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ABSTRACT

Undecaprenyl phosphate (Und-P) is a member of the family of essential polyprenyl phosphate lipid carriers and in the Gram-
negative bacterium Escherichia coli is required for synthesizing the peptidoglycan (PG) cell wall, enterobacterial common anti-
gen (ECA), O antigen, and colanic acid. Previously, we found that interruption of ECA biosynthesis indirectly alters PG synthesis
by sequestering Und-P via dead-end intermediates, causing morphological defects. To determine if competition for Und-P was a
more general phenomenon, we determined if O-antigen intermediates caused similar effects. Indeed, disrupting the synthesis of
O antigen or the lipopolysaccharide core oligosaccharide induced cell shape deformities, which were suppressed by preventing
the initiation of O-antigen biosynthesis or by manipulating Und-P metabolism. We conclude that accumulation of O-antigen
intermediates alters PG synthesis by sequestering Und-P. Importantly, many previous experiments addressed the physiological
functions of various oligosaccharides and glycoconjugates, but these studies employed mutants that accumulate deleterious in-
termediates. Thus, conclusions based on these experiments must be reevaluated to account for possible indirect effects of Und-P
sequestration.

IMPORTANCE

Bacteria use long-chain isoprenoids like undecaprenyl phosphate (Und-P) as lipid carriers to assemble numerous glycan poly-
mers that comprise the cell envelope. In any one bacterium, multiple oligosaccharide biosynthetic pathways compete for a com-
mon pool of Und-P, which means that disruptions in one pathway may produce secondary consequences that affect the others.
Using the Gram-negative bacterium Escherichia coli as a model, we demonstrate that interruption of the biogenesis of O antigen,
a major outer membrane component, indirectly impairs peptidoglycan synthesis by sequestering Und-P into dead-end interme-
diates. These results strongly argue that the functions of many Und-P-utilizing pathways must be reevaluated, because much of
our current understanding is based on experiments that did not control for these unintended secondary effects.

Long-chain isoprenoids are widely conserved lipid carriers
that translocate glycan intermediates across biological mem-

branes, where they are assembled onto other polymers or released
(reviewed in reference 1). In bacteria, the primary lipid carrier
is undecaprenyl phosphate (Und-P), a 55-carbon isoprenoid
(C55-P) also referred to as bactoprenol, which is the dephosphor
ylated product of undecaprenyl pyrophosphate (Und-PP), as syn-
thesized by UppS (2, 3). Homologues with shorter chains serve the
same function in species of mycobacteria and corynebacteria
(C50-P) (4, 5) and Paracoccus denitrificans (C45-P) (6). Und-P is
required for synthesizing numerous bacterial glycans, including
cell wall peptidoglycan (PG) (7, 8), wall teichoic acids (WTA) (9),
enterobacterial common antigen (ECA) (10), O antigen (11), cap-
sular polysaccharides (12), several commercially important ex-
opolysaccharides (13), and a variety of other carbohydrates (14–
17). These glycan polymers are synthesized on the cytoplasmic
side of the plasma membrane, where individual sugar residues are
transferred sequentially from sugar-nucleotide precursors onto
Und-P (18–22). The resulting Und-P-linked oligosaccharides are
translocated (“flipped”) across the plasma membrane and trans-
ferred from the lipid carrier onto individual glycan chains (23).
Either before or after being dephosphorylated, the leftover
Und-PP carrier is then recycled into the cytoplasm, where it re-
joins the pool of free Und-P (24).

Mutations that prevent Und-P recycling lead to the accumula-

tion of Und-PP-linked intermediates, resulting in a variety of del-
eterious or toxic effects (24–28). Because any one organism nor-
mally uses Und-P to synthesize multiple products, either these
intermediates could be toxic in and of themselves or they might
exert their effects indirectly by sequestering Und-P so that it be-
comes unavailable for use in other pathways. Although there is a
long history of ascribing these effects to Und-P sequestration, only
a few experiments have addressed this question directly. For ex-
ample, some Corynebacterium glutamicum mutants accumulate
lethal amounts of arabinogalactan and lipoarabinomannan inter-
mediates, but the cells survive if the pool of decaprenyl phosphate
is increased (5). Similarly, several Staphylococcus aureus mutants
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produce lethal WTA intermediates, but an increase in the pool of
Und-P restores cell growth (29). Lastly, an increase in the amount
of Und-P reverses the morphological and membrane defects
caused by dead-end Und-PP-linked ECA intermediates in Esche-
richia coli (30). In all these cases the intermediates were not overtly
toxic. That is, they did not directly inhibit a particular reaction.
Instead, the results strongly argue that these dead-end intermedi-
ates sequester so much lipid carrier that they impede other, essen-
tial biosynthetic pathways (e.g., PG synthesis). Thus, cell death
and many other physiological deficiencies were simply secondary
effects caused by the inability to synthesize multiple products.

Apart from these examples, little is known about how different
biosynthetic pathways compete for Und-P or how mutations in
each pathway affect the others, including those which disrupt O-
antigen biosynthesis. Thus, we sought to determine if the PG and
O-antigen biosynthetic pathways from E. coli compete for Und-P
and, if so, to describe the physiological effects of this competition.
By using a genetic approach, we demonstrate that disruption of
O-antigen biogenesis indirectly alters cell wall synthesis by inter-
fering with Und-P metabolism, and we conclude that the O-anti-
gen and PG biosynthetic pathways compete for a common pool of
Und-P. More broadly, we extend this conclusion to interactions
among all Und-P-utilizing pathways. An important implication of
these observations is that much work regarding the physiological
functions of various glycans should be reevaluated, because many
of these experiments employed mutants that accumulate similar
dead-end Und-PP-linked intermediates. This means that these
previous experiments may not reflect the true biological roles of
individual glycan products. Instead, the phenotypes observed in
such mutants may be contaminated by unintended secondary ef-
fects caused by Und-P sequestration.

MATERIALS AND METHODS
Bacterial strains, plasmids, and media. The bacterial strains, plasmids,
and primers used in this study are listed in Tables S1 to S3 in the supple-
mental material, respectively. Bacteria were grown in LB broth (5 g/liter
yeast extract, 10 g/liter tryptone, 10 g/liter NaCl). When appropriate, ka-
namycin was used at 50 �g/ml.

Strain construction. The parent strain for this study was MG1655
wbbL� (31). Restoration of O-antigen production in MG1655 wbbL�

obscures the lipopolysaccharide (LPS) core oligosaccharide, preventing
P1-mediated generalized transduction. Consequently, all gene deletions
were generated by using bacteriophage lambda Red recombination (32).
Kanamycin resistance markers were evicted via the FLP recombinase pro-
duced from pCP20 (33). All gene deletions were verified by colony PCR.

Plasmid construction. Plasmids for rescue of �waaL and �waaC cells
were constructed in pDSW361, which is a kanamycin-resistant derivative
of pDSW204 (34). pMAJ41 (P204::waaL) was constructed by amplifying
waaL from MG1655 DNA with primers P229 and P251. The 1,275-bp
product was cut with EcoRI and PstI and ligated to the same sites
of pDSW361. Plasmids pMAJ42 (P204::waaC), pMAJ44 (P204::wecG), and
pMAJ45 (P204::uppS) were similarly constructed using the following
primer pairs: P231/P252 (pMAJ42), P233/P253 (pMAJ44), and P21/P254
(pMAJ45). pMAJ43 was constructed by digesting pMAJ19 (30) with
EcoRI and PstI and ligating the murA insert to the same sites of pDSW361.
All reference sequences were obtained from the EcoGene (version 3.0)
database (35). All cloning was verified by sequencing at the UAMS DNA
Sequencing Core Facility.

Suppression of shape defects in �waaL and �waaC mutants. Over-
night cultures were diluted 1:2,000 into LB medium containing kanamy-
cin and 100 �M IPTG (isopropyl-�-D-thiogalactopyranoside) (unless
otherwise noted) and grown at 37°C to an optical density at 600 nm

(OD600) of 0.5 to 0.6 (approximately 10 doublings). Cells were fixed with
4% paraformaldehyde, spotted onto 1% agarose pads, and visualized by
phase-contrast microscopy. Our microscope and camera have been de-
scribed previously (36).

Labeling of O16 antigen by concanavalin A-AF488. Overnight cul-
tures were diluted 1:2,000 into LB medium and grown at 37°C to an OD600

of 0.5 to 0.6. Cells were pelleted by centrifugation, washed twice in phos-
phate-buffered saline (PBS; 137 mM NaCl, 3 mM KCl, 9 mM NaH2PO4, 2
mM KH2PO4, pH 7.4), and incubated with 2 �M concanavalin A conju-
gated to Alexa Fluor 488 (AF488) (Thermo Fisher Scientific) to label the
O16 antigen. After 30 min, the cells were pelleted, washed twice in PBS,
and visualized by phase-contrast and fluorescence microscopy.

Flow cytometry analysis. Live cells were prepared for flow cytometry
as described previously (30). Cell size was assayed by using the forward
scatter detector mode of a BD LSRFortessa flow cytometer, housed in the
UAMS Flow Cytometry Core Facility. All flow data were analyzed using
FlowJo (version 10.1) software.

RESULTS
Mutations that interrupt O-antigen biosynthesis induce mor-
phological defects. The accumulation of unprocessed Und-PP-
linked ECA intermediates disrupts cell shape by restricting the
availability of Und-P for PG synthesis (30). To determine if the
interruption of other Und-P-utilizing pathways would provoke
similar effects, we constructed a series of mutations in the O-an-
tigen biosynthesis pathway of E. coli MG1655 and assayed their
effects on cell shape. One complicating factor was that commonly
used derivatives of E. coli K-12 (e.g., MG1655) normally do not
produce O antigen because the rhamnosyl transferase gene
(wbbL) is disrupted by an insertion element (wbbL::IS5) (37).
Rendueles et al. recently constructed a derivative of E. coli
MG1655 in which the wild-type wbbL allele was reintroduced
(MG1655 wbbL�) (31). We obtained this strain and confirmed
that it produced the O16 antigen (Fig. 1). We then made stepwise
deletions in the O-antigen biosynthesis pathway (with the excep-
tion of wbbL) and evaluated the mutants for changes in cell shape
by microscopy and flow cytometry.

Of the mutants that were predicted to accumulate Und-PP-

FIG 1 Restoring O-antigen biosynthesis to E. coli K-12. (A) Structure of the
O16 antigen from E. coli K-12 (reviewed in reference 43). Abbreviations: Galf,
galactofuranose; Glc, glucose; Rha, rhamnose; GlcNAc, N-acetylglucosamine.
(B) Detection of O antigen with concanavalin A-AF488 in cells with the indi-
cated genotypes. Cells were labeled with concanavalin A-AF488, washed, and
photographed by phase-contrast and fluorescence microscopy (green signal).
Bar, 3 �m. Concanavalin A binds �-glucose (underlined in panel A) and
�-mannose residues. The strains tested were MAJ1 (wbbL::IS5) and MAJ330
(wbbL�).
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linked O-antigen intermediates, those lacking either the O-anti-
gen flippase, WzxB [also known as Wzx(O16)], or the WaaL ligase
produced the most severe morphological alterations (Fig. 2B; see
also Fig. S1A in the supplemental material). Cells lacking wzxB
were swollen, filamentous, or chained (Fig. 2B; see also Fig. S1A).
When examined by flow cytometry a population of �wzxB cells
exhibited a 3.8-fold greater distribution in forward scatter area
(FSC-A) (Fig. 2C), confirming that the cells were enlarged. In
addition, �wzxB cells lysed frequently (e.g., see the empty cells in
Fig. 2B). The morphological defects associated with �wzxB cells
were unstable, and the mutant readily developed suppressor
mutations that reversed these shape abnormalities (see Fig. S2).
Among these suppressors were insertion sequence (IS) insertions
into wbbL and rmlC (see Fig. S2C), which prevent the formation of
O-antigen intermediates (Fig. 2A). These results parallel the ge-
netic instability associated with mutations in the Pseudomonas
aeruginosa wzx gene, a homologue of E. coli wzxB (38). The P.
aeruginosa wzx mutant also acquires second-site mutations in
wbpL, which eliminates the initial step of O-antigen synthesis and
prevents the accumulation of Und-PP-linked O-antigen interme-
diates. Finally, E. coli cells lacking the WaaL ligase also induced
morphological alterations in E. coli, causing cells to grow, on av-
erage, 40% wider and 62% longer than wild-type cells (n � 254)
(Fig. 2B and C and data not shown). �waaL cells also lysed, but
they did so less frequently than the �wzxB mutant cells (not
shown).

Interestingly, aside from the morphological changes observed
for the �wzxB and �waaL mutants (Fig. 2B), the other O-antigen
biosynthesis mutants exhibited little to no change in cell shape
(see Fig. S1A and B in the supplemental material). This was sur-
prising because the accumulation of Und-PP-linked ECA inter-
mediates, particularly later-stage intermediates, induces cell shape
defects (30). However, in the E. coli MG1655 strain in which the
O-antigen pathway was reconstituted, the O-antigen and ECA
biosynthesis pathways compete for a common starting substrate,
Und-PP–N-acetylglucosamine (Und-PP–GlcNAc). It was there-
fore possible that Und-PP–GlcNAc was being redirected into the
ECA pathway and that this side reaction was reducing the accu-
mulation of Und-PP-linked O-antigen intermediates. To test this
possibility, we deleted O-antigen pathway genes (wbbK and wbbJ)
in an ECA-negative �wecB mutant. WecB helps convert UDP-
GlcNAc to UDP–N-acetylmannosaminuronic acid (Fig. 3A) (39,
40), so that in the absence of WecB Und-PP–GlcNAc cannot be
utilized in ECA biosynthesis (Fig. 3A). Deletion of wecB, wbbK, or
wbbJ individually had little effect on cell shape (Fig. 3B and C).
However, cells of double mutants lacking wecB and wbbK or wecB
and wbbJ were greatly enlarged and occasionally branched (Fig.
3B), and the mean cell sizes increased substantially (Fig. 3C). Like
the �wzxB mutant, �wecB �wbbJ cells were also genetically un-
stable, readily accumulating suppressor mutations (data not
shown). In short, the presence of a functional ECA pathway sup-

FIG 2 Disrupting O-antigen biosynthesis induces morphological defects in E. coli. (A) O-antigen biosynthesis pathway. Abbreviations: IM, inner membrane;
O-Ag, O antigen; P-Gc, glucose 1-phosphate; Und-P, undecaprenyl phosphate; G, N-acetylglucosamine; Ac, acetyl; Ac-CoA, acetyl coenzyme A; Rh, rhamnose;
Gf, galactofuranose. Note that WzxB and WbbH are also known as Wzx(O16) and Wzy(O16), respectively (62). (B) Micrographs of cells with the indicated
genotypes. Cells were grown at 37°C in LB for approximately 10 doublings until the culture reached an OD600 of 0.5 to 0.6. The cells were then fixed and
photographed by phase-contrast microscopy. Additional O-antigen mutants are shown in Fig. S1 in the supplemental material. Micrographs of �wzxB cells were
from overnight cultures because the strain readily develops suppressor mutations that correct the shape defect, as shown in Fig. S2. WT, wild type. Bar, 3 �m. (C)
Flow cytometry data from live cells in panel B. Histograms of the forward scatter area (FSC-A) from 100,000 events (cells) are shown. The mean cell size of the
wild type is represented by the dashed line and is expressed in arbitrary units (AU). Data are representative of those from two independent experiments. The
strains tested were MAJ330 (wild type), MAJ339 (�wzxB), MAJ345 (�waaL), MAJ343 (�wecA), MAJ369 (�wecA �wzxB), and MAJ370 (�wecA �waaL).
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pressed the negative effects caused by disruption of the early stages
of O-antigen biosynthesis.

Taken together, these results strongly indicate that interrup-
tion of the O-antigen biosynthesis pathway induces morphologi-
cal defects by producing dead-end intermediates.

Disruption of O-antigen assembly limits Und-P availability.
Most studies characterizing cell shape in E. coli have been con-
ducted in strains lacking O antigen. However, restoration of O-
antigen synthesis had no impact on cell shape (see Fig. S1 in the
supplemental material; compare wild-type cells to cells of the O-
antigen-negative wbbL::IS5 mutant). Because cells lacking WbbL
do not make O antigen (Fig. 2A), it was clear that the O antigen
itself was not required to maintain a normal morphology. Thus,
the morphological defects provoked by the deletion of other genes
in the pathway (Fig. 2B and 3B; see also Fig. S1A) cannot be ex-
plained by the absence of O antigen but are instead best explained
by the accumulation of Und-PP-linked intermediates. If so, then
deletion of wecA, which initiates O-antigen biosynthesis by trans-
ferring GlcNAc-1-phosphate onto the Und-P carrier (Fig. 2A)
(41), should reverse the shape defects by eliminating these inter-
mediates. Indeed, the removal of wecA reversed the shape defects
observed in �wzxB and �waaL cells (Fig. 2B and C), confirming
that the morphological defects were not caused by the absence of
O antigen but were caused by the presence of deleterious Und-PP-
linked intermediates. (We note, though, that cells lacking WecA
were slightly larger than wild-type cells [Fig. 2B and C] [30], being,
on average, 7% longer and 9% wider [n � 219]. What causes this
small difference is unknown.)

At this point, we considered it likely that the morphological
defects caused by accumulating dead-end O-antigen intermedi-
ates were due to impaired PG synthesis caused by Und-P seques-
tration. If so, then artificially increasing the pool of Und-P should
suppress shape defects in O-antigen mutants. To test this possibil-
ity, we overproduced the undecaprenyl pyrophosphate synthase
UppS (also known as IspU) to increase the pool of Und-P in a
�waaL mutant, which cannot ligate O antigen to the lipid A core
and therefore accumulates several pathway intermediates. As pre-
dicted, the presence of additional UppS returned �waaL cells to
the shape and size of wild-type cells (Fig. 4; compare the puppS-
containing strain to cells containing pwaaL and those containing
vector only). Thus, cell shape defects that accompany interrup-
tions of the O-antigen biosynthetic pathway are most likely caused
by diminished levels of Und-P.

To further confirm that a lack of Und-P altered PG synthesis
and caused shape defects, we skewed the balance of shared metab-
olites in favor of the PG synthesis pathway as another way of alle-
viating Und-P sequestration. For many E. coli strains, including
MG1655 (42), GlcNAc is incorporated at the reducing end of the
O antigen (Fig. 1A) (reviewed in reference 43). This is important
because both the PG and O-antigen biosynthetic pathways com-
pete for the nucleotide precursor of this sugar, UDP-GlcNAc.
Since the first committed step for PG synthesis is the transfer of

FIG 3 Synthetically misshapen mutant combinations in the O-antigen and
ECA pathways. (A) Biosynthetic pathway illustrating how the ECA and O-an-
tigen synthesis pathways compete for Und-PP–GlcNAc. Abbreviations:
GlcNAc, N-acetylglucosamine; ManNAcA, N-acetylmannosaminuronic acid;
Und-P, undecaprenyl phosphate; Und-PP, undecaprenyl pyrophosphate;
ECA, enterobacterial common antigen. (B) Micrographs of cells with the in-
dicated genotypes. Cells were grown and imaged as described in the legend to

Fig. 2. Bar, 3 �m. (C) Flow cytometry data from live cells in panel B. Histo-
grams of the forward scatter area from 100,000 events (cells) are shown. The
mean cell size for wild-type cells (red graph) is represented by the dashed line
and is expressed in arbitrary units (AU). Data are representative of those from
two independent experiments. The strains tested were MAJ330 (wild type),
MAJ356 (�wecB), MAJ346 (�wbbJ), MAJ344 (�wbbK), MAJ398 (�wecB
�wbbJ), and MAJ397 (�wecB �wbbK).
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enolpyruvate to UDP-GlcNAc by MurA (44), we reasoned that
overexpression of murA would increase the flux of UDP-GlcNAc
into the PG synthesis pathway at the expense of O-antigen pro-
duction, thereby alleviating the shape defect of �waaL cells. In-
deed, overexpression of murA reversed the morphological defects

of �waaL cells (Fig. 4), though the reversal was not quite as effec-
tive as that after uppS overexpression (discussed above). MurA
activity is feedback inhibited by UDP–N-acetylmuramic acid, the
product of the second step in PG synthesis (45). This regulatory
circuit probably limited the amount of UDP-GlcNAc that could
be diverted into the PG pathway and, thus, the extent of shape
recovery. (Feedback inhibition of MurA presumably ensures that
sufficient levels of UDP-GlcNAc are available for synthesizing
other products, like O antigen.)

Finally, we employed a third strategy for increasing the amount
of Und-P available for PG synthesis in �waaL cells. The glycosyl-
transferases WecG and WbbL compete for Und-PP–GlcNAc to
elongate ECA and O antigen, respectively (18, 42) (Fig. 3A). We
reasoned that overexpression of wecG would bolster the available
pool of Und-P in the �waaL mutant by diverting more Und-P
into the ECA pathway, thereby increasing Und-P turnover and
reducing the accumulation of dead-end O-antigen intermediates.
As predicted, additional WecG reversed the shape defects of
�waaL cells (Fig. 4), consistent with the idea that Und-P was re-
cycled and made available for PG synthesis. Interestingly, leaky
expression of wecG from the plasmid was sufficient to suppress the
shape defects in �waaL cells (Fig. 4), but further increases in wecG
expression caused these cells to grow as longer and longer fila-
ments (e.g., see Fig. S3A and B in the supplemental material; com-
pare the results obtained with 0 �M IPTG to those obtained with
100 �M IPTG). This profound filamentation strongly suggests
that the diversion of excessive amounts of Und-PP–GlcNAc into
the ECA pathway also sequestered the Und-P pool, thereby inhib-
iting PG synthesis and cell division (although we cannot com-
pletely rule out other indirect effects). We note that overexpres-
sion of wecG caused only moderate elongation of wild-type cells
(see Fig. S4; compare the results for pwecG to those for the vector
only), an effect not nearly as profound as that seen in the �waaL
mutant (see Fig. S3A and B). Also, with the exception of wecG,
overexpression of other genes had no effect on the morphology of
wild-type cells (see Fig. S4).

In sum, the preceding results reinforce the hypothesis that the
general accumulation of Und-PP-linked intermediates indirectly im-
pairs PG synthesis, most likely by limiting the availability of Und-P.

Disruptions in LPS core biosynthesis sequester Und-P. Dur-
ing LPS assembly, the WaaL ligase connects O-antigen subunits to
the core oligosaccharide (Fig. 5A) (reviewed in reference 46).
Thus, in cells producing O antigen, any mutation that produces an
incomplete core oligosaccharide should also accumulate dead-
end Und-PP-linked O-antigen intermediates (Fig. 5A). Because
the PG and O-antigen biosynthetic pathways compete for Und-P,
the sequestration of Und-P in this way should impair PG synthesis
and produce cell shape defects in mutants that lack a complete
core oligosaccharide. To test this idea, we deleted waaC and waaF
from MG1655 wbbL�. WaaC and WaaF add the first and second
heptose residues, respectively, to the Kdo-2 moiety of the LPS
inner core (Fig. 5B) (47, 48). The loss of WaaC or WaaF caused
cells to swell, usually beginning at one end, so that the cells ad-
opted a shape resembling a bowling pin or tadpole (Fig. 5C; see
also Fig. S5 in the supplemental material). These defects were dis-
tinct from those observed in �wzxB or �waaL cells (Fig. 2B; see
also Fig. S1A). Three lines of evidence indicated that these mor-
phological changes were probably due to Und-P sequestration.
First and foremost, preventing the synthesis of O antigen by de-
leting wecA suppressed the shape defects in �waaC cells (Fig. 5C

FIG 4 Suppression of �waaL shape defects. (A) Micrographs of �waaL cells
containing derivatives of pDSW361 that express the indicated genes. Cells
were grown at 37°C in LB containing 100 �M IPTG (0 �M IPTG for pwecG)
until the culture reached an OD600 of 0.5 to 0.6. The cells were then fixed and
photographed by phase-contrast microscopy. Bar, 3 �m. Further character-
ization of wecG overexpression is found in Fig. S3 in the supplemental mate-
rial. (B) Flow cytometry data from live cells in panel A. Histograms of the
forward scatter area from 100,000 events (cells) are shown. The mean cell size
for �waaL cells expressing waaL in trans (red graph) is represented by the
dashed line and is expressed in arbitrary units (AU). Data are representative of
those from two independent experiments. The strains tested were MAJ434
(pwaaL), MAJ437 (puppS), MAJ436 (pwecG), MAJ435 (pmurA), and MAJ433
(vector). The effect of expression of the aforementioned derivatives of
pDSW361 on wild-type cells is shown in Fig. S4.
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and D) and �waaF cells (see Fig. S5). Second, increasing the pool
of Und-P by overexpressing uppS reversed the shape defects of
�waaC cells (Fig. 6). Third, restricting the biosynthesis of O anti-
gen either by increasing the flux of UDP-GlcNAc into the PG
synthesis pathway (by overexpressing murA) or by redirecting
Und-PP–GlcNAc to the ECA pathway (by overexpressing wecG)
returned �waaC cells to a nearly normal wild-type morphology
(Fig. 6). These three results were identical to those obtained by the
approach in which the morphological effects exhibited by mutants
in the O-antigen biosynthetic pathway were suppressed, as dis-
cussed above. Similarly, the suppression of shape defects in the
�waaC mutant paralleled the suppression of defects observed in
the �waaL mutant. In particular, overexpression of murA sup-
pressed but did not fully restore the wild-type morphology to
�waaC cells (Fig. 6), and expression of wecG, too, highly induced
cell filamentation (see Fig. S3C and D). We note, though, that we
do not understand why mutants lacking Wzx, WaaL, or WaaC
differ from one another in morphology. Presumably, these muta-
tions have comparable effects on the pool of Und-P, and therefore,
the mutants should have similar phenotypes. The fact that their
phenotypes differ suggests that additional factors are at play. Col-

lectively, the data demonstrate that shape defects associated with
disruptions of the LPS core are mostly likely caused not by the loss
of LPS per se but are instead indirect effects caused by the seques-
tration of Und-P and interference with PG synthesis.

DISCUSSION

Und-P and its variants are universal lipid carriers employed by all
bacteria for synthesizing numerous glycan polymers (reviewed in
reference 1). Because it frequently serves as an intermediate in
multiple synthetic pathways, Und-P unites what are otherwise
biochemically and functionally diverse oligosaccharides. Conse-
quently, disruptions of one Und-P-dependent pathway may have
indirect effects on the others. Here, we demonstrate that disrup-
tion of the biogenesis of the E. coli O antigen compromises PG
synthesis by sequestering Und-P. We conclude that the O-antigen
and PG synthetic pathways compete for a common pool of Und-P
(Fig. 7). We further posit that because of this competition, the
phenotypes exhibited by many previous O-antigen and LPS mu-
tants may not accurately reflect the physiological functions of
these cellular components. Instead, because Und-P will be seques-
tered, the behaviors of these mutants may represent an unknown

FIG 5 Disrupting LPS core biosynthesis induces morphological defects in E. coli. (A) Maturation of Und-PP-linked O-antigen intermediates and their ligation
to the lipid A core. Mutations that truncate the core oligosaccharide (e.g., �waaC) prevent attachment of the O antigen (right). Abbreviations: OM, outer
membrane; A, lipid A. The definitions of the other abbreviations are listed in the legend to Fig. 2. (B) General structure of the E. coli K-12 core oligosaccharide
(shaded in gray) (reviewed in reference 77). WaaC and WaaF transfer Hep-I and Hep-II, respectively, onto the growing O-antigen chain. (C) Micrographs of cells
with the indicated genotypes. Cells were grown and imaged as described in the legend to Fig. 2. The cells were fixed and photographed by phase-contrast
microscopy. Bar, 3 �m. Similar results were obtained for mutants of waaF, as shown in Fig. S5 in the supplemental material. (D) Flow cytometry data from live
cells in panel C. Histograms of the FSC-A from 100,000 events (cells) are shown. The mean cell size of the wild-type strain (red graph) is represented by the dashed
line and is expressed in arbitrary units (AU). Data are representative of those from two independent experiments. The strains tested were MAJ330 (wild type),
MAJ374 (�waaC), MAJ343 (�wecA), and MAJ384 (�wecA �waaC).

O-Antigen and LPS Mutants Sequester Und-P

November 2016 Volume 198 Number 22 jb.asm.org 3075Journal of Bacteriology

http://jb.asm.org


combination of contributing factors, including those caused by
defects in cell wall synthesis. Of course, these considerations
would not apply to most mutations in E. coli K-12, which does not
synthesize O antigen.

Mutations that disrupt LPS biosynthesis sequester Und-P.
To our knowledge, the present study describes the first controlled

experiments to examine the secondary effects of Und-P sequestra-
tion as it relates to LPS biosynthesis. However, several lines of
independent evidence corroborate the results reported here. One
of the best examples centers on the study of the O-antigen flippase,
WzxB. The loss of WzxB causes the accumulation of Und-PP-
linked O-antigen intermediates (49), which in turn limits the
availability of Und-P for PG synthesis. Because of this, wzxB mu-
tants are notoriously difficult to isolate (38, 49, 50) and wzxB
mutations are deleterious in the presence of a fully functional
O-antigen-producing machinery (51, 52). We recreated both of
these circumstances in the present study, and in both instances the
accumulation of Und-PP-linked O-antigen intermediates in-
duced morphological defects that were reversed by eliminating the
production of O antigen. Thus, it is not surprising that wzxB flip-
pase mutants acquire suppressing mutations that prevent the for-
mation of O-antigen intermediates (38). Indeed, investigators
who study WzxB function in Salmonella enterica do so in a genetic
background where expression of O antigen is controlled by a galE
mutation, which removes the first committed step in the biosyn-
thetic pathway so that no Und-PP-linked O-antigen intermedi-
ates can accumulate until galactose is supplied (49, 51, 52). The
deleterious effects of Und-P sequestration have also been noted
for other transport mutants (53, 54), as well as mutants that are
unable to ligate O-antigen intermediates to the lipid A core (24) or
that truncate the core oligosaccharide (55). In toto, then, our LPS
and O-antigen findings are consistent with the conditional phe-
notypes that Und-P sequestration produces in strains with muta-
tions that disrupt the synthesis of wall teichoic acids (56, 57),
capsular polysaccharides (58–60), exopolysaccharide (61), and
ECA (30, 62).

The present results, especially when combined with previous
observations (29, 30), strongly suggest that the accumulation of
any Und-PP-linked intermediate interferes with PG synthesis.
This possibility, which we consider highly probable, has signifi-
cant implications for past and future experiments that explore the
physiological relevance of any glycan polymer whose synthesis
requires a Und-P intermediate. Here, we point out that this con-
sideration is of special concern with regard to understanding the
physiological roles played by LPS and O antigen. Many experi-
ments have investigated the biological functions of these com-
pounds by studying mutants which we now predict also accumu-
late dead-end O-antigen intermediates. It is very likely that the
phenotypes of such mutants represent a combination of behav-
iors: those caused by the loss of LPS or O antigen plus those caused
by secondary defects due to Und-P sequestration. A further com-
plication is that one of these secondary effects, impaired cell wall
synthesis, itself induces widespread cell envelope stress responses
(63–65). Thus, the phenotypes exhibited by such mutants are also
contaminated by stress behaviors. In short, mutants that accumu-
late Und-PP-linked intermediates probably exhibit phenotypes
with a complicated mixture of causes, many of which are unre-
lated to the direct functions of LPS or O antigen. More broadly, we
wish to highlight the danger of drawing conclusions about the
physiological function of any compound or cellular component
on the basis of the behavior of mutants that accumulate similar
Und-PP-linked intermediates (e.g., see references 30 and 66).

Finally, to be clear, we note that Und-P sequestration does not
explain all previous phenotypes associated with disruptions in the
biosynthesis of LPS or O antigen. For example, the absence of
LpxL (formerly HtrB), a lauroyl acyltransferase required for the

FIG 6 Suppression of �waaC shape defects. (A) Micrographs of �waaC cells
containing derivatives of pDSW361 that express the indicated genes. Cells
were grown and imaged as described in the legend to Fig. 4, except that IPTG
was added to 25 �M for the pwecG strain. Overexpression of murA does not
fully suppress the shape defects of �waaC cells (e.g., pmurA cells, inset). Bar, 3
�m. (B) Flow cytometry data from live cells in panel A. Histograms of the
forward scatter area from 100,000 events (cells) are shown. The mean cell size
area for �waaC cells expressing waaC in trans (red graph) is represented by the
dashed line and is expressed in arbitrary units (AU). Data are representative of
those from two independent experiments. The strains tested were MAJ439
(pwaaC), MAJ442 (puppS), MAJ441 (pwecG), MAJ440 (pmurA), and MAJ438
(vector).
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maturation of Kdo-2–lipid A (67), induces cell shape defects in E.
coli, even though that mutant does not produce O antigen (68).
Similarly, depletion of LPS transport proteins induces cell shape
defects in the absence of O antigen (69). Und-PP-linked O-anti-
gen intermediates are not present in either of these cases, so no
Und-P should be sequestered. These results, along with many oth-
ers, clearly indicate that LPS plays a distinct physiological role.
What we are urging here is that the mutants to be studied must be
carefully selected to avoid unnecessary confusion in interpreting
the results of similar experiments.

Evidence for relaxed substrate specificity or reversible reac-
tions. As mentioned earlier, loss of the O-antigen flippase, WzxB,
is extremely deleterious, with the results including gross morpho-
logical changes and lysis (Fig. 2B; see also Fig. S1A in the supple-
mental material). These effects are much greater than those in
strains with mutations that disrupt earlier steps in the O-antigen
biosynthetic pathway (Fig. 3B; see also Fig. S1A). Interestingly,
WzxB can translocate different repeat units (70, 71), and under
certain conditions, mutants lacking WzxB express LPS linked to O
units (51, 62), suggesting that other Wzx translocases exhibit sub-
strate cross-reactivity. This seemingly relaxed substrate specificity
may mean that more than one Und-PP-linked intermediate accu-
mulates in a wzxB mutant. If so, then PG synthesis may be com-
promised to a greater degree than if WzxB flipped O-antigen in-
termediates exclusively, which may explain why a wzxB mutation
is so deleterious. Alternatively, the reaction catalyzed by WbbI
may be the first irreversible reaction during elongation of O-anti-
gen intermediates. Thus, any mutation before or at the WbbI step
(Fig. 2) would accumulate fewer Und-PP-linked intermediates
than it would if the reactions were not reversible. That O-antigen
glycosyltransferase reactions might be reversible would not be too
surprising, given that initiation of O-antigen synthesis by WbaP (a
WecA homologue) is reversible in Salmonella enterica serovar Ty-
phimurium (72). In summary, the absence of reaction reversibil-
ity could explain why disruptions in WzxB and later steps are so
deleterious.

Is the level of Und-P defined? Competition for Und-P among
a variety of biochemical pathways raises the interesting question of
whether the steady-state levels of Und-P can be changed. In fact,
increasing the amount of cellular Und-P would seem to be the
simplest way to bypass the deleterious consequences of any dead-
end intermediates, as we show in principle by producing more
UppS, which reverses the effects of Und-P sequestration. The an-
swer was partially uncovered by Barreteau et al., who determined

that the intracellular levels of Und-PP and Und-P are quite similar
between E. coli and S. aureus (73). It is remarkable that the basal
levels of these C55-isoprenoid pools have remained relatively un-
changed between the two organisms, given that the two have such
different amounts of PG (reviewed in reference 74) and that the
two organisms diverged some 2 billion years ago (75). Why have
the relative amounts of this lipid carrier remained unchanged in
these very different organisms? One possibility is that an over-
abundance of membrane-associated polyisoprenols disrupts the
architecture of the typical phospholipid bilayer (reviewed in ref-
erence 76). If so, then the conserved levels of bacterial Und-P may
represent an evolutionary compromise that balances glycan bio-
synthesis with biophysical realities. This pressure to maintain a con-
stant pool of Und-P might play an important role in determining the
number of Und-P-dependent pathways that can be accommodated
in any one organism. Because PG is essential, this structure may be the
foundation around which all other Und-P-consuming pathways
must be organized and delimited.
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