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Abstract

Objectives—Polymerization shrinkage stress and factors involved in the stress development such 

as volumetric shrinkage and modulus were investigated in photo-CuAAC (photo-initiated 

copper(I)-catalyzed azide-alkyne cycloaddition) polymerization and compared with conventional 

BisGMA-based methacrylate polymerization for their use as alternative dental resins.

Methods—Tri-functional alkyne and di-functional azide monomers were synthesized for photo-

CuAAC polymerization. Conversion kinetics, stress development and polymerization shrinkage 

were determined with FTIR spectroscopy, tensometery, and with a linometer, respectively, for 

CuAAC and BisGMA-based monomer mixtures using a camphorquinone/amine visible light 

photoinitiator system. Thermo-mechanical properties for the cured polymer matrices were 

characterized by dynamic mechanical analysis and in three-point bending on a universal testing 

machine. Polymerization kinetics, polymerization shrinkage stress, dynamic volumetric shrinkage, 

glass transition temperature (Tg), flexural modulus, flexural strength, and flexural toughness were 

compared between the two different resin systems.

Results—A glassy CuAAC polymer (Tg = 62 °C) exhibited 15-25% lower flexural modulus of 

2.5±0.2 GPa and flexural strength of 117±8 MPa compared to BisGMA-based polymer (Tg = 

160 °C) but showed considerably higher energy absorption around 7.1 MJ×m−3 without fracture 

when strained to 11% via three-point bend compared to the flexural toughness of 2.7 MJ×m−3 

obtained from BisGMA-based polymer. In contrast to BisGMA-based polymers at 75% functional 

group conversion, the CuAAC polymerization developed approximately three times lower 

shrinkage stress with the potential to achieve quantitative conversion under ambient temperature 
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photocuring conditions. Moreover, relatively equivalent dynamic volumetric shrinkage of around 

6-7 % was observed via both CuAAC and dimethacrylate polymerization, suggesting that the low 

shrinkage stress of CuAAC polymerization was due to delayed gelation along with slower rate of 

polymerization and the formation of a more compliant network structure.

Significance—CuAAC crosslinked networks possessed high toughness and low polymerization 

shrinkage stress with quantitative conversion, which eliminated obstacles associated with 

BisGMA-based dental resins including limited conversion, unreacted extractable moieties, brittle 

failure, and high shrinkage stress.
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INTRODUCTION

Dimethacrylate monomers like BisGMA (bisphenol A glycidyl methacrylate) have been 

widely utilized in practical dental restorative material applications such as dental composites 

for decades due to rapid polymerization kinetics, high mechanical performance, and 

desirable aesthetic properties [1]. However, the final conversion of methacrylate-based free 

radical photopolymerization is often limited by the onset of vitrification, which is dictated 

by the chain growth polymerization and resin composition that governs the overall 

mechanical behavior. Therefore, the restricted maximum conversion regardless of enhanced 

mechanical properties leads to a potential for monomer leaching due to the presence of 

extractable monomers in the resin matrices, which raises concerns of toxicity in addition to 

declining mechanical performance. In addition, methacrylate-based polymers develop 

considerable shrinkage stress during the polymerization that is governed by post-gelation 

volumetric contraction and elastic modulus evolved primarily during vitrification in a 

restricted environment [2,3]. As previously reported, the polymerization shrinkage stress of 
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BisGMA-based resins/composites is controlled by the chemical composition [4–6], rate of 

polymerization [7,8], degree of conversion [9], and C-factor (configuration factor as a ratio 

of the bonded surface area to the un-bonded surface area) [10,11]. Significant shrinkage 

stress can lead to marginal leakage, failure of the restorative, adhesive failure between 

composite and tooth, staining and secondary caries [11], which are considered to be the 

main reasons for shortening the lifetime and ultimately necessitating replacement of the 

dental restorative. Finally, dimethacrylate-based polymers are subject to brittle failure under 

stress [12] in spite of significant flexural strength, opening the door for more durable 

alternative dental materials.

Several approaches to minimize polymerization shrinkage stress of dental restoratives, 

generally dealing with reduction in volumetric shrinkage or incorporating a stress relaxation 

mechanism, have previously been suggested. Predominantly, increased filler loading in a 

polymeric matrix reduced volumetric shrinkage and shrinkage stress while significantly 

improving the overall elastic modulus of a composite material [13,14]. Non-functional 

silanated microfillers have been shown to lower contraction stress at equivalent conversion 

as opposed to functional silane-treated microfillers since the non-bonded surface of particles 

enables more free volume and less mechanical adhesion at the interface [15]. One drawback 

of increasing filler content was light attenuation, which hinders the rate of polymerization 

and, therefore, lowers the maximum conversion. Alternatively, oligomerization as a means 

of partially pre-reacting functionalities was used to reduce the concentration of reactive 

species. For instance, reactive nanogel prepolymer additives generated low shrinkage and 

stress without significantly affecting light attenuation and polymerization kinetics [16–18]. 

From the clinical standpoint, curing protocols also influence shrinkage stress development. 

The incremental layering technique is suggested to decrease the C-factor [19], and soft-start 

or pulse-delay curing techniques were purported to enable stress relaxation through early-

stage viscous flow by reducing the initial rate of polymerization using low light intensity 

[20]. Furthermore, studies focusing on modification of BisGMA-based monomer 

formulations as well as other alternative chemistries/mechanisms have also highlighted the 

reduction of volumetric shrinkage and internal stress. Incorporation of pendant bulky groups 

[21] or urethane derivatives [22] in BisGMA-based monomers generated low shrinkage and 

stress with improved mechanical properties. Resin formulation with marginally compatible 

comonomers or with nonreactive linear prepolymer additives yielded reduced shrinkage 

stress with high conversion by polymerization-induced phase separation (PIPS) [23,24]. The 

utilization of thiol-ene and thiol-yne chemistries showed reduction in shrinkage stress via 

delayed gelation in a step-growth polymerization [25–29], and ring-opening polymerization 

presented low shrinkage due to compensating volume expansion of epoxy or cyclopropane 

functionalities in both resins and nano-composites [30–32]. Additionally, insertion of allyl 

sulfide moieties in monomer backbones promoted the bond rearrangement of the network 

without altering crosslink density via reversible addition fragmentation chain transfer 

(RAFT) and achieved the relaxation of shrinkage stress [33–35].

In this work, we introduce a photo-initiated copper(I)-catalyzed azide-alkyne cycloaddition 

(photo-CuAAC) polymerization using a common free radical generating photoinitiator 

(Scheme 1) as an alternative to the conventional dimethacrylate-based chain growth 

polymerization due to the following potential benefits: 1. Copper(I)'s longer catalytic 
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lifetime enables greater degrees of polymerization and dark reaction. 2. The step-growth 

nature of the CuAAC polymerization leads to a homogenous network with a narrow glass 

transition. 3. Delayed gelation in step-growth polymerizations reduces shrinkage stress. 4. A 

triazole-containing polymer network facilitates mechanical enhancement at high conversion. 

Introduced in 2001 [36,37] and now the most prominent “click” chemistry as it is highly 

efficient, robust, and orthogonal [38,39], the CuAAC reaction has led to a significant 

innovation in polymer, block copolymer, and dendrimer synthesis [40–43], bioconjugation 

[44–46], and surface functionalization [47–49]. In 2011, spatio-temporal control of the 

CuAAC reaction/polymerization via photo-reduction of copper(II) upon light irradiation 

[50–52] enabled the formation of thermosets consisting of thermally and chemically stable 

1,2,3-triazoles and tunable backbones for practical applications [53–59]. New designs of 

monomers taking into consideration the safety concerns of azide moieties and kinetic and/or 

mechanical property investigation of bulk photo-CuAAC branched polymers have been 

performed by several researchers [59–61], highlighting the merits associated with photo-

CuAAC polymerization including mechanical enhancement from rigid triazole crosslinkers. 

As previously reported, delayed gelation in a step-growth polymerization allowed internal 

stress to relax by viscous flow prior to gelation [2] and produced more homogeneous 

networks with reduced polymerization shrinkage stress. Therefore, we hypothesized that 

photo-CuAAC polymerization enables the development of a glassy thermoset with enhanced 

mechanical properties due to triazole formation and low polymerization shrinkage stress via 

delayed gelation from an initially low viscous resin as an alternative dental resin/composite.

In the present work, we investigate in situ polymerization kinetics and the development of 

polymerization shrinkage stress with respect to functional group conversion for both 

CuAAC polymerizations and a control consisting of a conventional dimethacrylate 

polymerization. Furthermore, volumetric shrinkage, glass transition, and flexural modulus of 

the CuAAC polymers were determined in comparison with BisGMA-based polymers as a 

means to determine primary factors associated with polymerization shrinkage stress.

EXPERIMENTAL SECTION

1. Materials

1,3-Bis(2-isocyanatopropan-2-yl)benzene, dibutyltin dilaurate, tetrahydrofuran, 6-chloro-1-

hexanol, sodium azide, 1,1,1-tris(hydroxymethyl)propane, propargyl bromide, propargyl 

alcohol, bisphenol A diglycidyl ether, ethanol, 3-(triethoxysilyl)propyl isocyanate, 

copper(II) chloride, N,N,N′,N′,N″-pentamethyldiethylenetriamine (PMDETA), 

camphorquinone (CQ), ethyl 4-(dimethylamino)benzoate (EDAB), and acetonitrile were 

used as received from Sigma Aldrich. Sodium hydroxide, ammonium chloride, dimethyl 

sulfoxide, dimethylformamide, methanol, and sodium sulfate were used as received from 

Fisher Scientific. BisGMA/TEGDMA (70/30) comonomers solution was used as received 

from ESSTECH. Fusion silane coupling agent was used as received from George Taub 

Products & Fusion Co., Inc. Bis(6-azidohexyl) (1,3-phenylenebis(propane-2,2-

diyl))dicarbamate (BZ-AZ) and 1-(prop-2-yn-1-yloxy)-2,2-bis((prop-2-yn-1-

yloxy)methyl)butane (AK) were synthesized according to a previously reported procedure 

[60]. All azides were synthesized according to the azide safety rules and handled with 
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appropriate precaution when working with monomers, resins, and polymers in small 

quantities [62].

Synthesis of bis(6-chlorohexyl) (1,3-phenylenebis(propane-2,2-
diyl))dicarbamate intermediate—A solution of 1,3-bis(2-isocyanatopropan-2-

yl)benzene (4.09 mmol) and dibutyltin dilaurate (5 drops) in THF (3 mL) was added in a 

round bottom flask and purged under nitrogen. The reaction mixture was cooled to 0°C in an 

ice bath, followed by dropwise addition of 6-chloro-1-hexanol (8.60 mmol, 1.17 g). The ice 

bath was removed and the reaction mixture allowed to stir at room temperature for 12 h. The 

reaction mixture was then passed through a silica plug with excess THF. The product was 

dried in vacuo as a colorless oil. (98% yield) 1H NMR (CDCl3), ppm: δ 1.15–1.85 (28H, m, 

CH2, CH3), 3.52 (4H, t, CH2–Cl), 3.97 (4H, t, CH2–carbamate), 5.07 (2H, s, NH, 

carbamate), 7.27 (3H, s, CH-aromatic), 7.42 (1H, s, CH-aromatic); 13C NMR (CDCl3), ppm: 

δ 26.3, 26.6, 29.0, 29.4, 32.5, 45.0, 55.4, 64.3, 121.3, 123.3, 128.4, 147.2, 154.9

Synthesis of bis(6-azidohexyl) (1,3-phenylenebis(propane-2,2-
diyl))dicarbamate (BZ-AZ)—A solution of dicarbamate intermediate (4.15 mmol) and 

sodium azide (16.6 mmol, 1.08 g) in DMF (30 ml) was added to a round bottom flask 

connected with a reflux condenser. The reaction mixture was stirred at 80°C for 12 h. The 

product was extracted with ethyl acetate and water, dried with Na2SO4, purified by column 

chromatography using a hexane:ethyl acetate mixture as eluent, and dried in vacuo as a 

colorless oil. (93% yield) 1H NMR (CDCl3), ppm: δ 1.15–1.75 (28H, m, CH2, CH3), 3.25 

(4H, t, CH2–N3), 3.97 (4H, t, CH2–carbamate), 5.07 (2H, s, NH, carbamate), 7.27 (3H, s, 

CH-aromatic), 7.42 (1H, s, CH-aromatic); 13C NMR (CDCl3), ppm: δ 25.5, 26.4, 29.0, 29.3, 

28.8, 51.4, 55.4, 64.2, 121.3, 123.3, 128.4, 147.2, 154.9

Synthesis of 3,3’-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))bis(1-
azidopropan-2-ol) (BPA-AZ)—A solution of bisphenol A diglycidyl ether (12.4 mmol, 

4.21 g), NH4Cl (37.1 mmol, 2 g), and sodium azide (49.5 mmol, 3.22 g) in H2O:EtOH 

(25:100ml) was added to a round bottom flask connected with a reflux condenser. The 

reaction mixtures were stirred at room temperature for 2h and heated to 100°C for 12h. The 

product was extracted with ethyl acetate and water, dried with Na2SO4, purified by column 

chromatography using a hexane:ethyl acetate mixture as eluent, and dried in vacuo as a 

colorless oil. (70 % yield) 1H NMR (CDCl3), ppm: δ 1.66 (6H, s, CH3), 2.55 (2H, s, OH), 

3.55, 3.78 (4H, m, CH2), 4.02, 4.09 (4H, m, CH2), 4.18 (2H, m, CH-OH), 6.85 (4H, m, CH-

aromatic), 7.18 (4H, m, CH-aromatic); 13C NMR (CDCl3), ppm: δ 31.0, 41.8, 45.9, 53.4, 

69.0, 69.4, 114.0, 127.9, 143.9, 156.0

Synthesis of 1-(prop-2-yn-1-yloxy)-2,2-bis((prop-2-yn-1-yloxy)methyl)butane 
(AK)—A solution of 1,1,1-tris(hydroxymethyl)propane (14.7 mmol, 1.97 g) and 40 w/w% 

NaOH/water (10ml) in DMSO (15 ml) was added in a round bottom flask and stirred for 1 h 

at room temperature. After dropwise addition of propargyl bromide (94 mmol, 8.9 ml of 

80% solution in toluene), the reaction mixture was stirred for 5 days. The product was 

extracted with diethyl ether and water, dried with Na2SO4, purified by column 

chromatography using a hexane:ethyl acetate mixture as eluent, and dried in vacuo as a 
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colorless oil.(72% yield) 1H NMR (CDCl3), ppm: δ 0.88 (3H, t, CH3), 1.42 (2H, q, CH2–

CH3) 2.42 (3H, t, alkyne-H), 3.40 (6H, s, CH2), 4.11 (6H, s, CH2-alkyne); 13C NMR 

(CDCl3), ppm: δ 7.5, 22.7, 42.7, 58.6, 70.3, 74.0, 80.1

Synthesis of prop-2-yn-1-yl (3-(triethoxysilyl)propyl)carbamate (Si-AK)—A 

solution of 3-(triethoxysilyl)propyl isocyanate (40.4 mmol, 10 ml) and dibutyltin dilaurate (5 

drops) in THF (45 mL) was added in a round bottom flask and purged under nitrogen. The 

reaction mixture was cooled to 0°C in an ice bath, followed by dropwise addition of 

propargyl alcohol (40.4 mmol, 2.39 ml). Removal of the ice bath allowed the reaction 

mixture to stir at room temperature for 12 h. The reaction mixture was then flowed through a 

silica plug with excess THF and purified by column chromatography using a hexane:ethyl 

acetate mixture as eluent. The product was dried in vacuo as a colorless oil. (95% yield) 1H 

NMR (CDCl3), ppm: δ 0.65 (2H, t, Si-CH2), 1.24 (9H, t, CH3, t), 1.64 (2H, quint, CH2), 

2.47 (1H, t, alkyne-H), 3.21 (2H, q, CH2), 3.84 (6H, q, CH2-CH3), 4.68 (2H, s, CH2-

alkyne); 13C NMR (CDCl3), ppm: δ 7.6, 18.3, 23.2, 43.5, 52.3, 58.5, 74.4, 78.4, 155.4

Preparation of CuCl2[PMDETA] complex—1:1 molar mixture of CuCl2 and PMDETA 

(N,N,N′,N′,N″-pentamethyldiethylenetriamine) in acetonitrile was stirred overnight at 

room temperature and dried in vacuo to a blue-green solid.

2. Methods

BisGMA/TEGDMA sample preparation—A BisGMA:TEGDMA (70:30 weight ratio) 

mixture with 0.6 weight percentage of CQ and 1.6 weight percentage of EDAB was 

prepared by physical mixing.

CuAAC sample preparation—Stoichiometric mixtures of a diazide, trialkyne (a mole 

ratio of 1:1 to N3:alkyne), with 2 mole percentage of CuCl2[PMDETA] per functionality, 0.6 

weight percentage of CQ, 1.6 weight percentage of EDAB were prepared. Methanol was 

added to homogenize the mixture and later removed in vacuo. Any residual solvent content 

of each resin was verified by 1H-NMR using a Bruker Avance-III 400 MHz spectrometer 

with 16 scans and 1 s of relaxation time. For all experiments, methanol concentration was 

<0.5 wt%.

Fourier Transform Infrared Spectroscopy—An FTIR spectrometer (Nicolet 6700) 

connected to a tensometer via fiber optic cables was used to monitor the real-time 

polymerization kinetics of the functional group conversion. Samples were placed between 

two cylindrical quartz rods, and light was irradiated from the bottom rod using a light guide 

connected to a mercury lamp (Acticure 4000, EXFO) with 400-500 nm bandgap filter. A 

radiometer (Model 100, Demetron Research) was used to measure the output power density 

of the lamp. The overtone signal of the alkyne was monitored between 6538-6455 cm−1, and 

the overtone signal of the methacrylate was measured between 6250-6096 cm−1.

Polymerization shrinkage stress measurement—A tensometer (American Dental 

Association Health Foundation, ADAHF-PRC) was utilized to monitor polymerization post-

gel shrinkage stress using cantilever beam deflection theory [63] with in situ polymerization 
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kinetics [64]. The sample (6mm in diameter, 1mm in thickness) was placed in a cavity 

between two cylindrical quartz rods, which were previously treated with silane 

(methacrylate silane coupling agent or Si-AK) to improve the interfacial adhesion, and 

sealed with a polytetrafluoroethylene (PTFE) sleeve to prevent oxygen inhibition. Light was 

transmitted through the bottom rod using a light guide connected to a mercury lamp 

(Acticure 4000, EXFO) with a 400-500 nm bandgap filter. The deflection of the aluminum 

beam, caused by a tensile force exerted with bonded sample shrinkage, was measured with a 

linear variable differential transformer (LVDT) and converted to stress based upon beam 

calibration constant and cross-sectional area of the sample. A simultaneous measurement of 

functional group conversion with polymerization shrinkage stress by fiber optic cables was 

recorded for 15 min.

Dynamic volumetric shrinkage measurement—A linometer (Academic Center for 

Dentistry Amsterdam, ACTA) was used to measure dynamic volumetric shrinkage [65]. The 

sample (6mm in diameter, 1.5mm in thickness) was placed between a fixed upper glass slide 

and a movable aluminum disc, which were previously treated with grease. The dynamic 

volumetric shrinkage was obtained from the displacement of aluminum disc by a linear 

variable differential transformer (LVDT). The light was irradiated from 5 cm above the top 

of the upper glass slide using a light guide connected to a mercury lamp (Acticure 4000, 

EXFO) with 400-500 nm bandgap filter. A simultaneous measurement of functional group 

conversion with FTIR by fiber optic cables was recorded for 15 min.

Density measurement—A multipycnometer (Quantachrome instruments) was used to 

measure the density of monomer mixtures and polymer samples. Each sample with known 

mass was placed in a 4.5 cm3 cell and pressurized with helium gas. The release of pressure 

resulted in the volume expansion of helium gas, which was converted to density of the 

sample. Equivalent polymer discs made from dynamic volumetric shrinkage measurement 

were used. Functional group conversion was monitored from FT-IR during the 

polymerization.

Dynamic mechanical analysis—A DMA Q800 (TA instruments) in multi-frequency-

strain mode with frequency of 1Hz and a heating rate of 3 °C min−1 was used to measure the 

storage modulus and the glass transition temperature (Tg), which was taken as the peak of 

the tan δ (a ratio of E”/E’: the storage and loss moduli) curve. 350 mW cm−2 of 400-500nm 

light, connected to a mercury lamp (Acticure 4000, EXFO) by a light guide with a 

collimator, was incident for 120 s at room temperature on one side of the sample and 

immediately inverted to cure for 120 s on the opposite side of the sample. The rectangular 

dimensions of each sample specimen were 1×2×25mm (t×w×l). The functional group 

conversion was recorded via FTIR spectra prior to and immediately after the polymerization.

Three point flexural test—Three-point bend (MTS 858 Mini Bionix II) with a strain rate 

of 1 mm min−1 and a span of 20 mm was used to obtain flexural modulus, flexural strength, 

and flexural toughness. Photo-activation provided 350 mW cm−2 of 400-500nm light from a 

mercury lamp (Acticure 4000, EXFO) by a light guide with a collimator. The irradiation was 

conducted for 120 s at room temperature on one side of the sample followed by immediate 
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inversion to cure for 120 s on the opposite side of the sample. The rectangular dimensions of 

each sample specimen were 2×2×25mm (t×w×l). Functional group conversion was recorded 

via FTIR spectra prior to and immediately after the polymerization.

Statistical analysis—Statistical analysis of the experiments was performed via one-way 

analysis of variance (ANOVA), and multiple pair-wise comparisons were conducted via 

Tukey's test with a significance level of 0.05. The number of repetitions for each experiment 

were as follow: dynamic mechanical analysis (n=3), polymerization shrinkage stress (n=3), 

dynamic volumetric shrinkage (n=4), three point flexural test (n=5), density measurement 

(n=3).

RESULTS AND DISCUSSION

In situ polymerization kinetics of the CuAAC polymerization and dimethacrylate 

polymerization using resin formulations in Fig. 1 during 5 min reaction time is presented 

using 500 mW cm−2 of 400-500nm light for 90 s irradiation (Figure 2). Both CuAAC resins, 

labeled as BZ-AZ and BPA-AZ, demonstrated an induction period of 30 s at the beginning 

of polymerization. Contrarily, a BisGMA/TEGDMA resin initiated immediately after light 

exposure. In spite of faster initial rate of BisGMA-based dimethacrylate polymerization, 

only 75% maximum conversion was achieved for BisGMA/TEGDMA while BZ-AZ and 

BPA-AZ yielded higher maximum conversions of ~99% and 80%, respectively, after 90 s of 

light irradiation. The limited maximum conversion obtained from each resin system was due 

to vitrification where Tcure was lower than Tg at given conversion (Table 1). In the case of 

BZ-AZ, nearly quantitative conversion was achieved within a few minutes due to reaction 

exotherm generated from CuAAC polymerization enhanced mobility of the resin and the 

presence of the persistent copper(I) catalyst continuously promoting CuAAC 

polymerization.

To analyze the thermo-mechanical properties of the polymer made from each resin system 

utilized in Fig. 2, the storage modulus at 40 °C and glass transition temperature (Tg) were 

measured via DMA (Table 1). The maximum conversion of each sample was first recorded 

via FTIR immediately after light exposure, and the sample was then placed in the DMA to 

measure the storage modulus and Tg. The 1st cycle of the DMA showed the storage modulus 

and Tg at given conversion measured from FTIR while the 2nd cycle exhibited enhanced 

storage modulus and Tg after the thermal cycle. From the 1st cycle, all three samples showed 

similar storage modulus around 2.3 GPa at 40 °C and exhibited Tg at least 40 °C above 

ambient temperature, indicative of glassy state at ambient temperature. BZ-AZ, BPA-AZ, 

and BisGMA/TEGDMA yielded Tg of 62 °C, 87 °C, and 160 °C at ~99%, 87%, and 74% 

conversion, respectively. BisGMA/TEGDMA exhibited two Tg domains at the 1st cycle due 

to the presence of unreacted free or pendant monomers/oligomers from incomplete 

conversion combined with heterogeneity of network developed from chain-growth 

polymerization, and the lower Tg domain completely disappeared at the 2nd cycle due to 

additional cure during thermal cycle. As expected in a step-growth polymer network, a 

narrow transition from the glassy to the rubbery state was observed in CuAAC polymers 

indicative of network homogeneity as opposed to a chain-growth BisGMA-based polymer 

which displayed a broad Tg over a wide range of temperature (Figure S1-S2). Only BZ-AZ 
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was able to achieve complete conversion without the thermally assisted post-cure under the 

standardized reaction conditions used. Achieving high conversion can eliminate issues 

related to extractable monomers in dental resins.

Maximum polymerization shrinkage stress and dynamic volumetric shrinkage of each resin 

system were compared with reference to functional group conversion (Table 2). From 

polymerization shrinkage stress measurement, BZ-AZ and BPA-AZ showed 3 and 4 times 

lower shrinkage stress, 0.43±0.05 MPa at 98±0.3% conversion and 0.27±0.02 MPa at 

83±4% conversion, respectively, when compared to BisGMA/TEGDMA, which yielded a 

stress of 1.3±0.07 MPa at 75±3% conversion. In addition, dynamic volumetric shrinkage 

measurements performed on the equivalent resin formulations showed that BZ-AZ and BPA-

AZ generated 6.2±0.3% volumetric shrinkage at 97±1% conversion and 6.4±0.5% 

volumetric shrinkage at 87±0.2% conversion, respectively, while BisGMA/TEGDMA 

exhibited 7±0.07% volumetric shrinkage at 76±3% conversion. Despite the relatively high 

volumetric shrinkage obtained from the CuAAC polymerization, the delayed gelation in a 

step-growth polymerization leads to stress reduction due to viscous flow in the lower 

conversion regime up to gel-point conversion of ~71%. This delay enabled the CuAAC 

polymers to generate low shrinkage stress at quantitative conversion. It is worth noting that 

the higher initial viscosity of BPA-AZ resin as compared to BZ-AZ led to a temperature 

increase inside a ~1.5mm thick sample. In order to minimize this adiabatic reaction 

condition, only 60 s of light was used for the BPA-AZ in volumetric shrinkage 

measurement. However, this exotherm becomes modest by reducing reactive functional 

group density when a composite formulation is utilized and still provides mobility to 

enhance the maximum conversion for CuAAC polymerization.

In addition, the volumetric shrinkage per mole of converted functional groups (alkyne or 

azide functionality for CuAAC polymerization and double bond functionality for 

dimethacrylate polymerization) was calculated based on our assumption that dynamic 

volumetric shrinkage obtained from linometer represents total volumetric shrinkage 

including both pre-gel and post-gel regime. From the calculation, relatively similar 

volumetric shrinkage per one mole of functional groups between 20 and 22 ml 

shrinkage/mol of functionality was obtained for all three resin systems, consistent with that 

originally found for methacrylate [66]. In order to determine the molar volumetric shrinkage 

moreprecisely, a multipycnometer was used to measure the density of each monomer 

mixture and the polymer sample obtained from the linometer experiment (Table S3). The 

density difference between monomers and polymers was then converted to molar volumetric 

shrinkage. As a result, BisGMA/TEGDMA and BZ-AZ showed molar shrinkage of 

approximately 21 ml per double bond and 25 ml per triple bond, respectively, which were in 

a good agreement with the linometer experiment. The molar shrinkage generated from 

CuAAC polymerization was caused by not only a five-member ring formation from each 

alkyne and azide functional group but also the development of secondary interactions 

associated with highly crosslinked triazoles.

In order to illustrate the effect of gelation on polymerization shrinkage stress, the evolution 

of polymerization shrinkage stress with respect to functional group conversion in CuAAC 

polymerizations was compared with a BisGMA-based dimethacrylate polymerization at 
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varying light intensities (Figure 3). Each resin mixture was irradiated for 90 s using different 

light intensities ranging from 100 mW cm−2 to 500 mW cm−2, and the final polymerization 

shrinkage stress was measured for 10 minutes of reaction time using the tensometer. A 

gradual increase in light intensity from 100 mW cm−2 to 500 mW cm−2 influenced the final 

conversion acquired after 10 min reaction time as well as the corresponding final 

polymerization shrinkage stress. For a BisGMA-based resin, the double bond conversion 

was increased from 65% to 75%, and the corresponding shrinkage stress was incremented 

from 1 MPa to 1.3 MPa. For a CuAAC resin, the triple bond conversion was increased from 

70 % to 100 %, and the corresponding shrinkage stress escalated from 0 MPa to 0.45 MPa. 

Since the theoretical gel-point conversion for a step-growth polymerization using 

difunctional and trifunctional monomers was approximately 71% using the following 

equation: , where  [67], no significant polymerization shrinkage 

stress was developed in the CuAAC resin below 80 % conversion. Upon gelation, shrinkage 

stress of both CuAAC and dimethacrylate polymerization increased significantly with 

conversion. This delayed gelation in CuAAC polymerization resulted in dramatically 

reduced shrinkage stress in contrast to BisGMA-based resin system which has less than 5% 

gel-point conversion [29,68].

Similarly, the evolution of volumetric shrinkage with respect to functional group conversion 

in CuAAC polymerizations as compared to BisGMA-based dimethacrylate polymerization 

is also addressed by varying light intensity (Figure 4). In order to correlate dynamic 

volumetric shrinkage with polymerization shrinkage stress, the irradiation conditions used 

were similar to those used to evaluate shrinkage stress. Each resin mixture was irradiated for 

90 seconds using different light intensities ranging from 100 mW cm−2 to 500 mW cm−2, 

and the final polymerization shrinkage was measured after 5 minutes reaction time using a 

linometer. As a result, the CuAAC polymerization exhibited a linear relationship between 

conversion and volumetric shrinkage above a gel-point conversion around 71%. Specifically, 

the volumetric shrinkage increased from 0% at 70% conversion to 5.8% at 98% conversion. 

This maximum volumetric shrinkage of 5.8% at quantitative conversion in CuAAC 

polymerization was similar to the maximum shrinkage obtained from BisGMA-based 

dimethacrylate polymerization.

As modulus is one of the contributing factors for shrinkage stress development, three-point 

bending was performed using a universal testing machine (MTS) to analyze flexural 

modulus, flexural strength, and flexural toughness of both CuAAC and BisGMA-based 

polymers. Final conversion of each sample specimen was monitored via FTIR immediately 

after polymerization, and all mechanical tests were performed within 4 days after 

polymerization with the specimens stored in the dark at room temperature. Fig. 5 and Table 

3 present a representative stress-strain curve and the summary of values obtained from three-

point bend experiment. Flexural modulus and flexural strength were calculated using the 

following equations (1) and (2):

(1)
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(2)

where F is the maximum load, L is the length of span, B is the width of the sample 

specimen, H is the height of the sample specimen, d is the extension corresponding to the 

load F [69]. Furthermore, flexural toughness was calculated up to stress at break for 

BisGMA/TEGDMA. However, for BZ-AZ, the samples were sufficiently tough that no 

fracture was observed to the point the sample lost horizontal contact with the fixture; 

therefore, for these experimental samples, the energy to reach a strain of 11%, where stress 

reached ~60% of the stress maximum, was chosen to compare relative toughness values. As 

a result, considerably higher toughness coupled with a relatively high initial stiffness was 

observed for the CuAAC polymers as compared with BisGMA-based polymers. At ~99% 

conversion, BZ-AZ exhibited approximately 15-25% lower flexural modulus around 2.5 

GPa and flexural strength around 117 MPa compared with BisGMA/TEGDMA at 76 % 

conversion. However, BZ-AZ showed significantly higher energy uptake upon deformation 

when compared with BisGMA/TEGDMA polymer. Approximately 7.1 MJ m−3 of energy 

was absorbed by BZ-AZ when strained to 11% whereas only 2.7 MJ m−3 of energy was 

absorbed by BisGMA/TEGDMA before fracture at ~4.5% strain, giving the advantage of 

excellent strength yet reduced brittleness in CuAAC polymers.

CONCLUSIONS

Photo-CuAAC polymerizations are capable of achieving high to complete conversion upon 

light irradiation on the minutes time scale while forming tough, glassy, low stress 

homogeneous glassy crosslinked networks at ambient temperature. CuAAC polymers exhibit 

a dramatic ability to absorb energy without fracturing and considerably reduced 

polymerization shrinkage stress. Although photo-CuAAC polymerization has a somewhat 

slower polymerization rate under these conditions, comparable volumetric shrinkage, and 

moderate flexural modulus compared with methacrylate-based free radical 

photopolymerization, central mechanical failures in practical dental restoratives emerge 

from brittleness and high polymerization shrinkage stress, highlighting the significance of 

low stress generating tough CuAAC polymers.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Monomer libraries of difunctional azides BZ-AZ, BPA-AZ, trifunctional alkynes AK, 

difunctional methacrylates BisGMA, TEGDMA, photoinitiator CQ, co-initiator EDAB, 

copper catalyst CuCl2[PMDETA], alkyne silane Si-AK.
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Figure 2. 
Polymerization kinetics of two bulk photo-CuAAC polymerizations labeled as BPA-AZ 

(green open triangle) and BZ-AZ (blue open circle) and BisGMA/TEGDMA polymerization 

as (red open square) as measured by FTIR (n = 3). Each mixture was irradiated for 90 s at 

ambient temperature with 500mW cm−2 of 400-500nm light following 1 min in the dark to 

establish a baseline.
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Figure 3. 
Polymerization shrinkage stress for bulk photo-CuAAC polymerizations labeled as BZ-AZ 

(open circle) and a BisGMA/TEGDMA control denoted as (open square) taken after 10 min 

of reaction time as a function of functional group conversion using a tensometer. Each 

mixture was irradiated for 90 s at ambient temperature with varying light intensities of 

400-500nm light – 500 mW cm−2 (red), 400 mW cm−2 (orange), 300 mW cm−2 (green), 200 

mW cm−2 (blue), 100 mW cm−2 (purple).
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Figure 4. 
Average dynamic volumetric shrinkage of bulk photo-CuAAC polymerization denoted as 

BZ-AZ (open circle) and dimethacrylate polymerization denoted as BisGMA/TEGDMA 

(open square) taken following 5 minutes of reaction time as a function of functional group 

conversion. Each mixture was irradiated for 90 s at ambient temperature with different light 

intensities of 400-500nm light – 500 mW cm−2 (red), 400 mW cm−2 (orange), 300 mW 

cm−2 (green), 200 mW cm−2 (blue), 100 mW cm−2 (purple).
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Figure 5. 
A representative stress-strain curve of bulk photo-CuAAC polymer denoted as BZ-AZ (blue 

solid line) and dimethacrylate-based polymer denoted as BisGMA/TEGDMA (red solid 

line) via three-point bend in MTS.
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Scheme 1. 
A general reaction diagram for the photoinitiated CuAAC polymerization using a 

photoinitiator in three subsequent steps: photoinitiation, copper reduction to form Cu(I), and 

and Cu(I) catalyzed cycloaddition of azides and alkynes to form 1,2,3-triazoles.
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Table 1

FTIR and DMA were used to measure functional group conversion, storage modulus at 40 °C (E’40°C), and 

glass transition temperature (Tg). Bulk photo-CuAAC polymer denoted as BZ-AZ and BPA-AZ and 

dimethacrylate-based polymer denoted as BisGMA/TEGDMA were compared. Within each row, the letters 

indicate statistically significant differences (p<0.05) via a one-way ANOVA and a Tukey's test.

BisGMA/TEGDMA BZ-AZ BPA-AZ

1st cycle Conversion [%] 74±2B 99±1A 78±9B

E' @ 40 °C [GPa] 2.2±0.2A 2.0±0.1A 2.3±0.2A

Tg [°C] 67±6C, 154±2A 63±1C 84±2B

2nd cycle E' @ 40 °C [GPa] 2.4±0.1A 2.1±0.2B 2.0±0.04B

Tg [°C] 153±1A 64±1C 105±1B
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Table 2

FTIR, tensometery, and linometery were used to measure functional group conversion, final polymerization 

shrinkage stress, and dynamic volumetric shrinkage, respectively. Bulk photo-CuAAC polymers denoted as 

BZ-AZ and BPA-AZ and a dimethacrylate-based control denoted as BisGMA/TEGDMA were compared. 

Each mixture was irradiated for 90 s at ambient temperature with 500mW cm−2 of 400-500nm light. The only 

exception was made for BPA-AZ which was irradiated for 60 s in the volumetric shrinkage measurements. 

Conversion from shrinkage stress measurement is presented with conversion from volumetric shrinkage 

measurement being in parentheses. Within each row, the letters indicate statistically significant differences 

(p<0.05) via a one-way ANOVA and a Tukey's test.

BisGMA/TEGDMA BZ-AZ BPA-AZ

Conversion [%] 75±4B (77±3)C 98±0.4A (98±1)A 83±4B (87±0.2)B

Shrinkage stress [MPa] 1.3±0.08A 0.43±0.07B 0.27±0.03C

Dynamic volumetric shrinkage [%] 7±0.08A 6.2±0.3B 6.4±0.6A,B

Shrinkage [ml/functionality] 20±1A 22±1A 21±2A
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Table 3

A comparison of functional group conversions obtained after 4 min reaction time from FTIR (X), flexural 

modulus (E), flexural strength (σ), flexural toughness (Gc), and energy required to strain 11% (Gc’) measured 

from three-point bend test in Fig. 5 between bulk photo-CuAAC polymer denoted as BZ-AZ and 

dimethacrylate-based polymer denoted as BisGMA/TEGDMA. The letters indicate statistically significant 

differences (p<0.05) via a one-way ANOVA and a Tukey's test.

BisGMA/TEGDMA BZ-AZ

X [%] E [GPa] σ [MPa] Gc [MJ m−3] X [%] E [GPa] σ [MPa] Gc’ [MJ m−3]

76±1B 3.3±0.5A 139±14A 2.9±0.7B 99±1A 2.5±0.2A 117±9B 7.1±0.2A
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