S5) only one of the two major puckering states is
consistent with the crystallographic pose. The “incorrect pose”
shown in Figure 5(c) is representative of a state in which the
azepine ring has adopted a conformation inconsistent with the
crystallographic pose, precluding correct binding and slowing
the binding process.

As a simple means of testing the hypothesis that binding
could be improved by reducing flexibility of the azepine
ring, we computed the binding free energy again while
applying a dihedral restraint that prevents the azepine from
changing conformations. The absolute binding free energy,
computed from a 1 µs simulation using the cylindrical
restraint and an inflexible azepine, was −9.42 kcal/mol. This
compares to −6.16 kcal/mol for the flexible azepine in the
cylindrical restraint (Figure 6). The restrained ligand found the
crystallographic pose 6 times (Figure S6). These simulations
validate our hypothesis and motivate ligand chemistry that
would restrain the azepine. Functionalization of the ligand
or abandonment of the azepine ring are both plausible
directions.

III. CONCLUSION

We have introduced and benchmarked an implementation
of ABP in GROMACS 5.0.5, called fABMACS, that
presents minimal overhead to the GROMACS engine.
The implementation strives to maintain the scalability of
GROMACS. A minimal communication scheme and local
smoothing kernels have been used to achieve this goal. Drastic
efficiency gains were demonstrated, as compared to the most
common alternative ABP plugin.

The fABMACS code is available on GitHub21 where a
tutorial can also be found. All of the ligand-protein simulations
presented above can be re-run by following the tutorial.
Currently, only RMSD CVs are supported, but a range of
systems should be compatible with this. A future goal is to
develop the distribution to support a range of different CVs.
Cylindrical, spherical, and simple range-limiting CV restraints
are supported. A build script is included with the code, which
customizes source code for user specifications of methods,
restraint types, restraint scales, and so-on. Thus, if a user can
install GROMACS 5.0.5 on their compute infrastructure, then
fABMACS can be installed using the same configuration.
Simply run the build script with specified options and compile
the source code as normal. Implementation into other MD
engines is also ongoing.

The results of long simulations of the first bromodomain
of BRD4 with a clinically relevant small molecule were
presented, both to make methodological demonstrations using
mABP and to exemplify structural insights that are obtained
from atomistic simulations. Simulations were presented that
found the bound state after having escaped, even when
the full surface of the protein could be sampled. We
suggest a trend in the published SAR data that could be

further exploited to improve potency, namely, the azepine
ring affords conformational freedom that reduces ligand
efficiency.

fABMACS will be useful in the identification of
false positives, creation of chemical hypotheses, scoring
ligands, and guiding NMR based fragment screening. The
efficiency gains of fABMACS will enable more efficient
use of computational resources and make new, ambitious
applications more affordable and tractable.

SUPPLEMENTARY MATERIAL

See supplementary material for details on the hill
functions, MPI calls in GROMACS, convergence results for
alanine dipeptide, free energy landscapes for ligand binding
simulations, free energy of azepine conformations, and the
definition of our RMSD coordinate.

ACKNOWLEDGMENTS

All computations were performed on the Van Andel
Research Institute compute cluster, except for the timings on
EC2. This work was supported in part by the Van Andel
Research Institute and research grants from the National
Institutes of Health to S.B.R. (Grant No. CA181343).

1A. Perez, J. A. Morrone, C. Simmerling, and K. A. Dill, Curr. Opin. Struct.
Biol. 36, 25 (2016).

2M. A. Camerino, N. Zhong, A. Dong, B. Dickson, L. James, B. Baughman, J.
Norris, D. Kireev, W. P. Janzen, and C. Arrowsmith, Med. Chem. Commun.
4, 1501 (2013).

3J. I. Stuckey, B. M. Dickson, N. Cheng, Y. Liu, J. L. Norris, S. H. Cholensky,
W. Tempel, S. Qin, K. G. Huber, and C. Sagum, Nat. Chem. Biol. 12, 180
(2016).

4R. A. Copeland, Nat. Rev. Drug Discovery 15, 87 (2015).
5D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, and R. H. Larson,
Commun. ACM 51, 91 (2008).

6D. E. Shaw, J. Grossman, J. A. Bank, B. Batson, J. A. Butts, J. C. Chao,
M. M. Deneroff, R. O. Dror, A. Even, and C. H. Fenton, in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (IEEE Press, 2014), pp. 41–53.

7Y. Shan, E. T. Kim, M. P. Eastwood, R. O. Dror, M. A. Seeliger, and D. E.
Shaw, J. Am. Chem. Soc. 133, 9181 (2011).

8R. O. Dror, A. C. Pan, D. H. Arlow, D. W. Borhani, P. Maragakis, Y. Shan,
H. Xu, and D. E. Shaw, Proc. Natl. Acad. Sci. U. S. A. 108, 13118 (2011).

9G. A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni, and G. Bussi,
Comput. Phys. Commun. 185, 604 (2014).

10B. K. Albrecht, V. S. Gehling, M. C. Hewitt, R. G. Vaswani, A. Côté,
Y. Leblanc, C. G. Nasveschuk, S. Bellon, L. Bergeron, and R. Campbell,
J. Med. Chem. 59, 1330 (2016).

11V. Babin, C. Roland, and C. Sagui, J. Chem. Phys. 128, 134101 (2008).
12B. M. Dickson, Phys. Rev. E 84, 037701 (2011).
13B. M. Dickson, J. Chem. Phys. 143, 234109 (2015).
14A. Barducci, G. Bussi, and M. Parrinello, Phys. Rev. Lett. 100, 020603

(2008).
15M. McGovern and J. de Pablo, J. Chem. Phys. 139, 084102 (2013).
16J. F. Dama, G. M. Hocky, R. Sun, and G. A. Voth, J. Chem. Theory Comput.

11, 5638 (2015).
17J. F. Dama, M. Parrinello, and G. A. Voth, Phys. Rev. Lett. 112, 240602

(2014).
18M. W. Moyer, Nat. Med. 17, 1325 (2011).
19A. Chaidos, V. Caputo, and A. Karadimitris, Ther. Adv. Hematol. 6, 128

(2015).
20V. Zoete, M. A. Cuendet, A. Grosdidier, and O. Michielin, J. Comput. Chem.

32, 2359 (2011).
21B. Dickson, https://github.com/BradleyDickson/fABMACS, 2016.
22P. de Waal, https://github.com/ParkerdeWaal/MD-Universal-Bench, 2016.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-145-041639
http://dx.doi.org/10.1016/j.sbi.2015.12.002
http://dx.doi.org/10.1016/j.sbi.2015.12.002
http://dx.doi.org/10.1039/C3MD00197K
http://dx.doi.org/10.1038/nchembio.2007
http://dx.doi.org/10.1038/nrd.2015.18
http://dx.doi.org/10.1145/1364782.1364802
http://dx.doi.org/10.1021/ja202726y
http://dx.doi.org/10.1073/pnas.1104614108
http://dx.doi.org/10.1016/j.cpc.2013.09.018
http://dx.doi.org/10.1021/acs.jmedchem.5b01882
http://dx.doi.org/10.1063/1.2844595
http://dx.doi.org/10.1103/PhysRevE.84.037701
http://dx.doi.org/10.1063/1.4937939
http://dx.doi.org/10.1103/PhysRevLett.100.020603
http://dx.doi.org/10.1063/1.4818153
http://dx.doi.org/10.1021/acs.jctc.5b00907
http://dx.doi.org/10.1103/PhysRevLett.112.240602
http://dx.doi.org/10.1038/nm1111-1325
http://dx.doi.org/10.1177/2040620715576662
http://dx.doi.org/10.1002/jcc.21816
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/BradleyDickson/fABMACS
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench
https://github.com/ParkerdeWaal/MD-Universal-Bench

154113-8 Dickson et al. J. Chem. Phys. 145, 154113 (2016)

23J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C.
Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781
(2005).

24R. Salomon-Ferrer, D. A. Case, and R. C. Walker, Wiley Interdiscip. Rev.:
Comput. Mol. Sci. 3, 198 (2013).

25R. Salomon-Ferrer, A. W. Gotz, D. Poole, S. Le Grand, and R. C. Walker,
J. Chem. Theory Comput. 9, 3878 (2013).

26A. H. Poghosyan, G. A. Yeghiazaryan, H. H. Gharabekyan, and A. A.
Shahinyan, Comput. Phys. Commun. 1, 736 (2006).

27B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, J. Chem. Theory
Comput. 4, 435 (2008).

28B. G, https://groups.google.com/forum/#!msg/plumed-users/Mm9gLNbt
znY/CiBbvvdyBQAJ, 2015.

29V. Limongelli, M. Bonomi, and M. Parrinello, Proc. Natl. Acad. Sci. U. S. A.
110, 6358 (2013).

30I. Buch, T. Giorgino, and G. De Fabritiis, Proc. Natl. Acad. Sci. U. S. A. 108,
10184 (2011).

31X. Huang, J. Biomol. Screening 8, 34 (2003).

http://dx.doi.org/10.1002/jcc.20289
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1002/wcms.1121
http://dx.doi.org/10.1021/ct400314y
http://dx.doi.org/10.1021/ct700301q
http://dx.doi.org/10.1021/ct700301q
https://groups.google.com/forum/#!msg/plumed-users/Mm9gLNbtznY/CiBbvvdyBQAJ
https://groups.google.com/forum/#!msg/plumed-users/Mm9gLNbtznY/CiBbvvdyBQAJ
http://dx.doi.org/10.1073/pnas.1303186110
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1177/1087057102239666

