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Abstract

Objectives—Resting metabolic rate (RMR) reflects energetic costs of homeostasis and accounts 

for 60-75% of total energy expenditure (TEE). Lean mass and physical activity account for much 

RMR variability, but the impact of prolonged immune activation from infection on human RMR is 

unclear in naturalistic settings. We evaluate the effects of infection on mass-corrected RMR among 

Bolivian forager-horticulturalists, and assess whether RMR declines more slowly with age than in 

hygienic sedentary populations, as might be expected if older adults experience high pathogen 

burden.

Materials and Methods—RMR was measured by indirect calorimetry (Fitmate MED, Cosmed) 

in 1,300 adults aged 20-90 and TEE was measured using doubly labeled water (n= 40). Immune 

biomarkers, clinical diagnoses and anthropometrics were collected by the Tsimane Health and Life 

History Project.

Results—Tsimane have higher RMR and TEE than people in sedentary industrialized 

populations. Tsimane RMR is 18-47% (women) and 22-40% (men) higher than expected using six 

standard prediction equations. Tsimane mass-corrected TEE is similarly elevated compared to 

Westerners. Elevated leukocytes and helminths are associated with excess RMR in multivariate 

regressions, and jointly result in a predicted excess RMR of 10-15%. After age 40, RMR declines 

by 69 kcal/decade (p<0.0001). Controlling for lean mass and height accounts for 71% of age-

related RMR decline, and adding indicators of infection minimally affects the age slope. The 

residual level of age-related decline from age 40 is 1.2% per decade.
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Conclusion—High pathogen burden may lead to higher metabolic costs, which may be offset by 

smaller body mass or other energy-sparing mechanisms.
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resting metabolic rate (RMR); energetic expenditure; costs of infection; Tsimane; maintenance 
costs

Introduction

The size and allocation of an organism’s daily energy budget reflects its evolved strategies 

for growth, reproduction and maintenance, though trade-offs and integration of these 

functions across diverse environments in free-living organisms are poorly understood. In 

humans, roughly 60-75% of total energy expenditure (TEE, kcals/day) is spent on resting 

metabolic rate (RMR, kcals/day) (Manini 2010; Speakman and Selman 2003). RMR reflects 

the energetic costs of maintaining homeostasis. The sum of estimated RMR, activity energy 

expenditure (FAO/WHO), and dietary-induced thermogenesis is a common means of 

estimating TEE. However, these RMR and TEE estimations may be inappropriate in non-

Western settings. Direct studies of TEE and RMR in humans and other species suggest that 

individuals adapt to increased activity levels via behavioral and physiological energy-sparing 

mechanisms, reducing RMR, other non-muscular activity, and TEE within narrow ranges 

(Dugas et al. 2011; Heini et al. 1991; Pontzer 2015). Further, standard RMR equations do 

not incorporate immune response and other maintenance costs that are commonly elevated 

outside of socioeconomically developed countries. The impact of prolonged immune 

activation from infection and enhanced baseline immunity on RMR in human populations 

facing high pathogenic burdens and energetic limitation is not currently known.

One set of vital metabolic challenges faced by all organisms including humans includes 

acute and chronic immune activation, and other maintenance functions that help tolerate or 

defend against pathogenic assault. Species such as primates with slow life histories 

specialize in energetically expensive specific defenses like cell-mediated and antibody-

mediated immunity, rather than cheaper non-specific defenses like inflammation (Lee 2006). 

While maintenance of the immune system can be metabolically expensive, immune 

activation in particular is costly; a number of studies using avian and rodent models have 

quantified the energetic costs of infection or immune activation, while others have shown 

that energetic stress compromises certain immune function components (Frankenfield et al. 

1994; Lochmiller and Deerenberg 2000; Nieman et al. 1990; Schmid-Hempel 2003; Zuk and 

Stoehr 2002). In humans, RMR increases by 8-14% in university students during an acute 

respiratory infection (Muehlenbein et al. 2010). RMR increases by 30% with sepsis 

(Carlsohn et al. 2011; Kreymann et al. 1993). Even vaccinations (e.g. typhoid fever) can 

raise RMR by 16% (Cooper et al. 1992). In humans and other species energetic costs of 

immune activation from infection or tissue injury may trigger “sickness behavior”, a broad 

coordinated adaptive response to promote energy conservation and reallocation (Hart 1988; 

Stieglitz et al. 2015b).
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These estimates of acute immune response suggest that daily energy requirements vary 

depending on local pathogen burden, and all else equal may be higher in populations with 

chronically high pathogen load. Alternatively, such populations may adapt metabolically 

and/or behaviorally to chronic immune system activation and maintain TEE similar to that in 

other, less pathogenically burdened populations. Metabolic response to pathogens may also 

change with age, as maintenance becomes increasingly costly, and in response to other 

external pressures. Human metabolic adaptation and inherent energy allocation trade-offs 

may be less severe when more food is available (Pontzer et al. 2016). Similarly, the widely 

documented 1-2% per decade decline in adult RMR in industrialized populations (Elia et al. 

2000; Fukagawa et al. 1990; Manini 2010; Van Pelt et al. 2001; Vaughan et al. 1991) may 

not generalize to pre-industrial populations with higher pathogen burden. Such population-

level differences in metabolic adaptation and age-related decline could contribute to 

differences in obesity, chronic disease, and premature mortality (Fabbri et al. 2014; Ruggiero 

and Ferrucci 2006). To date, however, there have been few studies of human RMR in a free-

living, energy-limited population with high rates of infectious morbidity. While RMR has 

been measured among Siberian Evenki, Keto and Yakut (Katzmarzyk et al. 1994; Snodgrass 

et al. 2006), Bolivian Aymara (Kashiwazaki et al. 1995; Kashiwazaki et al. 2009) and in low 

income countries (see Dugas et al. 2011), none of these studies have related RMR to 

indicators of infection or immune activation.

Here we estimate RMR among the Tsimane, a physically active population of forager-

horticulturalists inhabiting a pathogen-rich environment in Amazonian Bolivia. We first 

assess the extent to which RMR measured by indirect calorimetry differs from RMR 

estimated from common prediction equations, and then test whether differences can be 

explained by a combination of environmental, anthropometric and health variables 

indicating infectious burden. We test whether indicators of infection are associated with 

higher RMR controlling for potential confounders, and then assess whether Tsimane RMR 

declines more slowly with age compared to hygienic, sedentary industrialized populations. 

We also measure TEE in a subset of our sample to examine the proportion of total daily 

energy requirement accounted for by RMR. By examining age-related changes in 

anthropometrics (e.g. fat and fat-free mass) and infection status, we test whether accounting 

for these conditions substantially attenuates the decline in Tsimane RMR with age.

Materials and Methods

Study Population

The Tsimane are forager-horticulturalists (population ~15,000) living in the Beni 

Department of the Bolivian Amazon, dispersed across 90+ villages ranging in size from 

40-550 inhabitants. Many Tsimane are isolated from modern society and have not yet 

undergone an epidemiological and technological transition. Only two villages have any 

electricity (albeit intermittent), and there is no running water, sanitation, or waste 

management. Below we highlight relevant details about diet, physical activity and infection.

Tsimane diet remains largely traditional, with 66% of calories derived from cultivated 

staples (plantains, rice, manioc, corn), 17% from wild game, 7% from freshwater fish, and 

6% from fruits and nuts. Estimated dietary contributions from carbohydrates, protein and fat 
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are 72%, 14% and 14%, respectively (Martin et al. 2012). Less than 10% of calories come 

from market-derived foods. Obesity is rare in adulthood; Tsimane have 8-10 times lower 

levels of obesity than age- matched US peers (Gurven et al. 2009).

Tsimane are physically active throughout adulthood, spending roughly 5-6 hours/d in 

moderate activity; male and female estimated physical activity levels (PALs), using a 

combination of accelerometry and heart rate, are 2.15 and 1.85, respectively (Gurven et al. 

2013). Tsimane living near the local town are not less active than Tsimane from other 

regions, perhaps because of the physical activity required for common wage labor options 

(e.g., logging, cash cropping). Men have higher PALs than women, although men’s activity 

exhibits more seasonal and age-related variation. Older Tsimane adults remain active but 

generally engage in less physically demanding activities with age because of greater 

infirmity. This is especially apparent for men, as their PAL declines by 10%-20% from the 

peak (achieved in the late 20s) to older adulthood (age 60+ years). Tsimane VO2max 

matches that of other subsistence populations, and is higher than estimates from 

industrialized populations. Their VO2max also declines more slowly than age-matched 

Canadians using a similar measurement method (Pisor et al. 2013). Tsimane also show 

reduced vascular aging (e.g. low rates of hypertension), perhaps due to their relatively high 

level of physical activity (Gurven et al. 2012a).

Tsimane are frequently diagnosed with an infection during annual clinical exams conducted 

by the Tsimane Health and Life History Project (THLHP) (respiratory: 20-30%, 

gastrointestinal: 10-30%, skin: 5%) (Gurven et al. 2012b). Elevated levels of white blood 

cells (WBCs) (>10,000 cells/mm3) are 10 times more prevalent among Tsimane than in the 

US. WBCs also decline with age among Tsimane, particularly lymphocytes and eosinophils, 

suggesting increasing maintenance costs because older adults are not less likely to 

experience infection than younger adults (Gurven et al. 2009). Systemic immunity shows 

many indications of chronic activation from infection with helminths, with 70% of Tsimane 

infected at any given time (Blackwell et al. 2011; Blackwell et al. 2013; Blackwell et al. 

2015; Blackwell et al. 2016); coinfection is not uncommon (Blackwell et al. 2013; Martin et 

al. 2013). Serum immunoglobulins are two orders of magnitude higher than among US 

adults, especially for IgE (highly indicative of infection with helminths) (Blackwell et al. 

2011). On average, 20% of WBCs are eosinophils, also indicative of intense parasitic 

infection, compared with the normal US reference range of <5%, with >90% of Tsimane 

adults in the clinically high range. Natural killer cells and B cell counts are approximately 

twice as high as typical US values (Blackwell et al. 2016). Tsimane also demonstrate higher 

levels of inflammation than those found in industrialized populations. C-reactive protein 

(CRP) is elevated in children, consistent with immune activation due to chronic exposure to 

acute infections, and increases with age (Gurven et al. 2009). Erythrocyte sedimentation rate 

(ESR) is also extremely high (Table 1), with mean levels of 27 mm/hour for males and 37 

for females, compared with US reference ranges of <15 and <20, respectively.

Participants

Study participants were adults aged 20+ years (mean±SD= 45.8±13.9, range: 20-90) across 

46 villages visiting the THLHP mobile (within-village) health clinic for medical 
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consultation by project physicians. This clinic was also composed of laboratory technicians 

trained to analyze biomarkers of infection, and bilingual (Spanish-Tsimane) research 

assistants conducting interviews. THLHP participation rates are ~85% of the sampled 

population (random sampling for ages 20-39 and near-complete sampling for ages 40+). 

Figure 1 provides a flowchart describing the sampling and participant recruitment. Data 

collection occurred from January 2012 through November 2014, including 445 adults age 

20-39 (53% female) and 855 adults age 40+ (48% female). Tsimane total fertility rate is 9.1 

births, breastfeeding duration is 19.2±7.3 months, and interbirth intervals are 30.7±10.6 

months (McAllister et al. 2012; Veile et al. 2014); we thus estimate that 62% and 29% of 

women age 20-39 in our sample are breastfeeding or pregnant, respectively.

Resting metabolic rate (RMR)

RMR was measured using the Fitmate MED indirect calorimetry system (Cosmed, Italy). 

The seated participant relaxed while wearing an RMR mask during an initial habituation 

phase (~5 minutes), which was followed by 10 minutes of continuous data acquisition. The 

Fitmate employs a turbine flowmeter for measuring ventilation and a galvanic fuel cell 

oxygen sensor for analyzing the fraction of oxygen in expired gases. Sensors measure 

humidity, temperature, and barometric pressure for use in internal calculations. The Fitmate 

uses standard metabolic formulas to calculate oxygen uptake. Fitmate monitors oxygen 

uptake (VO2), ventilation (Ve), respiratory frequency (Rf), heart rate (HR) and fraction of O2 

expired (FeO2). RMR (kcal/day) is estimated by a modified Weir equation: RMR = 

[5.675×VO2 + 1.593×VCO2 −21.7], where VO2 is the volume of oxygen in the breath (ml/

min), and VCO2 is carbon dioxide output (ml/min) (Weir 1949). VCO2 is not measured 

directly but estimated assuming a fixed respiratory quotient (RQ) of 0.85, which has been 

shown to introduce little error in RMR estimation (Nieman et al. 2005; Nieman et al. 2003). 

The Fitmate is portable, easy to use, and has been validated against the Douglas bag system 

(Nieman et al. 2006), and it shows very high inter- and intra-day test-retest reliability for 

RMR measurement (Campbell et al. 2014).

Due to field conditions, a number of deviations from standard protocol were necessary. First, 

standard protocol requires 12 hours of fasting, which we could not guarantee, especially as 

measurements were taken throughout the day during THLHP surveillance (3.1% of RMR 

assessments began <8am, 61.4% between 8am-noon, 4.9% noon-2pm, 26.2% 2pm-5pm, 

4.4% >5pm). 75.1% of participants reported having last eaten within 5 hours, 3.9% between 

5-10 hours, and 20.9% 10+ hours prior to RMR testing. Time of day and time since the 

patient last ate were thus used as controls in all analyses. Second, temperature varied across 

days, and maintaining a temperature-controlled setting was not possible. Daily ambient 

temperature, humidity and precipitation were obtained from meteorological measures taken 

at the nearby San Borja airport (http://www.wunderground.com/history/airport/SLRY), and 

used as additional controls. Third, it was not possible to prevent physical activity during the 

12 hours prior to RMR assessment. We also conservatively control for season (52.2% 

sampled in “dry” from May to August; 15.5% in “wet” from December to March; 32.3% in 

“other” during April and from September-November) because activity, pathogen burden, diet 

and climate can vary throughout the year.
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Estimated RMR was based on six standard prediction equations devised for settings where 

direct or indirect calorimetry is unavailable: Oxford (Henry 2005), FAO (FAO/WHO/UNU 

1985), Cunningham (Cunningham 1980), Harris-Benedict (Harris and Benedict 1918), 

Mifflin-St. Jeor (Mifflin et al. 1990), and Owen Weight (Owen et al. 1987; Owen et al. 

1986) equations. These all use age, sex and anthropometric measures to estimate RMR, and 

a number of analyses have shown that different equations have varying degrees of accuracy 

depending on the age, ethnicity, physical fitness, body size and composition of the study 

sample (Frankenfield et al. 2005). Anthropometric measures include weight and height 

(except for Owen, which uses only weight) in all but the Cunningham equation, which 

instead uses fat-free mass; its reliance on fat-free mass has led some researchers to argue 

that Cunningham is more relevant for active populations than the other equations (Carlsohn 

et al. 2011; De Lorenzo et al. 1999). The Oxford equations were developed due to 

oversampling of Italians and undersampling of people from the tropics in formulation of the 

FAO equations, and tend to generate lower RMR estimates than the other equations (Henry 

2005).

Total Energy Expenditure (TEE)

TEE (kcal/day) was measured in a subset (n=40, 44% male; mean±SD age: 48.6±14.2) using 

the doubly labeled water method (Speakman 1997). After providing a baseline urine sample, 

subjects ingested 114g (males) or 79g (females) of water enriched to 6% 2H2O and 10% 

H2
18O. Six urine samples were collected over the subsequent 12 days, and sent frozen to the 

Pontzer Lab (Hunter College, New York, USA) for determination of isotope concentrations 

(2H and 18O) via cavity ring down spectrometry (L2120i, Picarro Inc., Santa Clara CA, 

USA). Isotope dilution spaces and elimination rates were calculated via the slope-intercept 

method and used to calculate the mean rate of carbon dioxide production using equation 

17.15 in Speakman (1997). Carbon dioxide production was converted to TEE using the 

modified Weir equation, assuming a respiratory quotient of 0.93, following dietary 

macronutrient estimates described in Martin et al. (2012). Isotope dilution was also used to 

determine fat-free mass for these subjects.

Physical activity was measured by accelerometry counts based on a three-day sample with 

an Actigraph GT3X accelerometer (Actigraph LLC, Pensacola, FL) in a subset of 

participants (n=28) in order to assess the relative impact of physical activity on TEE (see 

Gurven et al. 2013 for additional details).

Anthropometrics and biomarkers of infection

Height and weight were measured during medical exams using a Seca 213 portable 

stadiometer and Tanita scale (BF680). The scale also recorded body fat percentage by 

bioelectric impedance, which was used to calculate fat-free mass (FFM) and fat mass based 

on proprietary prediction equations. The TEE subsample permits a validation of the Tanita-

based anthropometric measures. Correlations between Tanita-based and isotope dilution 

methods for FFM, fat mass and weight are 0.91, 0.74, and 0.91, respectively (all 

p’s<0.0001).
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In-field blood analysis of fasting venous samples using the QBC Diagnostics dry 

hematology system (Drucker Diagnostics Inc., Port Matilda, PA) provided estimates of 

hemoglobin (Hb) and WBC. ESR was measured via the Westergren method (Westergren 

1957). THLHP project physicians diagnosed illnesses and trauma presented by patients with 

the aid of bilingual Tsimane assistants. Diagnoses from the International Classification of 

Disease (ICD-10) are grouped into several categories, including respiratory ailments, back 

pain, and intestinal helminths. The latter category was based on having clinical symptoms of 

intestinal infection, and supplemented by laboratory confirmation from fecal samples 

analyzed by direct microscopy when possible (30.1% of cases) (Blackwell et al. 2013).

Ethics

Informed consent was obtained for all protocols from the Tsimane government that 

represents Tsimane interests and oversees research projects, from village officials for each 

participating village, and from all study participants. Consent procedures and protocols were 

approved by the University of California, Santa Barbara and University of New Mexico 

Institutional Review Boards.

Statistical Analyses

Multiple linear regressions of RMR and TEE were performed using SAS 9.3. Stepwise 

regressions using Akaike’s Information Criterion (AIC)-based stop criterion were used to 

determine best-fit models. Comparative analyses of RMR and TEE were performed by 

ordinary least squares (OLS) regression using 185 indirect calorimetry studies compiled by 

Dugas and colleagues (Dugas et al. 2011). To assess age changes in RMR, a series of 

regression models were conducted on adults age 40+, although some data were missing 

resulting in varying sample sizes (see Figure 1). Controlling for age and sex, cases with 

missing data had only slightly lower RMR (est=−42.6, p=0.065, β=−0.05). Nonetheless, 

analyses were run on several datasets created to insure that missing data did not skew results. 

These four datasets include: a) listwise deletion (n=471); b) raw data (n=471 to 855); c) 

imputed data using stochastic regression (n=855); and d) multiple imputations using Markov 

Chain Monte Carlo (MCMC) (n=855).

Results

Mean±SD RMR for men and women age 20+ is 1988±353 and 1642±325 kcals/day, 

respectively (Table 1). Men have higher RMR than women at all ages; RMR plateaus from 

ages 20-39, then declines with age thereafter (Figure 2). TEE for men and women is 

3065±422 and 2186±366 kcals/day, respectively. The proportion of TEE that is RMR is 

higher in women (β=−0.33, p=0.05) and by age (β=0.31, p=0.07, n=32); predicted 

RMR/TEE from ages 20 to 80 is 63.7-78.6% for women and 56.3-71.1% for men.

TEE and RMR

We examine whether RMR is associated with TEE, and whether the association is 

independent of FFM and physical activity. RMR is highly correlated with TEE (Pearson 

r=0.63; p<0.0001, df=36). Mean ± SD ratio of RMR/TEE is 0.71±0.12 for women (range: 
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0.56-0.90), and 0.64±0.10 for men (range: 0.49-0.85), well within the range observed in 

other populations. FFM alone accounts for 73% of the variance in TEE (p<0.0001, df=36, 

est=52.4±5.3). No other demographic or anthropometric variables (sex, age, height, fat mass, 

total body mass) are significantly associated with TEE in multiple regression including FFM 

(all other p’s>0.10). RMR remains positively associated with TEE after controlling for 

accelerometer-based estimates of calories expended per hour of physical activity (RMR: 

β=0.56, p<0.001; activity: β=0.37, p=0.019; Adj R2=0.57), but its magnitude and 

significance are reduced after controlling for FFM (RMR: β=0.18, p=0.150; FFM: β=0.70, 

p<0.0001; activity: β=0.19, p=0.076; Adj R2=0.81).

Do Tsimane have elevated RMR and TEE?

Tsimane measured RMR is 18-47% higher in women and 22-40% higher in men than BMR 

estimated using the six standard prediction equations (Supporting Information Table S1), 

including Oxford (Henry 2005), FAO (FAO/WHO/UNU 1985), Cunningham (Cunningham 

1980), Harris-Benedict (Harris and Benedict 1918), Mifflin-St. Jeor (Mifflin et al. 1990), 

and Owen Weight (Owen et al. 1987; Owen et al. 1986) equations. Pearson correlations 

between measured and estimated RMR range from 0.32-0.41. Even the most accurate 

prediction (Cunningham) underestimates RMR by 253 kcals/day in women and 365 

kcals/day in men (Supporting Information Table S1). RMR is only 55 (n=65) and 82 (n=77) 

kcals/day lower in women and men, respectively, after conservatively eliminating samples 

within 5 hours of eating, during mid-day and afternoon from noon-5pm and during dry 

season months; these lower RMR measures remain 14-42% higher (in women) and 17-35% 

higher (in men) than expected based on the five prediction equations.

Tsimane RMR is high relative to other studies where RMR is similarly measured by indirect 

calorimetry. Using energetic and anthropometric data from a recent meta-analysis, we 

compare Tsimane RMR with samples from “high” and “low” socioeconomic development 

as assessed by the Human Development Index (HDI) (Dugas et al. 2011). We find that 

Tsimane women’s RMR is higher than 11/11 of low or middle HDI samples, and 71/79 

(90%) high HDI samples; men’s RMR is higher than 9/9 of low HDI samples, and 46/48 

(96%) high HDI samples. Most strikingly, Tsimane RMR is higher by 482 kcals (p<0.0001) 

than RMR in 31 countries from 150 samples, after controlling for sex, mean age, body mass 

and physical activity (PAL) (generalized linear model, n=148, Adj R2=0.88) (Supporting 

Information Table S2, Figure 3).

Tsimane TEE is also high relative to other populations (Supporting Information Table S3). 

Tsimane TEE is 284 kcals/day higher relative to other populations (β=0.06, p=0.10) when 

controlling for weight, age and sex. When PAL is included in the models as an additional 

covariate, the Tsimane “excess” TEE reduces to 177 kcals/day (Supporting Information 

Table S3: Model 3). If RMR is added instead of PAL to the models, the Tsimane no longer 

appear different than other populations (p=0.88) (Supporting Information Table S3: Model 

2).
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Predictors of excess RMR

We first assess whether groups of variables summarizing anthropometric status, weather 

conditions at time of study, and medical diagnoses predict “excess” RMR, i.e. the deviation 

of measured RMR from its estimation based on the most conservative prediction equation 

(Cunningham), after controlling for age, sex, season, time of day, and time last eaten. Being 

taller, and having greater fat mass but lower weight are associated with having excess RMR 

(Table 2: Model 1). Lower daily average temperature, mean humidity, and precipitation are 

also associated with excess RMR (Table 2: Model 2). Lastly, excess RMR is higher among 

those with clinical symptoms of intestinal helminth infection, greater immune activation as 

indicated by elevated WBCs, high hemoglobin and back pains (Table 2: Model 3). In all 

models, men have greater excess RMR, and excess RMR is greatest in the dry season.

Stepwise regression with AIC stop criterion to yield a best-fit model starting with all 

variables, suggests that variables from all three macro-categories are associated with excess 

RMR (Table 2: Model 4; Supporting Information Table S4). Having recently eaten (std 

β=0.19-0.21), being male (β=0.11-0.29), taller (β=0.08-0.17), fatter (β=0.09-0.14) and older 

(β=0.07-0.19) have moderate to large effect sizes for excess RMR, but these are not 

consistently statistically significant in all best-fit models based on the five prediction 

equations (Supporting Information Table S4). We use average regression coefficients from 

the full models of sex-specific excess RMR to derive a “conservative” estimate of RMR by 

subtracting the effects of season, time of day, time since last meal and precipitation from an 

individual’s measured RMR, and then construct a loess smooth of “conservative” RMR in 

Figure 2. “Conservative” RMR is substantially lower than measured RMR, especially in 

men, where values overlap in late adulthood with predicted RMR based on the Cunningham 

equation.

Elevated WBCs (β=0.08-0.10), intestinal helminths (β=0.11-0.13) and greater back pain 

(β=0.07-0.09) were consistently associated with excess RMR across all six best-fit models. 

Based on the full regression models in Supporting Information Table S4, an adult diagnosed 

with helminths and marked WBC elevation (additional 3.0 × 106 cell/uL) can expect to have 

excess RMR of 143-168 kcals/day, depending on the prediction equation used. This amount 

reflects increases of 10-12% and 11-15% above predicted mean RMR in men and women, 

respectively, which are independent of other covariates. No interactions between 

anthropometric variables and WBC count, helminths or ESR are significant when added to 

the best fit models. The best fit models retained a number of the control variables: recent 

eating is associated with excess RMR of 140-160 kcals/day, dry season sampling with 

105-129 kcals/day, and mid-day sampling with 117-136 excess RMR kcals/day. Despite the 

size and number of significant effects, our best-fit models explain only 9-19% of the 

variance in excess RMR, depending on which estimation equation is used as the baseline 

(Supporting Information Table S4).

Women’s lactation (proxied by having an infant <18 months) is associated with 223 kcals/d 

higher RMR (p=0.025) when controlling for age, time of day, last eaten, ambient 

temperature, precipitation, and season. However, the effect of lactational status is reduced to 

170 kcals/d (p=0.067) in models that include anthropometric variables, and loses 

significance when additionally controlling for indicators of infection or immune activation 
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(est=129, p=0.225). Because of this confounding with other variables, lactation did not 

appear in any of the best-fit models. Pregnancy was not significant in any of the models of 

RMR. Rather than being unimportant variables, we instead suspect that there is too little 

variation in pregnancy or lactation status among Tsimane women age 20-39 as 91% of 

women are either pregnant or breastfeeding. Unfortunately we do not have data on 

pregnancy trimester nor on breastfeeding intensity to obtain more fine-grained results.

RMR Decline with Age

RMR changes minimally from ages 20-39, but then declines starting by age 40 years (Figure 

2). We test the extent to which this age decline diminishes after controlling for other time-

varying factors that are associated with RMR. Supporting Information Figures S1 and S2 

show the age profiles of anthropometric and biomedical variables for men and women. FFM, 

height, weight and WBC count decline with age in both sexes. Fat mass tends to decline 

after age 50 in women; fat mass and body fat percentage tend to increase with age in men. 

Serum hemoglobin tends to increase with age in women, but decreases with age in men. 

ESR shows a greater increase in men than women, though it remains higher in women 

overall.

We add covariates in a stepwise fashion to regression models of RMR on age for adults aged 

40+ years and examine the change in the age slope (Table 3, Supporting Information Tables 

S6-S8). The baseline model controlling for sex shows a 69 kcal/decade decline in RMR 

(p<0.0001). Adding controls for ambient weather, time of day, and time since last eaten 

reduces the baseline age slope by 9%. It reduces further by 71% after considering FFM and 

height. Consideration of biomedical variables slightly improves overall model fit in Models 

5-9 and reduces statistical significance of the age effect, but does not substantially alter its 

magnitude (range: 67-89% below baseline age effect). A stepwise regression model with 

AIC stop criterion using all the variables of Model 9 in Table 3 shows an age effect that is 

68% below the baseline estimate. This level of decline is about 1.2% per decade from an 

initial 1,826 kcals/day average from ages 20-39. Overall, at least two-thirds of the decline in 

RMR with age is due to changes in other aspects of phenotypic condition indicating 

nutritional and health status. Results vary only minimally when not restricting the dataset to 

non-missing cases (Supporting Information Table S6) or when imputing missing data using 

two different methods (Supporting Information Tables S7 & S8).

Discussion

Tsimane RMR is much higher than predicted by standard equations that rely only on age and 

anthropometric measures. Standard equations are often poor predictors of RMR in select 

samples, such as professional athletes. For example, Harris-Benedict and Cunningham 

equations have grossly underestimated RMR in male heavyweight endurance athletes 

(Carlsohn et al. 2011). Prediction equations underestimated RMR in male rowers and 

canoeists by 133-202 kcals/day (Carlsohn et al. 2011). FAO equation overestimated RMR in 

a Vietnamese sample by 7-14% (Nhung et al. 2005). The closest predictions with the 

Cunningham equation still underestimated Tsimane RMR by over 250 kcals/day. However, 

no prediction equation can fit all individuals and situations (Wang et al. 2001). While FFM 
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often accounts for the majority (~50-80%) of intra-population variation in daily RMR, a 

high level of intra-species variation in RMR not explained by differences in FFM, age and 

sex suggests the importance of other processes (Henry 2000; Weiss et al. 2012).

One source of additional variation in RMR that we isolated was the high burden of 

pathogens in a tropical environment. The high RMR is surprising given that RMR is 

expected to be lower in tropical climates with higher mean temperatures (Froehle 2008; 

Leonard et al. 2005). The costs of immune activation can be substantial: Tsimane adults with 

clinical symptoms of intestinal helminth infection have excess RMR of 116-138 kcals/d 

(Table S4). Elevated WBC counts are 10 times more prevalent among Tsimane than 

Americans; Tsimane WBCs are 2,600 cells/uL higher on average than US levels among 

adults age 18-49 (Blackwell et al. 2016), which in our model adds 23-28 excess RMR kcals/

day. These findings build upon results from studies in Western populations showing RMR 

increases with infection (Muehlenbein et al. 2010). However, the role of infection on energy 

balance and maintenance costs in community-dwelling populations is still under-

appreciated. It has been estimated that quiescent WBCs require approximately 382 kcals/

day, whereas activated WBCs responding to an infection require an additional 36-118 

kcals/day from glucose, glutamine, ketone bodies and fatty acid sources (Straub et al. 2010). 

Chronic inflammation due to chronic infection and/or repeated acute infections often 

induces an ‘energy appeal reaction’ (i.e. redirection of energy-rich fuels from stores to 

activated immune cells) to fuel sustained immune activation, resulting in elevated RMR via 

hypothalamic-pituitary-adrenal axis and sympathetic nervous system-directed activity.

With sustained immune activation, a number of co-morbid conditions can result from 

prolonged energetic allocation to immune defenses, including sickness behavior, cachexia, 

osteopenia, dyslipidemia and anemia (Straub et al. 2010). These energy allocation decisions 

are regulated by circadian rhythms of interacting neuroendocrine and immune systems, 

which help coordinate the storage and utilization of energy throughout the day (Straub et al. 

2010). Sickness behavior is common with a pro-inflammatory state, and is associated with 

more sedentary behavior (Dantzer et al. 2008). Depressed affect has been associated with 

higher inflammatory cytokines and reduced physical activity in Tsimane (Stieglitz et al. 

2015b). Consistent with these and other associations of prolonged immune investment, 

osteopenia (Stieglitz et al. 2015a), low HDL, LDL and total cholesterol (Gurven et al. 2009) 

and anemia are prevalent conditions among Tsimane. Despite their relatively active lifestyle 

and traditional diet, Tsimane bone mineral status, HDL, LDL and total cholesterol are 

substantially lower than among age-matched US peers. One hypothesis to be tested in future 

work is that these conditions may represent consequences of high RMR due to diversion of 

energy to maintain sustained immune responses.

High RMR in older age has been identified as an indication that greater energetic investment 

is needed to repair damage and maintain functional homeostasis. The expectation in “healthy 

aging” is that RMR should decline with age, due to lower FFM and physical activity, but 

also after considering the effects of changing body composition and fat composition 

(Luhrmann et al. 2010). Several organs decrease in mass at later ages, as do the metabolic 

rates of some tissues. These changes with age may be the result of tradeoffs meant to fuel 

other maintenance functions. If aging involves increasing costs of maintaining homeostasis, 
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higher RMR should be associated with increasing multisystem dysregulation, physical 

frailty and cachexia-like muscle loss due to insufficient energy to meet the high metabolic 

needs of muscle homeostasis (Ruggiero and Ferrucci 2006; Straub et al. 2010). Some 

evidence is consistent with the idea that high RMR in older adults is associated with health 

deterioration. Older US adults from the Baltimore Longitudinal Study of Aging (BLSA) 

with no functional limitations or medical conditions had 109 kcals/day lower RMR than 

those suffering from chronic conditions and comorbidities (Schrack et al. 2014). Other 

studies show positive associations between RMR, morbidity and mortality (Ruggiero et al. 

2008), leading some to label RMR a “candidate biomarker of global health status” 

(Ruggiero and Ferrucci 2006; Schrack et al. 2014). We found that RMR makes up a greater 

proportion of TEE with age and for women (whereas in the same limited sample, activity-

based expenditure did not vary with age (p=0.73)), consistent with greater metabolic needs 

at later ages and lower relative energy available for other allocations. RMR declined with 

age among Tsimane over age 40 at a similar rate as in other populations, but most of this 

cross-sectional age effect was reduced after controlling for variation in anthropometric and 

health status. Additionally accounting for variation in hemoglobin levels eliminated the age 

effect altogether (Table 3). The lack of a robust age decline in RMR could suggest a higher 

level of frailty and morbidity among older Tsimane adults relative to other populations.

Study Limitations

Field conditions limited our ability to obtain RMR measures in a completely standardized 

manner that is temperature controlled with participants abstaining from food and activity for 

12 hours. In the current study, we show that field conditions were responsible for some of 

the excess RMR as would be expected; time of sampling and recency of food consumption 

combined account for a maximum of up to 297 excess RMR kcals/day (Supporting 

Information Table S4). But on average, we conservatively estimate that these effects account 

for at most 26-46% of the excess RMR in women and 54-85% in men (Figure 2, Table S1). 

We also do not report estimates of diet-induced thermogenesis, which are likely to be greater 

in diets high in protein and carbohydrate, and lower in fat (Westerterp et al. 1999). 

Additionally, RMR is about ~70 kcals/day higher in a seated rather than supine testing 

position (Compher et al. 2006; Levine et al. 2000). Despite these limitations, “resting state” 

can be difficult to define, and minimal metabolism will be sensitive to many other factors, 

including menstrual cycle, wakefulness and nervousness (Ruggiero and Ferrucci 2006). Our 

data on breast feeding are limited, and the estimated cost of lactation reported here (223 

kcal/day) is lower than previous estimates (Butte and King 2005). Similarly, our pregnancy 

status data are limited and show no significant increase in RMR while other studies in well-

nourished populations report a 90-470 kcal/day increase in RMR depending on trimester 

(Butte et al. 1999). Under energy-limited conditions, BMR has been observed to slightly 

decrease or change only minimally during pregnancy as an energy-sparing strategy, along 

with lowering activity expenditure or increasing dietary intake (Jasienska 2009; Lawrence et 

al. 1987; Poppitt et al. 1994). Another possibility is that we were unable to find an effect 

because there was not a large enough sample of individuals who were not pregnant or 

lactating (only 9% of women aged 20-39 years). Additionally these women may have 
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underlying pathologies impeding their reproductive state, and thus may not be comparable. 

Lastly, the cross-sectional design limits causal inference about age changes in RMR.

Conclusion

Tsimane RMR is high in comparison with other human populations, even after adjusting for 

body mass and other covariates. These results are confirmed by DLW analyses showing that 

high Tsimane RMR is consistent with their higher mass- and age-adjusted TEE. Tsimane 

TEE is similar to that of other populations when controlling for their higher RMR. Bolivian 

highland agropastoralists show similar TEE and lean body mass as Tsimane, but lower RMR 

and higher PAL (Kashiwazaki et al. 1995; Kashiwazaki et al. 2009). Our findings are 

consistent with TEE being constrained within a relatively narrow range (Pontzer 2015), 

whereas, given their physically active lifestyle, an additive, unconstrained model of energy 

expenditure would predict even higher Tsimane TEE than we document here. If greater 

immune surveillance and activation require higher resting energetic expenditure in a high 

pathogen tropical environment, we should expect reduced allocations towards other activities 

and physiological processes in populations like the Tsimane, including physical activity and 

cognitive performance (Ezeamama et al. 2005; Gurven et al. 2013; Trumble et al. 2014). It is 

noteworthy that energetic limitations do not appear to shunt energy away from reproductive 

effort, given the high fertility, short interbirth intervals, early menarche and intenstive 

breastfeeding patterns observed among Tsimane (McAllister et al. 2012; Veile et al. 2014). 

Future studies of the patterning and causes of RMR variation with age in different 

populations should help provide important insights about the changing maintenance costs 

affecting senescence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of participant recruitment and sample.
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Figure 2. 
Measured and estimated RMR by age and sex. Estimations based on six prediction equations 

that have been widely applied to different populations. Tsimane ‘conservative’ RMR is a 

loess spline of adjusted raw data, using average regression cofficients of excess RMR across 

the six equations, correcting for season, time since last meal, time of day and precipitation. 

Mean±SD “conservative” RMR is 1678±354 for men and 1526±322 for women.
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Figure 3. 
RMR in comparative perspective for adults. Comparative data from Dugas et al. 2011: 

Appendix. RMR is shown separately for developing (low or middle Human Development 

Index (HDI) populations, solid diamonds) and developed societies (high HDI, blue squares). 

Green triangle represents Tsimane.
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Table 1

Study sample description. Means ± SD shown for relevant variables.

Female Male

Variable 20-39 (n=236) 40+ (n=415) 20-39 (n=209) 40+ (n=440)

RMR (kcals/day) 1660 ± 320 1632 ± 327 1991 ± 341 1986 ± 359

Age (years) 31.2 ± 5.2 53.6 ± 11.4 31.9 ± 5 53 ± 10.5

Weight (kg) 57.5 ± 9.2 54.7 ± 9.5 62.4 ± 8 62.8 ± 8.8

Height (cm) 151.4 ± 6.3 150.4 ± 6.1 162.7 ± 6.4 161.5 ± 5.5

FFM (kg) 41.8 ± 4.6 39.8 ± 4.9 52.3 ± 6.1 50.4 ± 5.9

Body Fat % 26.4 ± 7.6 26.5 ± 7.1 16 ± 5.1 19.1 ± 6.2

BMI (kg/ht2) 25.1 ± 3.7 24.2 ± 4.1 23.6 ± 2.8 24 ± 2.9

Hb (g/ml) 12.5 ± 1.2 13 ± 1.2 14 ± 1.2 13.9 ± 1.4

ESR (ml/mm) 28.9 ± 11.9 27.1 ± 13.8 22.2 ± 11.5 21.1 ± 13.3

WBC (×103 cells/uL) 10.2 ± 2.7 9.4 ± 2.7 10.3 ± 3.1 9.5 ± 2.6

 Clinical diagnoses:

  Clincal helminths 0.06 ± 0.24 0.16 ± 0.37 0.02 ± 0.15 0.16 ± 0.37

  Respiratory 0.17 ± 0.38 0.18 ± 0.38 0.16 ± 0.36 0.09 ± 0.29

  Back pains 0.23 ± 0.42 0.29 ± 0.46 0.39 ± 0.49 0.39 ± 0.49

  Gastrointestinal 0.26 ± 0.44 0.23 ± 0.42 0.19 ± 0.4 0.16 ± 0.37

  All infection 0.55 ± 0.76 0.55 ± 0.73 0.36 ± 0.57 0.49 ± 0.66
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