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The global dissemination and increasing incidence of carbapenem-resistant, Gram-negative organisms have resulted in acute
public health concerns. Here, we present a retrospective multicenter study on molecular characterization of metallo-�-lactamase
(MBL)-producing clinical Escherichia coli isolates recovered from extraintestinal infections in two hospitals in Pune, India. We
screened a large sample size of 510 E. coli isolates for MBL production wherein we profiled their molecular determinants, anti-
microbial resistance phenotypes, functional virulence properties, genomic features, and transmission dynamics. Approximately
8% of these isolates were MBL producers, the majority of which were of the NDM-1 (69%) type, followed by NDM-5 (19%),
NDM-4 (5.5%), and NDM-7 (5.5%). MBL producers were resistant to all antibiotics tested except for colistin, fosfomycin, and
chloramphenicol, which were effective to various extents. Plasmids were found to be an effective means of dissemination of
NDM genes and other resistance traits. All MBL producers adhered to and invaded bladder epithelial (T24) cells and demon-
strated significant serum resistance. Genomic analysis of MBL-producing E. coli isolates revealed higher resistance but a moder-
ate virulence gene repertoire. A subset of NDM-1-positive E. coli isolates was identified as dominant sequence type 101 (ST101)
while two strains belonging to ST167 and ST405 harbored NDM-5. A majority of MBL-producing E. coli strains revealed unique
genotypes, suggesting that they were clonally unrelated. Overall, the coexistence of virulence and carbapenem resistance in clini-
cal E. coli isolates is of serious concern. Moreover, the emergence of NDM-1 among the globally dominant E. coli ST101 isolates
warrants stringent surveillance and control measures.

Infections with Gram-negative multidrug-resistant (MDR)
pathogens, particularly those caused by �-lactamase-producing

Escherichia coli, constitute a major reason for the “global SOS” in
public health (1). Carbapenems are often considered to be the
last-resort antibiotics available for treating infections caused by
extended-spectrum-�-lactamase (ESBL)- or AmpC-producing
bacteria (2) and are categorized in three major types: the KPC
types, the metallo-�-lactamases (MBLs), and the oxacillinases (3).
The major geographically widespread MBLs consist of imipen-
emase (IMP), Verona integron-encoded metallo-�-lactamase
(VIM), and New Delhi metallo-�-lactamase (NDM); NDM has
attracted significant worldwide attention as the NDM gene has
been detected on different transferable plasmid types (both on
typeable and untypeable) and has also been shown to be chromo-
somally integrated in other bacterial species (4, 5).

NDM belongs to the amber class B �-lactamase. Unlike other
classes of �-lactamases (A, C, and D), NDM requires zinc ions to
catalyze the hydrolysis of �-lactam antibiotics, and due to this,
MBL activity can be inhibited in the presence of metal chelating
agents such as EDTA (6). NDM-producing bacteria are mostly
multidrug resistant and show resistance toward sulfonamides,
fluoroquinolones, aminoglycosides, and macrolides but are sus-
ceptible to only a few antimicrobials, such as aztreonam, tigecy-
cline, and colistin (7, 8). Recent reports suggest that this suscepti-
bility is expected to be short-lived (1). Moreover, NDM enzymes
are generally not inhibited by any of the known and available
�-lactamase inhibitors such as sulbactam, clavulanate, and tazo-
bactam (9).

NDM-producing bacteria have been implicated in both hospi-

tal- and community-acquired infections and have been recovered
from several infection sites, including those associated with uri-
nary tract infections, pneumonia, septicemia, and wound infec-
tions as well as from device-associated infections and companion
animals (10–13). Although the exact geographical origin and the
precise time for the emergence of the blaNDM gene are unknown,
the first NDM-1-positive isolate was recovered in 2009 from a
Swedish patient who previously (2007) had an episode of hospi-
talization in New Delhi, India (14). Later, in the year 2010, Kuma-
rasamy et al. provided evidence that NDM-1-positive Enterobac-
teriaceae are widespread in India, Pakistan, and the United
Kingdom (15). Recent reports further indicate that several vari-
ants of NDM (NDM-1 to NDM-14)-producing Enterobacteria-
ceae are currently spreading worldwide, including in the United
States, Netherlands, Australia, Canada, France, and Oman (16,
17) (http://www.lahey.org/studies). Most of these case reports/
epidemiological studies provide evidence of connections of pa-
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tients to the Indian subcontinent in the form of migration/travel
visits or medical treatment received there. However, certain re-
ports indicate infection sources outside this region with patients
without any obvious connection to this area (18). Nevertheless,
the Indian subcontinent particularly offers several risk factors for
the emergence and spread of NDM-producing superbugs, which
include poor sanitation, easy access to broad-spectrum antibiotics
over the counter without proper prescriptions, increased medical
tourism for health care, and lack of stringent antibiotic policies.

Members of Enterobacteriaceae, particularly E. coli, are often
disseminated globally through distinct and successful lineages,
such as sequence types (ST) 131, 95, 10, etc. (19–22). Our previous
studies have put forward strong evidence for the widespread oc-
currence of ST131 strains among extraintestinal infections in In-
dia and have also reported the existence of NDM-1-positive ST131
E. coli, thus representing a serious therapeutic challenge (23–27).
This, together with the implication of NDM-producing strains
globally, warrants serious attention of health care specialists and
epidemiologists with respect to surveillance and resistance track-
ing in India and elsewhere so as to monitor threats locally and
globally. Also, the data on the virulence traits associated with
NDM-producing E. coli strains are currently scarce. With the ad-
vent of high-resolution, whole-genome sequencing methods, it
has now become easy to decipher the genomes of the NDM-pro-
ducing isolates and understand the underlying resistance and vir-
ulence mechanisms. The use of comparative genomics in infection
tracking has enabled a comprehensive understanding of epidemi-
ology, resistomes, virulomes, and the genetic background of
NDM-producing MDR E. coli strains.

In the present study, we sought to determine the prevalence
and phenotypes of MBL-producing strains from among a large
number of E. coli isolates collected chronologically for 6 years
(2009 to 2014) from a major tertiary hospital and to determine the
antibiotic susceptibility patterns by taking into account the allelic
diversity of blaNDM genes and the plasmid replicon types. Further,
we determined the virulence traits of NDM-producing E. coli by
various phenotypic assays in conjunction with whole-genome se-
quences of five MDR NDM-producing E. coli strains and conse-
quent analyses of resistomes, virulomes, and genetic affinities as
important parameters required to portray a correct epidemiolog-
ical scenario. We believe that such exhaustive analyses potentially
provide for a clear and solid epidemiological baseline to guide an
effective antibiotic policy in a country of endemicity such as India.

MATERIALS AND METHODS
Bacterial isolates. A total of 510 clinical isolates of E. coli were included in
this study. The isolates were collected consecutively between January 2009
and December 2014 from in-patients and outpatients treated at two major
tertiary care hospitals in Pune, India. The collection included clinical iso-
lates from urine (n � 393), pus (n � 88), and other sources (n � 29). All
the isolates were obtained as pure cultures and were cryopreserved
at �80°C in 20% glycerol. The isolates were revived on LB agar plates and
in LB broth prior to experiments. Collection of isolates was in accordance
with the guidelines/approvals of Institutional Biosafety Committees at
participating institutes/centers, where appropriate.

Detection of metallo-�-lactamase production and its molecular
characterization. A total of 510 E. coli isolates were screened for MBL
production using meropenem (with and without EDTA) with the help of
Ezy MIC Strips (HiMedia; India), as per the manufacturer’s instructions.
All positive E. coli strains were also screened for the presence of blaNDM-1

by a gene-specific PCR (28). E. coli strains confirmed as MBL producers

were further analyzed by high-fidelity PCR (with the use of Q5 DNA
polymerase from NEB) using flanking primers of the NDM gene, as de-
scribed earlier (29). Custom sequencing of the resulting amplicons was
performed, and the nucleotide and translated protein sequences were an-
alyzed using MEGA6 (30). NDM types were determined in accordance
with the sequences available in the NCBI database(s).

Testing for antimicrobial susceptibility and its molecular determi-
nants. Antimicrobial sensitivity of 39 strains against 23 different antibi-
otics was performed on Mueller-Hinton agar (MHA) plates by the Kirby-
Bauer disc diffusion method using antibiotic discs (HiMedia) and Icosa
urinary tract infection (UTI) rings (HiMedia), according to the manufac-
turer’s protocols. Two in-house strains that were consistently resistant
and susceptible to most of the antimicrobial agents were employed as
positive and negative controls, respectively. Results were interpreted ac-
cording to the criteria of the Clinical and Laboratory Standards Institute.
For colistin, a zone of �11 mm was considered resistant. The MIC values
of four frontline antibiotics, namely, tetracycline, co-trimoxazole, genta-
micin, and ciprofloxacin, were determined by using HiComb MIC strips
(HiMedia, India) as per the manufacturer’s protocol. MIC values were
determined and compared among a subset of 10 MBL-producing strains,
10 non-ESBL-producing strains, and 7 meropenem-resistant transconju-
gants. All MBL-producing E. coli strains were analyzed for molecular de-
terminants of antibiotic resistance by PCR. DNA template was prepared
using a standard heat lysis method. Thereafter, gene-specific primer
sets were used to screen for the following ESBL genes: blaTEM, blaSHV,
blaCTX-M-15, blaOXA-48, blaKPC, and blaNDM-1 (28, 31). Other antibiotic
resistance genes, such as those conferring resistance to tetracycline [tet(A)
and tet(C)], sulfonamides (sul1 and sul2), streptomycin (strA), and trim-
ethoprim (dfr) and including the quinolone resistance determinants (car-
ried on plasmids) such as aac(6=)-lb, qnrB, and qnrS, were amplified as per
standard PCR protocols (32, 33). The amplicons were run on 1% agarose
gels, and the images were documented using a gel documentation system
(Major Sciences, USA). The correlation between the phenotypic and dif-
ferent genotypic determinants of resistance was calculated with the help of
observed phenotypic resistance and the frequency of the genotypic deter-
minant probed.

Conjugation, mating experiments, and plasmid analysis. Conjugal
transfer of resistance genes was performed by broth mating or filter mat-
ing experiments for a subset of nine carbapenem-resistant E. coli strains
using the sodium azide-resistant recipient strain E. coli K-12 J53 (34).
Transconjugants were selected on selection plates supplemented with a
combination of meropenem (4 �g/ml) and sodium azide (50 �g/ml). In
addition, other antibiotics and sodium azide combinations were used to
select transconjugants. However, as meropenem-containing transconju-
gants were the focus of this study, the same were subjected to further
analyses. Pure cultures of the transconjugants were preserved in 20% glyc-
erol at �80°C. Antibiotic susceptibility and MICs were compared be-
tween the parental strains and their respective transconjugants. Plasmid
classes were determined using PCR-based replicon typing (35).

Phenotypic assays. A total of nine random isolates were analyzed for
functional virulence traits as described below. Nine MBL-producing E.
coli strains were tested for their adhesion and invasion efficiency. Human
bladder epithelial cell lines (T24) were cultured and maintained in RPMI
1640 medium (Invitrogen, USA) with 10% fetal bovine serum (FBS). Cells
were seeded in 24-well plates and grown until a monolayer was obtained.
Infection was done at a multiplicity of infection (MOI) of 10. After 3 h of
incubation at 37°C with 5% CO2, cells were washed three times with 1�
phosphate-buffered saline (PBS), followed by lysis with 1 ml of 0.1%
Triton X-100. Cell lysates were serially diluted, plated on LB agar plates,
and incubated overnight at 37°C. For invasion assays, after 3 h of incuba-
tion, the cells were washed and further incubated for 1.5 h with 1 ml of
RPMI medium containing 100 �g/ml of fosfomycin. After incubation,
cells were washed three times with 1� PBS and processed in a way similar
to that described above. Assays were performed three times with three
technical replicates.
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Serum resistance was determined for nine MBL-producing E. coli iso-
lates by in vitro time-kill experiments as described earlier (22). Briefly, 5 �l
of overnight-grown culture was added to 495 �l of LB broth and incu-
bated for 1 h at 37°C in a shaker incubator. The culture was pelleted and
resuspended in 1 ml of 1� PBS, and then 30 �l of this bacterial suspension
was added to 96-well microtiter plate wells, each containing 270 �l of 50%
sterile human serum (Pan Biotech, Germany) in 1� PBS. Thirty microli-
ters of serum was then collected (0-h count), serially diluted, and plated
on LB agar plates for CFU enumeration. The plate was then incubated for
3 h at 37°C. After the incubation time (3-h count), 30 �l of sample was
pipetted for serial dilution and plated as described above. Growth was
measured in terms of CFU counts. Samples were considered serum resis-
tant if the 3-h CFU count equaled or exceeded the 0-h CFU count of the
same sample. The serum assay was performed twice in triplicates.

Total siderophore production was tested by streaking all 39 MBL-
positive E. coli samples on chrome azurol S (CAS) agar plates (blue me-
dium). Color changes (haloes) from yellow to orange on the CAS agar
medium plates, after overnight incubation at 37°C, were recorded. No
color change in the medium corresponded to no siderophore production
by the culture.

ERIC-PCR-based strain typing. Enterobacterial intergenic repetitive
element sequence (ERIC)-PCR-based fingerprint analysis was performed
as described previously (36). Strain-specific DNA banding profiles ob-
tained on 1.5% agarose gel images were compared using BioNumerics
software (version 7.1; Applied Maths, Belgium). After the bands were
scored on dice similarity indices based on the unweighted-pair group
method using average linkages (UPGMA; arithmetic mean), a dendro-
gram was generated in order to analyze similarity/diversity within carbap-
enem-resistant E. coli strains. The definition of ERIC clusters was based on
a Dice similarity index.

WGS, assembly, annotation, and genomic analysis. Whole-genome
sequencing (WGS) of five selected strains was carried out on an Illumina
MiSeq system with an insert size of 400 to 500 bp. The paired-end se-
quence reads were filtered and trimmed using the NGS QC Toolkit (ver-
sion 2.3.3) (37). These high-quality reads were assembled into contigs
using SPAdes Genome Assembler (version 3.6.1) (38). The contigs were
then ordered and scaffolded using an in-house workbench, Contig-Lay-
out-Authenticator (39), and the resulting ordered scaffolds were joined by
placing Ns between them to construct draft genomes. These were then
submitted to the RAST (40) server for annotation, and the genome statis-
tics were extracted using ARTEMIS (41). For all of the genomes, genes
were predicted using GeneMarkS (42). Amino acid sequences of the prod-
ucts of the predicted genes from all strains were compared using blastp
(43) against the database of E. coli virulence genes from the Virulence
Factors Database (VFDB) (44). Only genes with 60% identity and 85%
query coverage were considered present, and in this way the presence-
absence status of each virulence gene in each of these strains was repre-
sented in the form of a heat map using R. A similar heat map was gener-
ated for putative resistance-related genes after comparison with the
Comprehensive Antibiotic Resistance Database (CARD) (45), using
blastp. Insertion sequence (IS) elements and putative phage sequences in
the genome were identified using IS Finder (46) and PHAST (47), respec-
tively. The sequence type (ST) of each of these strains was determined by
submitting the contigs to the server of the Centre for Genomic Epidemi-
ology (CGE) (https://cge.cbs.dtu.dk/services/MLST/).

Statistical analysis. All statistical analyses were performed using
GraphPad Prism (version 5.01). For adhesion and serum resistance, a
nonparametric Mann-Whitney U test was performed while for the inva-
sion assay Wilcoxon matched-pair tests were performed, and P values
were determined.

Accession number(s). The results of this whole-genome shotgun
project have been deposited in the DDBJ/ENA/GenBank databases
under the accession numbers LXFJ00000000 (NA703), LXFK00000000
(NA724), LXEZ00000000 (NA086), LXFA00000000 (NA099), and
LWTZ00000000 (NA084). The versions described in this paper are

LXFJ01000000, LXFK01000000, LXEZ01000000, LXFA01000000, and
LWTZ01000000, respectively.

RESULTS
Prevalence of MBL producers was low with a high abundance of
the NDM-1 genotype. Of the 510 clinical E. coli isolates, 39 (7.6%)
were found to be MBL producers. These 39 MBL-producing E. coli
isolates were deemed to be of potential interest and were used
further for in depth analyses, as described above. All of the 39
MBL-producing E. coli isolates were also found to be ESBL pro-
ducers phenotypically. Most of the MBL producers (25/39) were
from urine isolates, followed by those from pus (11/39) and other
sources (3/39). The 39 MBL producers as identified at the pheno-
typic level were screened for the presence of major carbapenemase
genes, including blaNDM, blaKPC, and blaOXA-48. With the excep-
tion of the blaKPC gene, which was not detected in any of the MBL
producers, 36 (92%) MBL producers were blaNDM positive, and 6
(15%) of them were also blaOXA-48 positive. Sequence analysis of
the full-length NDM genes from 36 MBL producers revealed that
the majority of them carried the blaNDM-1 gene (25 isolates), fol-
lowed by blaNDM-5 (7 isolates). Further, the gene blaNDM-4 was
present in two isolates, and the gene blaNDM-7 was harbored by two
other MBL producers.

All MBL-producing E. coli isolates were identified to be MDR
and pan-drug resistant. Of the 23 antimicrobial agents represent-
ing 10 different classes, our MBL-producing E. coli isolates showed
an average resistance to nearly 18 antibiotics, with maximum re-
sistance to 21 and minimum resistance to 10 antimicrobial agents.
The frequencies of susceptibility/resistance are indicated in Fig. 1.
Among all MBL-positive isolates, highest resistance was observed
against the �-lactam antibiotic class while highest sensitivity
(100%) was observed to the peptide antibiotic class, i.e., colistin.
Each of the MBL-producing E. coli isolates was found to be at least
90% resistant to all the �-lactam and �-lactam/�-lactamase inhib-
itor combinations used, including ampicillin, carbenicillin, cefo-
taxime, cephalothin, cefoperazone, cefepime, cefazolin, piperacil-
lin-tazobactam, and ampicillin-sulbactam. In contrast, each of the
MBL-producing E. coli isolates was found to be sensitive to colis-
tin. All MBL-positive isolates were highly susceptible to fosfomy-
cin and chloramphenicol (Fig. 1). Other resistance patterns were
as follows: 80% of isolates were resistant to each of the tetracycline
and aminoglycoside classes and 82% were resistant to the trim-
ethoprim/sulfonamide class. Notably, all MBL-positive isolates
(100%) were identified to be MDR as they were resistant to three
or more classes of antimicrobials. Moreover, all the MBL-produc-
ing E. coli isolates were found to be pan-drug resistant, meaning
that they were resistant to as many as seven antimicrobial agents.
The MIC values of MBL-ESBL-producing E. coli and non-ESBL E.
coli isolates varied widely for different antibiotics used in the study
(Table 1). Overall, the MBL-ESBL-producing E. coli isolates re-
vealed higher MICs of all four frontline antimicrobial substances
than non-ESBL strains. That the MIC values of the four antimi-
crobials for the meropenem transconjugants were higher than
those of the recipient strain J53 E. coli indicated horizontal trans-
mission of respective resistance genes. All 39 ESBL-MBL produc-
ers were negative for blaSHV and blaKPC. However, 31 isolates har-
bored the blaCTX-M-15 gene, and 28 isolates harbored blaTEM. The
correlation among different resistance genotypes (presence or
absence of resistance genes) and phenotypes (resistance or sus-
ceptibility) was found to be high for aminoglycosides (94%
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agreement) and sulfonamides (84% agreement), whereas the
agreement between resistance to tetracycline and the presence
of tet(A) and tet(C) was 69% and that for fluoroquinolone was
(67%). The overall prevalences of all the major resistance genes
in 39 MBL-producing E. coli isolates are presented in Fig. 1.

Metallo-�-lactamase resistance was naturally transferable
via plasmids. NDM genes are basically located on plasmids. In
order to determine the capability of these MBL-positive E. coli
strains to disseminate NDM genes horizontally, we carried out
conjugation mating experiments with the sodium azide-resistant
recipient strain E. coli K-12 J53. Out of the nine representative
MBL-positive strains employed, we were able to obtain seven
meropenem-resistant transconjugants alongside several other
transconjugants. However, only meropenem transconjugants
were further analyzed for this study. The transconjugants were
analyzed for their phenotypic drug resistance to four different
classes of antibiotics, along with MBL and ESBL detection. All
transconjugants were identified to be MBL and ESBL positive,
with coresistance varying widely for different antibiotics used in
the study. The detailed results are shown in Fig. 2. Transconju-
gants were confirmed to be carrying the NDM gene by gene-spe-
cific PCR. PCR-based replicon typing revealed the presence of
primarily two plasmid types, the FIA and FIB plasmids, among
transconjugants. These observations reflect the role of transmissi-
ble plasmids in dissemination of NDM-based carbapenem resis-
tance.

MBL-producing E. coli isolates were moderately virulent.
Phenotypic virulence properties of the MBL-positive E. coli iso-

lates were assayed using adhesion, invasion, serum bactericidal,
and siderophore production assays. The two former assays were
carried out on nine randomly selected strains, and siderophore
production was determined for all 39 strains. Adhesive and inva-
sive virulence properties are important features during intestinal
as well as extraintestinal infections. In order to evaluate this, we
quantitatively assayed the pathogen’s ability to adhere and invade
the urinary bladder epithelial cells. Compared to the negative-
control strain E. coli DH5�, all nine MBL-positive E. coli isolates
showed significant adhesion to T24 cells with various efficiencies,
as illustrated in Fig. 3a. Among the nine MBL-positive isolates
tested, the NA084 isolate demonstrated highest adherence capa-
bility toward T24 cells. T24 cells were invaded by all investigated
isolates, in contrast to the absence of invasion by the negative-
control strain E. coli DH5�. Numbers of intracellular bacteria are
depicted in Fig. 3b.

Resistance to serum is quite essential for the pathogens to sur-
vive and cause invasive infections; we found all nine tested isolates
to be resistant (100%) to serum bactericidal activity compared to
results with the control DH5� E. coli. Bacterial survival in serum
over a period of 3 h is depicted in Fig. 3c. Though the virulence
genes tested were not prevalent in these isolates, bacterial resis-
tance toward the bactericidal effect of serum could result from
individual or combined effects of capsular polysaccharide, surface
proteins, and toxin secretions.

Siderophore production, as visualized by an iron mobilization
zone around the bacterial colonies with orange haloes on the
chrome azurol S agar, was similarly prevalent among 36 (92%) of

FIG 1 (Top) Antibiogram of MBL-producing carbapenem-resistant E. coli strains as tested by the disc diffusion method for the following 23 different antibiotics:
ampicillin (Amp), piperacillin-tazobactam (PIT), carbenicillin (CB), ampicillin/sulbactam (A/S), cefotaxime (CTX), cephalothin (CEP), cefoperazone (CPZ),
cefepime (CPM), cefazolin (CZ), nalidixic acid (NX), ciprofloxacin (CIP), moxifloxacin (MO), gatifloxacin (GAT), tetracycline (TE), doxycycline HCl (DO),
co-trimoxazole (COT), gentamicin (GEN), amikacin (AK), nitrofurantoin (NIT), clarithromycin (CLR), chloramphenicol (C), fosfomycin (FO), and colistin
(CL). All MBL-producing isolates were detected to be pan-drug resistant. (Bottom) Identification of resistance determinants among 39 MBL-producing E. coli
isolates by gene-specific PCRs.
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the 39 MBL-producing E. coli isolates. The role of iron in the viru-
lence mechanism of human and animal pathogens is well established
(48). Siderophore production has been shown to be more frequently
associated with extraintestinal pathogenic E. coli (ExPEC).

Whole-genome analysis reveals high resistance and moder-
ate virulence of MBL strains. Out of the 39 MBL-positive strains,
whole-genome sequencing of five representative strains (three
NDM-1 and two NDM-5) was carried out. Their genome charac-

TABLE 1 MIC values of carbapenem-resistant strains, meropenem transconjugants, a recipient strain, and non-ESBL non-carbapenem-resistant
E. coli isolates from the present study

Strain group and no.

MIC (�g/ml)b

Gentamicin Ciprofloxacin Co-trimoxazole Tetracycline

Carbapenem-resistant strains (n � 17)a

NA084 	240 	240 	240 3
NA644 	240 	240 	240 5
NA708 	240 60 	240 3
NA086 	240 	240 	240 2
NA086 T 	240 0.01 0.05 0.1
NA099 	240 	240 	240 0.1
NA099T 0.01 0.1 0.01 0.01
NA316 	240 	240 	240 3
NA316T 0.1 ND 0.05 0.1
NA635 	240 120 	240 5
NA635T 24 ND 	240 3
NA703 	240 	240 	240 0.001
NA703T 16 ND 0.05 0.001
NA724 	240 120 	240 3
NA724T 30 0.01 0.05 0.1
NA805 60 10 	240 0.01
NA805T ND 1 0.05 0.01

Recipient strain (n � 1)
K-12 J53 0.001 0.008 0.05 0.01

Non-ESBL non-carbapenem-resistant strains (n � 10)
NA433 0.1 60 	240 10
NA010 0.1 0.008 30 0.1
NA295 0.01 0.01 120 0.1
NA053 0.25 1 	240 2
NA057 0.1 30 	240 0.1
NA120 0.01 0.1 	240 0.5
NA140 0.1 0.01 	240 30
NA150 0.1 0.25 2 0.01
NA203 0.01 0.01 0.1 0.01
NA274 0.1 10 	240 30

a The total includes seven meropenem transconjugants (T suffix).
b ND, not determined.

FIG 2 In vitro conjugation experiment and comparative analysis between clinical strains and their respective transconjugants revealed transfer of resistances via
plasmids. The T suffix designates transconjugants. Gen, gentamicin; Cip, ciprofloxacin; Cot, co-trimoxazole; Tet, tetracycline. ndm and ctxm-15 represent blaNDM and
blaCTX-M-15 genes, respectively. FIA and FIB are the plasmid replicon types. Black and white boxes indicate presence and absence of corresponding traits, respectively.
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teristics are represented in Table 2. The three NDM-1 strains be-
longed to ST101 while the two NDM-5 strains were characterized
as ST167 and ST405. The whole-genome-based resistome re-
flected the high prevalence of resistance genes of all categories

within all the strains, similar to the phenotypic drug resistance
profile (Fig. 4). The virulome of these strains reflected moder-
ate virulence wherein all the strains inherited genes belonging
to adhesins, autotransporters, type three secretion systems

FIG 3 A subset of nine MBL-producing E. coli isolates was tested for three virulence-associated phenotypes: adhesion to human bladder epithelial cells (T24) at
an MOI of 10 (a), invasion of human bladder epithelial cells (T24) (b), and resistance to 50% human serum for a 3-h time period (c). Adhesion and invasion
assays were repeated three times in triplicates while the serum resistance assay was repeated twice in triplicates. All nine MBL-producing E. coli isolates
demonstrated ExPEC-associated phenotypes. **, P � 0.01; ***, P � 0.001, for results compared to those with the control (DH5�).
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(TTSS), and type 6 secretion systems (T6SS). NA099 harbors the
least number of virulence genes while NA724 carries the maxi-
mum number of genes. The details are shown in Fig. 4. All the
strains showed different phage contents and variable IS elements.

The upstream sequence analysis of these five NDM strains showed
insertion elements such as ISAba125 upstream of NDM-1 and IS5
and truncated ISAba125 upstream of NDM-5 sequences.

NDM strains reveal high genomic diversity. PCR-based

TABLE 2 The genome statistics and sequence types of five whole-genome-sequenced NDM-harboring strains comprising three NDM-1 and two
NDM-5 strains

Strain
No. of
raw reads

Genome coverage
from filtered
reads (�)

No. of
contigs ST

Genome size
(no. of bases)

G
C
content (%)

No. of
CDSa

% coding
capacity

No. of
rRNAs

NDM
type

Specimen
source

NA084 1,741,426 73.25 109 101 5,147,001 50.59 5,000 86.8 13 NDM-1 Urine
NA086 1,643,674 63.13 115 101 5,147,281 50.59 4,994 86.9 13 NDM-1 Urine
NA099 2,406,806 104.68 155 101 5,197,495 50.57 5,063 85.8 17 NDM-1 Urine
NA703 2,401,628 92.94 211 167 5,263,381 50.66 5,186 86.0 16 NDM-5 Pus
NA724 2,784,910 118.36 166 405 5,424,442 50.55 5,273 87.0 9 NDM-5 Pus
a CDS, coding sequences.

FIG 4 Whole-genome-based identification of virulence (left) and resistance (right) determinants of five MBL-producing E. coli isolates.
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genotyping was used to analyze the genetic relationships of the
organisms. The ERIC-PCR-based dendrogram of these strains
(Fig. 5) revealed high diversity among them. However, when
strains were grouped at a lower threshold of �65% identity, two
diffusely clonal clades were observed. As expected, all the strains in
this cluster harbored NDM-1 genes. Further, the in silico multilo-
cus sequence typing (MLST) analysis of whole-genome sequences
identified all three strains to be ST101. Overall, this cluster might
include clonally related ST101 strains which are strongly associ-
ated with the NDM genotype. No such clusters were obtained for
any other NDM variants. The above observations also support the

idea that plasmids are the important means for NDM dissemina-
tion.

DISCUSSION

The emerging NDM, an acquired class B carbapenemase from
among Enterobacteriaceae, has become a major public health con-
cern worldwide also due to its medical and economic impact (49),
and infections with NDM-positive pathogens pose a major health
care problem, particularly for high-burden countries such as In-
dia. Previous studies from our group have shown an endemic E.
coli infection burden and the presence of clonal group ST131 iso-
lates with NDM-1 (23–25, 50). This study was aimed at detection,
comprehensive characterization, and whole-genome sequence
analysis of MBL-producing MDR organisms that can lead to suc-
cessful infection. This study would likely be useful in guiding the
formulation of control strategies involving antimicrobial steward-
ship and public health interventions in order to control the esca-
lation of life-threatening MDR bacterial infections involving Ex-
PEC organisms.

In general, production of MBL in Enterobacteriaceae shows an
increasing prevalence pattern. However, the prevalence of carbap-
enem resistance among 510 E. coli isolates analyzed from 2009 to
2014 was found to be 7.6%, which was within the range of previ-
ously reported carbapenem resistance from India (51, 52); how-
ever, this prevalence might be variable in different geographical
locations and different hospital settings. The dissemination of
NDM carbapenemases involves several blaNDM gene variants that
are associated with different plasmid types among several Gram-
negative species. A total of 14 NDM types have been reported
globally, which were due to one or more point mutations (http:
//www.lahey.org/studies). In our study, we identified four NDM
variants responsible for MBL production, with NDM-1 being the
dominant variant, while other variants comprising NDM-4,
NDM-5, and NDM-7 were observed with various frequencies.
Previous reports from India have shown the presence of the
NDM-6 type in addition to the above-mentioned NDM types
(52). These four variants did not demonstrate any significant dif-
ference in MIC values for meropenem, nor did they show any
specific association with different antimicrobial resistances. The
carbapenems are considered the antibiotics of last resort for treat-
ment of MDR bacterial infections; hence, bacteria which are resis-
tant to these agents are often termed superbugs as they possess a
resistance phenotype against different classes of broad-spectrum
antibiotics. The antibiogram of these 39 isolates (Fig. 1) reflected a
similar scenario wherein all MBL-producing strains (100%) re-
vealed pan-drug resistance phenotypes as they were completely
resistant to almost all the empirically used antibiotics. Neverthe-
less, all the strains were susceptible to colistin, and a majority of
them were susceptible to fosfomycin. Polymyxins are the antibi-
otics of last resort to treat infections caused by MBL-producing
Enterobacteriaceae (53), and as combination therapies are being
advocated for treatment of MDR pathogens (54), the dual combi-
nation of colistin and fosfomycin could be the best option for
effective treatment of carbapenem-resistant infections, which also
minimizes the chances of resistance development.

The spread of antibiotic resistance genes is mediated by hori-
zontal gene transfer (HGT) between bacteria (55). As multidrug-
resistant plasmids serve as the most efficient means for dissemi-
nation of resistance traits via HGT, we also observed that the
NDM genes and other resistances were transferred (via plasmids)

FIG 5 Dendrogram based on the phylogenetic analysis of 39 MBL-producing
carbapenem-resistant clinical E. coli strains using ERIC-PCR banding analysis
by BioNumerics, version 7.5 (Applied Maths, Belgium). Dotted boxes indicate
clusters into which the majority of NDM-1 profiles segregated. ND, not deter-
mined.
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to recipient strains, as confirmed genotypically and phenotypi-
cally by our conjugation experiments (Fig. 2). ERIC-PCR-based
clusters revealed the presence of NDM genes in E. coli isolates of
mostly unique genotypes, suggesting that they are clonally unre-
lated and thereby have similar propensities to acquire the NDM
genes (Fig. 5). Recent reports have shown a greater association of
the NDM-1 genotype with sequence type 101, which is consistent
with our findings as we also observed three NDM-1-bearing E. coli
isolates belonging to ST101 (56, 57). We identified NDM-5 to be
present in E. coli isolates belonging to ST405 and ST167. These
sequence types were also linked to NDM dissemination world-
wide (58–60). Further, we found that the NDM-1 sequences were
preceded by the ISAba125 insertion element which belongs to the
IS30 family while NDM-5 has an IS5 insertion element upstream
of its sequence, followed by sequences of ISAba125. ISAba125 is
known to be located upstream of NDM in both Acinetobacter and
E. coli, similar to our observations. It has also been reported that
the IS5 element is followed by a truncated ISAba125 sequence
upstream of the NDM gene (61, 62).

The virulence phenotypes such as adhesion to and invasion of
epithelial cells play an important role in initiation and establish-
ment of infection. The virulence gene complement as detected at
the whole-genome level (Fig. 4) and the adhesion/invasion (Fig.
3a and b) capabilities of the strains toward human urinary bladder
epithelial cells demonstrate their pathogenic potentials and asso-
ciated risks during infection as these strains are resistant to all
empirically used antibiotics. Peirano et al. have also shown the
ability of CTX-M- and NDM-positive strains to adhere to Caco2
and HepG2 cell lines (63). The ability to resist the bactericidal
effect of serum complement as determined by serum resistance
assays (Fig. 3c) points toward the enhanced survival advantages of
these strains at different extraintestinal infection sites.

In summary, our findings demonstrated that the human ex-
traintestinal pathogenic MBL-producing E. coli strains were asso-
ciated with promiscuous plasmid types, resulting in a diverse
range of clones harboring different variants of the NDM gene.
Furthermore, whole-genome sequencing and genetic fingerprint-
ing suggest that blaNDM-1 may also disseminate via dominant
clones such as ST101. The genomes newly sequenced herein
would be an important addition to the existing uropathogenic E.
coli (UPEC)/ExPEC genome archives and would be helpful in fu-
ture studies involving comparative genomics and molecular epi-
demiology. Given that the emergence of newer variants of NDM-1
in countries of endemicity and their association with different
ExPEC infections represent an alarming problem, large-scale sur-
veillance and molecular genotyping studies are needed in order to
develop strategies to circumvent the emergence of dominant
clones potentially leading to institutional outbreaks and nosoco-
mial epidemics of the future.
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