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A collection of 74 Enterobacteriaceae isolates found in Bo, Sierra Leone, were tested for quinolone antibiotic susceptibility and
resistance mechanisms. The majority of isolates (62%) were resistant to quinolones, and 61% harbored chromosomal gyrA
and/or parC mutations. Plasmid-mediated quinolone resistance genes were ubiquitous, with qnrB and aac(6=)-Ib-cr being the
most prevalent. Mutated LexA binding sites were found in all qnrB1 genes, and truncated qnrB pseudogenes were found in the
majority of Citrobacter isolates.

Quinolone and fluoroquinolone compounds are synthetic an-
tibiotics whose antimicrobial activity occurs via concentra-

tion-dependent inhibition of type II topoisomerases (1, 2). Fluo-
roquinolones are currently used to treat a variety of human
infections caused by both Gram-positive and Gram-negative bac-
teria due to their broad-spectrum antimicrobial activity (3–5).
Their widespread and often indiscriminate use, however, has re-
sulted in ubiquitous resistance, especially among members of the
Enterobacteriaceae (3, 4, 6).

The most common causes for high-level quinolone resistance
in Gram-negative bacteria are mutations in quinolone resistance
determinant regions (QRDRs) of the type II topoisomerase genes
gyrA and parC (5, 7). Another mechanism for quinolone resis-
tance depends on the maintenance of low intracellular drug con-
centrations via decreased uptake of the drug and/or active efflux
using efflux pumps. When upregulated, some of these multidrug
efflux pumps confer cross-resistance to multiple classes of antimi-
crobials (4, 5).

Plasmid-mediated quinolone resistance (PMQR) is conferred
by extrinsic resistance determinants that encode efflux pumps
(qepA and oqxAB) (8), proteins that protect DNA gyrase and to-
poisomerase IV through specific binding (qnr genes), or quinolo-
ne-inactivating enzymes [aac(6=)-Ib-cr] (9). PMQR genes gener-
ally confer low-level resistance, with their MICs falling below
Clinical and Laboratory Standards Institute (CLSI) breakpoints
for intermediate resistance; therefore, their contribution to quin-
olone resistance can be masked in strains also harboring QRDR
mutations in gyrA and parC. However, their clinical significance
stems from the fact that they greatly facilitate the selection of more
highly quinolone-resistant strains (10).

An increasing prevalence of quinolone resistance has been re-
ported in West Africa (11–13), with several mechanistic surveys of
quinolone nonsusceptibility within this region recently published
(13–19). However, no such data are available for Sierra Leone
(11). Here, we analyzed 70 Enterobacteriaceae urine sample iso-
lates and four fomite isolates from the indoor environment from a
small private hospital located in Bo, Sierra Leone (20). The collec-
tion included Citrobacter freundii (n � 22), Enterobacter cloacae
(n � 16), Klebsiella pneumoniae (n � 17), Escherichia coli (n � 13),

Enterobacter sp./Leclercia sp. (n � 4), Escherichia hermannii (n �
1), and Pantoea dispersa (n � 1). Each isolate in the collection was
tested for susceptibility to nalidixic acid, ciprofloxacin, and moxi-
floxacin using Etest strips (bioMérieux, Marcy l’Etoile, France)
according to the manufacturer’s recommendations using CLSI
interpretative criteria (for nalidixic acid and ciprofloxacin) (21)
and FDA recommendations (for moxifloxacin) (22) for pheno-
type classification.

We sequenced the QRDRs of the chromosomal gyrA and parC
genes to identify potential resistance-conferring mutations and
screened the isolates by PCR for the following PMQR genes:
aac(6=)-Ib-cr, qepA, oqxAB, qnrA, qnrB, qnrC, qnrD, qnrS, and
qnrVC (see Table S1 in the supplemental material). Detected qnr
genes were fully sequenced.

Overall, 62% of the tested isolates were clinically resistant to at
least one quinolone antibiotic, while 41% were resistant to all
three. The prevalence of resistance was highest in C. freundii and
Enterobacter sp./Leclercia sp. and lowest (or absent) in E. cloacae,
E. hermannii, and P. dispersa (Table 1). Resistance correlated
strongly with the presence of gyrA and parC gene QRDR muta-
tions (5, 7). While a single gyrA mutation was correlated with
high-level resistance to nalidixic acid and elevated MICs (not
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crossing the clinical resistance breakpoint) for ciprofloxacin and
moxifloxacin (P � 0.05), additional mutations were correlated
with high-level resistance to all three quinolones (P � 0.00005; see
Table S2 in the supplemental material).

PMQR genes were ubiquitous among the analyzed Enterobac-
teriaceae (Table 1; for detailed information, see Table S2 in the
supplemental material), consistent with previous reports of Entero
bacteriaceae in West Africa (13–19). Observed in all species tested
except E. coli and P. dispersa, various qnr genes and aac(6=)-Ib-cr
were detected in 68% and 58% of the isolates, respectively. Other
detected PMQR genes included oqxAB (found in all K. pneu-
moniae strains and one E. cloacae strain) and qepA (in three E. coli
isolates). As indicated above, the phenotypic contributions of the
PMQR genes were difficult to determine due to the presence of
gyrA and parC QRDR mutations.

Among the PMQR genes, the qnr genes showed the highest
diversity and widest distribution. Detected alleles belonged to the
qnrA, qnrB, and qnrS families. qnrA and qnrS families were repre-
sented by only one allelic variant each (qnrA1 and qnrS1, respec-
tively). In contrast, the qnrB family was represented by three pre-
viously described full-length alleles (qnrB1, qnrB6, and qnrB12),
two novel variants (qnrB81 and qnrB82), and three variants of 5=
truncated qnrB pseudogenes (�qnrB). All of the qnrB gene vari-

ants (with the notable exception of qnrB1) and pseudogenes were
found only in C. freundii isolates. The majority of the �80 qnrB
gene variants described thus far have been found in this species,
which is also postulated as the original source of the qnrB gene
(23).

The complete DNA sequencing of all detected qnrB1 genes
showed that the coding regions were identical but revealed differ-
ences in the noncoding sequences upstream of the qnrB1 open
reading frame (ORF) within the LexA protein binding site. LexA is
a transcriptional repressor that modulates the SOS regulon (24),
and the expression of qnrB genes containing LexA binding se-
quences is induced as a part of the SOS response to a number of
environmental stimuli, including quinolone exposure (25, 26).
No analogous LexA binding sites are found within other qnr gene
families.

Based on differences within the LexA binding motifs, three
qnrB1 subvariants could be distinguished: qnrB1a is identical to
the prototype qnrB1 sequence (accession number DQ351241) ex-
cept for a single T¡G substitution at position �23, qnrB1d har-
bors a single nucleotide deletion, and qnrB1i contains a single
nucleotide insertion within the poly(A) sequence located between
positions �12 and �18 of the prototype qnrB1 sequence (Fig. 1).
Of the remaining qnrB alleles identified in this study, only qnrB6 in

TABLE 1 Quinolone resistance, PMQR genes, and QRDR mutation prevalence

Species
No. of
isolates

Quinolone
resistance
prevalence (%)a

PMQR gene(s) detected and its prevalence (%)b

QRDR mutation prevalence (%)c

GyrA ParC

NA CIP MOX Ser83 Asp87 Ser80 Glu84

Citrobacter freundii 22 100 100 95 aac(6=)-Ib-cr (86), qnrA1 (4), qnrB1a (10), qnrB1d (23),
qnrB6 (36), qnrB12 (14), qnrB81 (4), qnrB82 (4),
�qnrB (86), qnrS1 (50)

100 14 59 0

Enterobacter sp./Leclercia sp. 4 100 100 25 aac(6=)-Ib-cr (100), qnrB1a (100) 100 0 100 0
Escherichia coli 13 61 23 23 qepA1 (23) 61 23 31 8
Klebsiella pneumoniae 17 53 35 29 aac(6=)-Ib-cr (29), qnrB1d (23), oqxAB (100) 53 12 53 0
Enterobacter cloacae 16 6 0 19 aac(6=)-Ib-cr (81), qnrB1a (25), qnrB1i (50), qnrB6a (6),

qnrS1 (19), oqxAB (6)
12 0 6 0

Escherichia hermannii 1 0 0 0 aac(6=)-Ib-cr, qnrB1a, qnrS1 0 0 0 0
Pantoea dispersa 1 0 0 0 None detected ND ND ND ND
a Prevalence of clinically resistant isolates as measured using Etest assays. NA, nalidixic acid; CIP, ciprofloxacin; MOX, moxifloxacin.
b The presence of the following PMQR genes was tested: qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC, aac(6=)-Ib-cr, qepA, and oqxAB. Numbers in parentheses indicate the prevalence
(percent) of a particular PMQR gene among tested isolates (when more than one isolate was present).
c Presence of mutations was deduced via in silico translation of the obtained DNA sequences. The position numbers are based on E. coli GyrA and ParC protein sequences. ND, not
done.

FIG 1 Mutations within the LexA binding site directly upstream of the qnrB1 gene. The sequences flanking the 5= end of the qnrB1 ORF from the three detected
qnrB1 subvariants (qnrB1a, qnrB1d, and qnrB1i) were aligned with the analogous region from the prototype qnrB1 gene (GenBank accession number
DQ351241). The nucleotide position numbers are based on the prototype qnrB1 gene sequence and denote the distance from the first nucleotide of the translation
initiation codon (labeled �1). The sequences enclosed in the black box indicate the LexA binding motif. The vertical arrows indicate the point mutation sites
characteristic of the particular qnrB1 gene variants (a, qnrB1a [qnrB6a]; d, qnrB1d; i, qnrB1i).
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E. cloacae harbored mutations within this upstream region; as this
mutation was identical to that found in qnrB1a, this allele was thus
designated qnrB6a. The mutation in qnrB1a (and qnrB6a) changes
the highly conserved 5= CTGT of the LexA binding palindrome
consensus CTGT-N8-ACAG characteristic of Gammaproteobacte-
ria (24), while the LexA binding site mutations in qnrB1i and
qnrB1d affect the length of this motif. This is the first report of
mutated LexA binding sites identified in qnrB genes from clinical
isolates. Although we did not explore the effect of these mutations
on LexA binding or phenotype, it has been previously shown that
the loss of LexA binding results in increased quinolone MICs (25–
27). The qnrB1 subvariants were unevenly distributed among the
analyzed species (see Table S2 in the supplemental material).

In addition to the full-length alleles, three truncated qnrB pseu-
dogenes (�qnrB) were also identified in the majority (91%) of the
C. freundii isolates, and most of the C. freundii isolates contained
these pseudogenes together with full-length qnrB genes. To our
knowledge, this is the first report in which both full-length qnrB
genes and truncated qnrB pseudogenes were found to coexist in
the same isolates. While the presence of truncated qnrB pseudo-
genes in C. freundii has been previously reported, it has never been
observed in such a high prevalence as documented in this study
(23, 28–30). The three distinct qnrB pseudogene variants (�1qnrB,
�2qnrB, and �3qnrB [see Table S2 in the supplemental material])
all encompassed a 283-bp remnant of the ORF that resulted from
the deletion of the 360 bp at the 5= end of the gene.

Flanking region sequences indicated that all of the qnrB pseu-
dogenes and the newly described qnrB variants (qnrB81 and
qnrB82) were located within the context of genetic platform GP3
while all other qnrB alleles had flanking sequences consistent with
the GP2 environment (30). In addition, the finished genome se-
quencing of the C. freundii isolate SL151 (T. A. Leski, C. R. Taitt,
U. Bangura, R. Ansumana, D. A. Stenger, Z. Wang, and G. Vora,
submitted for publication; accession numbers CP016952 [ge-
nome], CP017058 [larger plasmid], and CP017059 [smaller plas-
mid]) revealed that the pseudogene variant �2qnrB was located on
the chromosome while the other two qnr genes (qnrB6 and qnrS1)
as well as aac(6=)-Ib-cr were located on two distinct plasmids. The
wide distribution of the qnrB1 allele in five of the seven ana-
lyzed species (Table 1) suggests that it is likely located on a
transferable plasmid. Overall, the variety of qnrB genes found
in the tested C. freundii isolates, the detection of novel variants,
and the presence of truncated pseudogenes are consistent with
the postulated origin of the qnrB gene family as mobilized
chromosomal genes from the C. freundii complex (23, 29).

In summary, the high prevalence and diversity of the PMQR
genes make the multidrug-resistant Enterobacteriaceae strains
circulating in the population served by Mercy Hospital a potent
reservoir of quinolone resistance genes that threaten the con-
tinued usefulness of this class of antibiotics in this community.

Accession number(s). Novel gene sequences obtained in this
study were deposited in GenBank under the following acces-
sion numbers: new qnrB variants, qnrB81 (SL157) and qnrB82
(SL156), KX372671 and KX372672, respectively; qnrB1 subvari-
ants, qnrB1a (SL166), qnrB1i (SL174), and qnrB1d (SL185),
KX372673 to KX372675; and truncated qnrB pseudogenes,
�1qnrB (SL129), �2qnrB (SL151), and �3qnrB (SL157), KX372668
to KX372670.
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