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We discuss a novel diagnostic method for predicting the early recurrence of liver cancer with high accuracy for personalized
medicine. The difficulty with cancer treatment is that even if the types of cancer are the same, the cancers vary depending on the
patient. Thus, remarkable attention has been paid to personalized medicine. Unfortunately, although the Tokyo Score, the Modified
JIS, and the TNM classification have been proposed as liver scoring systems, none of these scoring systems have met the needs of
clinical practice. In this paper, we convert continuous and discrete data to categorical data and keep the natively categorical data as
is. Then, we propose a discrete Bayes decision rule that can deal with the categorical data. This may lead to its use with various types
of laboratory data. Experimental results show that the proposed method produced a sensitivity of 0.86 and a specificity of 0.49 for
the test samples. This suggests that our method may be superior to the well-known Tokyo Score, the Modified JIS, and the TNM
classification in terms of sensitivity. Additional comparative study shows that if the numbers of test samples in two classes are the

same, this method works well in terms of the F1 measure compared to the existing scoring methods.

1. Introduction

Liver cancer is one of the refractory cancers, and overcoming
it is of national concern. Despite complete surgical resection,
the problem with refractoriness lies in the high percentage
of recurrences of liver cancer [1]. If recurrence can be accu-
rately predicted for each patient, effective treatment can be
administered, and recurrence-free patients may not need to
be given unnecessary anticancer agents or undergo computed
tomography (CT) scans. As a result, health care costs can also
be controlled. Therefore, personalized medicine that provides
the best cancer treatment to each patient is needed.

The difficulty with cancer treatment is that even if the
types of cancer are the same, the cancers vary depending
on the patient. Even a wide variety of tests such as blood
tests or CT scans reveal only certain aspects of cancer, and

there is no test that can perfectly detect cancer. Nevertheless,
by using various combinations of laboratory data (also
called markers), the Tokyo Score [2], the Modified JIS [3],
and the TNM classification [4, 5] have been proposed as
representative liver scoring systems. However, none of these
scoring systems have met the needs of clinical practice. The
reason is that as noted above, each marker has not played a
decisive role in the prediction of recurrence, and further, the
combination of markers used in these scoring systems has
been experimentally obtained from the results of physician
trial and error, indicating no assurance of optimal prediction.

The diagnosis of leukemia was made possible using
levels of gene expression, and this triggered the diagnosis of
cancer by machine learning [6]. As a result, full-scale deploy-
ment of microarray techniques has begun in the field of
cancer diagnosis. Furthermore, thanks to the latest progress
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in machine learning such as artificial neural networks [7]
and support vector machines (SVM) [8], various cancer
diagnostic methods have been developed [9-14]. Other than
these techniques involving levels of gene expression, reports
have been published on the diagnosis of liver cancer by blood
tests that characteristically use methylation volume [15] and
on the diagnosis of lung cancer through artificial neural
networks that characteristically use clinical data and which
are based on SVM [16]. However, all of these methods use
quantitative data that consequentially limit the available data.

Generally, with laboratory data, quantitative data (metric
data or continuous data), which are represented by numerical
numbers, intermingle with qualitative data (nonmetric data
or categorical data). Unfortunately, as with the machine
learning described above, the conventional Bayes classifier,
which is particularly popular in statistical pattern recognition
[17], cannot also be applied to qualitative data. To overcome
this practical limitation, we propose a discrete Bayes decision
rule that deals with qualitative data. For the quantitative data,
they are first converted to qualitative data by thresholding,
and as a result, all laboratory data become discretized data
(qualitative data). Then, a patient is represented as a pattern
vector that consists of the discretized laboratory data. Next,
the problem of predicting recurrence is defined as a two-class
problem that distinguishes between a pattern of recurrence
class and a pattern of nonrecurrence class in a patient. For
this two-class problem, a classifier is designed according to
our own discrete Bayes decision rule that can handle discrete
data, and the resulting classifier distinguishes between the
presence and absence of recurrence with a high degree
of accuracy. Moreover, to handle the high dimensionality
of pattern vectors, the optimal combination of markers is
selected by feature selection, which is based on the resampling
technique using virtual samples.

2. Decision Rule and Feature Selection

2.1. Classifier Design by Discrete Bayes Decision Rule. As pre-
viously mentioned, the discrete Bayes classifier is character-
ized by the fact that it can handle discrete data. Given M
markers as candidates, the range of each marker is divided
into divisions so that they become mutually exclusive events.
Suppose that x;, x,, . .., x; are selected as d targeted markers
from among M markers and then the discretized laboratory
data of a patient in marker x; belongs to the division
Xjr > j = 1,2,...,d. Here, Xitr) denotes the rjth division
of marker x;. The subscript j is a discrimination number
representing a marker. Then, the patient is described as
the pattern vector X =[xy, ), X,), - - -> X4, |- The class-
conditional probability P(x i) | w;) of the division x i) for
class w; is defined as

i
n.
j(rj)
P(xj(rj) | wi) = —"

= i=1,2,...,d 1
d . ] > & > U
Q=1 Mer)

where 7’  represents the number of patients who belong to
J

jr
the division x j(r,) among n' patients from class w;.
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TaBLE 1: Divisions and numbers of patients with each marker.

Division of markers w, w,
1 2
X1(1) ) LCTON
1 2
X1(2) @) 5T))
1 2
X1 1) )
1 2
X202) ) )
1 2
X23) M) M)
1 2
X)) My )
1 2
Xa(ry) My M)

Assuming that, in general, the events in which the dis-
cretized laboratory data belong to any of the divisions are
mutually independent, the class-conditional probability P(x |
w;) is described as follows:

Ky | @;)

= P(x14) @) P (23l @;) -+ P (40ry | @)

d
=[P (a1 ;) -
k=1

The posterior probability P(w; | x ) in the two-class
problem is provided by Bayes’ theorem as follows:

P(X | wi) = P(xl(rl), xz(rz),. ..

2)

P(w;) P (x| w;)
P(w) P (x| w)+P(w)P(x|w,)

P(w, | x)= (3)

where P(w;) is the prior probability for class w;. To equally
deal with the recurrence class and nonrecurrence class, we
assume that the prior probability P(w;) is an equal probability
of 0.5. Then, the posterior probability is simplified as follows:

P(x|w)
P(x|w)+P(x]w)

P(w; | x)= (4)

By substituting (2) into this formula, the posterior probability
can be calculated as follows:

[T, P (% | 1)
HZ:]P(xk(rk) | “’1) + Hf:lp(xs(rs) | “’2)

By the discrete Bayes decision rule, a pattern x is classified
into a class w; where the posterior probability P(w; | x) is
maximum.

Cases of the relationship between the divisions and the
number of patients are shown in Table 1. Table 1 shows that
the range of marker x, is divided into three divisions of x, ),
Xy(2)» and x,3), and among these divisions the division x,,

P(w, | x)= (5)

includes n;(z) patients from class w;. Here, the total sum of
the number of the patients in each division is the following:
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FIGURE 1: Arrangement of training samples of the recurrence class
for markers x, and x,.

”;(1) + n;(z) + ng@ = n'. As previously mentioned, 7' is the
number of all patients from class w;.

We explain the discrete Bayes decision rule by using
concrete cases. Assume that in the case of d = 2 markers
x, and x, are used and the discretized laboratory data of a
patient belong to x;(;) in marker x; and x,., in marker x,.
Figure 1 illustrates this with the use of data from Table 2 and
shows that the number of recurrence patients belonging to
xy(1) and x,3) is 7. Then, the equations are the following:

1
LCTOY)

P(xl(l) | wl) = A +n
1(1)

1 b
23)
6
) (6)
M)
1 1
gy T 1y

>

P(x2(3) | wl) =

and the class-conditional probability P(x;;), x,3) | w;) is as
follows:

P (510ys Xo03) | @1) = P (3, | @) P (x50 | @y) . (7)

Similarly, P(x;(;), X5y | w,) is obtained and from (5) and the
posterior probabilities of classes w, and w, are each obtained,
and then the patient is classified into the class in which the
posterior probability is maximum.

Now, let us compare the discrete Bayes classifier to the
conventional Bayes classifier, both of which classify patterns
based on the posterior probability. In the conventional Bayes
classifier, a pattern is represented as a multidimensional
vector that consists of quantitative data, and the statistical
information of the pattern distribution is in the mean vector
and covariance matrix. In general, the number of patients is
small and the number of dimensions is large. In small sample
size situations, the discrete Bayes decision rule is also influ-
enced by the number of samples, as with the conventional
Bayes decision rule, and the discrimination ability deterio-
rates. In the conventional Bayes decision rule, an inverse of
a covariance matrix may not exist. At this time, although the
conventional Bayes classifier cannot be designed, the discrete
Bayes classifier can be designed, irrespective of an inverse
matrix. The first advantage of the discrete Bayes decision rule
is that it does not need the inverse of a covariance matrix.

TABLE 2: Division and number of training samples in each class.

Number of samples

Division of markers 29 89
Recurrence  Nonrecurrence
within1year ~ within 1 year
X1y ALB > 3.5 15 60
X, ALB<35 14 29
3<c22) Tumor number x tumor size 6 47
zi%) Tumor number x tumor size " 29
;ng) Tumor number x tumor size b 3
X3y Vp+ 10 18
X3 VP~ 19 71
X0 ICG < 15 14 44
X4 1CG 2 15 15 45
X501y VV+ 9 16
Xs5) VV— 20 73
Xe(1) Number of platelets > 10 16 70
Xg(2) Number of platelets < 10 13 19
X7 PT > 80 18 67
Xy PT < 80 1l 22
Xg(y) Bilirubin < 1 17 61
Xg(p) Bilirubin > 1 12 28
E;(rll)-;)oe;gree of differentiation 25 79
Xo(y Degree of differentiation por 4 10
Xjg(1) Liver damage A 15 60
Xp(y Liver damage B 14 29

Second, from the viewpoint of computational cost, in the
conventional Bayes classifier, which deals with quantitative
data alone, the computational cost increases sharply with
an increasing number of dimensions (number of markers).
Meanwhile, in any of the discrete Bayes classifiers, which
deal with discrete data alone, computation is only scalar
computation. Even if a dimension is high, the discrete Bayes
classifier can be easily calculated, indicating that the classifier
is practical. To simplify the discussion, we have so far dealt
with a two-class problem, but this decision rule can easily be
extended to multiclass problems.

2.2. Selection of Optimal Markers. Knowing which markers
are used for the discrete Bayes classifier is essential in discrim-
ination. This is a problem of feature selection in the statistical
pattern recognition fields [17]. Here, we explain a method to
solve a feature-selection problem in which a combination of
d markers useful for discrimination is selected from among
M candidate markers. The small number of training samples
in marker selection often causes the overfitting problem [18]
that while a classifier with use of selected markers may allow
perfect classification of the training samples, it is unlikely
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FIGURE 2: Selection of optimal markers.

to perform well on new patterns. To avoid the overfitting
problem, by using virtual samples, which are produced by
the resampling technique from available training samples,
an optimal combination of markers is obtained. This idea
comes from a Bootstrap technique [19]. The flow is shown in
Figure 2.

First, training samples are randomly divided into virtual
training samples and virtual test samples. Then, the number
of markers at the start of searching is determined, and one
combination of markers of interest is used. Second, based on
the discrete Bayes decision rule with the markers of interest,
the class-conditional probability P(x | w;) is calculated from
the discretized laboratory data of the virtual training samples,
and a virtual test sample is classified based on the posterior
probability P(w; | x) calculated by using the class-conditional
probability. In discrimination, we investigate which divisions
the discretized laboratory data of a virtual test sample belong
to according to the markers of interest. Next, using the class-
conditional probability corresponding to the divisions to
which the data belong, the posterior probability is obtained
from (5), and the virtual test sample is classified into a
class in which the posterior probability is maximum. The
procedures described above are repeated independently N
times. The means of the sensitivity and specificity against
the virtual test samples are estimated from N trials. Then,
using the same number of markers, the whole of another
combination of markers is evaluated. Because we consider
that the prediction of recurrence is important, high sensitivity
is required. Now, in the number of markers involved, under
the constrained conditions of a specificity of 0.5 against the
virtual test samples, a combination of markers that maximizes

the mean sensitivity is selected as a candidate of the optimized
solution for the number of markers involved. Next, the
number of markers is increased by one, and this similar
procedure is repeated until the number of markers M — 1
is reached. Thus, from among the candidates obtained, an
optimal combination of markers is selected and is used for
the design of the classifier.

3. Experiment

3.1. Data. Data were obtained from patients whose liver can-
cers were entirely excised during surgery at Yamaguchi
University School of Medicine. Of these patients, 57 experi-
enced a recurrence of liver cancer within one year and 177
experienced no recurrence. Liver cancer is classified as type
C liver cancer, type B liver cancer, and others depending on
the infecting virus type. The virus types of liver cancer used
are shown in Table 3 according to the training samples and
the test samples. Additionally, similar to the Tokyo Score,
Modified JIS, and TNM classification, the proposed method
is also not reliant on virus type.

Among candidate markers such as ALB, tumor number
x tumor size [20], ICG, vp, vV, platelets, PT, bilirubin, degree
of differentiation, and liver damage, an optimal combination
of markers was obtained. This optimal combination was used
for the discrete Bayes classifier.

We explain the details of Table 2, in which the cutoft value
for each marker was determined by a physician in advance,
as follows. As an example, for ALB, patients are divided
into patients with recurrence and patients without recurrence
based on whether the value of the marker exceeds 3.5. Among
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TaBLE 3: Classification of samples by virus type.

(a) Breakdown of training samples

. Recurrence Nonrecurrence
Virus type 1 1
within 1 year within 1 year
B 6 16
C 18 56
Samples that are neither B
5 17
type nor C type
Total number of samples 29 89
(b) Breakdown of test samples
Virus type Recurrence Nonrecurrence
P within 1 year within 1 year
B 6 16
C 17 55
Samples that are neither B 5 7
type nor C type
Total number of samples 28 88

29 of the patients with recurrence, 15 have an ALB of greater
than 3.5, and 14 have an ALB of not more than 3.5. For any
marker, the total number of divided recurrence patients is 29
within the marker.

3.2. Experimental Method. The holdout method [21] splits
the available data into two mutually exclusive sets, referred
to as the training and test sets. The classifier is designed
using the training set, and performance is evaluated on
the independent test set. The holdout method preserves the
independence of the training samples and test samples, which
are used for estimation of discrimination performance. The
recurrence samples (n = 57) and nonrecurrence samples
(n = 177) are each randomly divided into halves, and one-
half is assigned to training samples and the other half to test
samples. Consequently, the number of recurrence training
samples is 29 and that of nonrecurrence training samples
is 89, whereas the number of recurrence test samples is 28
and that of nonrecurrence test samples is 88. The flow of
classifier design and evaluation is shown in Figure 3. An
optimal combination of markers was determined initially.

Next, the optimal combination of markers was fixed, and
the number of training samples is discussed. Generally, an
increase in the number of training samples results in an
improvement of the discrimination ability of the classifier.
Therefore, a designer is interested in how many training
samples are needed for classifier design. Then, as a subset of
the increased number of training samples, we assume that a
series of 6 training subsets, as shown in Figure 4, holds the
following relation:

§; ¢S, S¢S, S5, (8)

Here, a subset takes a structure of nested subsets. The first
subset S; consists of 5 recurrence training samples and 15
nonrecurrence training samples. The next subset S, contains
23 training samples by adding one true recurrence training

All samples

Random division

Training samples

Test samples

Design Evaluation

Discrimination
performance

FIGURE 3: Flow of classifier design and evaluation.

sample and two nonrecurrence training samples. In this
manner, a discrete Bayes classifier is designed for each subset
with increased true training samples, and the discrimination
abilities of 6 discrete Bayes classifiers for the same test samples
are obtained. This trial was independently repeated 30 times,
and the influence of an increase in training samples on
discrimination ability was investigated.

Then, a comparison of the performance of the classi-
fiers with the existing scoring formulae was conducted. For
comparison, we adopted accuracy, sensitivity, specificity, the
Youden index [22] (= sensitivity + specificity — 1.0), F1
measure, and diagnostic odds ratio [23, 24] for the test sam-
ples as evaluation values of the discrimination performance
of a classifier. The higher the values are, the higher the
discrimination performance of a classifier is. Here, sensitivity
means the rate of correctly classifying patients as patients
with recurrence among all patients with recurrence, and
specificity means the rate of correctly classifying patients
as patients without recurrence among all patients without
recurrence. To predict early recurrence, our primary interest
is in the sensitivity, under the constrained condition of a
specificity of 0.5. ROC analysis [18] was also performed.

Here, we explain the score formulae as targets for com-
parison. For the Tokyo Score [2], the Modified JIS [3], and
the TNM classification [4, 5], a score value is assigned to
each marker used according to cutoff value determined by
a physician. Then, a total score is assigned as a summation
of all individual score values. Patients are diagnosed by the
cutoft value against this summary score. For example, in the
Tokyo Score, 4 markers, albumin, bilirubin, tumor size, and
the number of tumors, are used. If a patient has an albumin
value of 3.0 g/dL, bilirubin value of 1.5g/dL, tumor size of
1.0 cm, and the number of tumors of 4, the score values of each
marker are 1 point, 1 point, 0 points, and 2 points, respectively,
resulting in a total score of 4 points. If the cutoff value is 2,
then the patient is diagnosed as having possible recurrence.

Finally, as described previously, the discrete Bayes classi-
fier uses scalar function alone for discrimination, and, thus, it
has a computational advantage. To clarify this advantage, we
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sensitivity.

prepared 1,160,000 artificial test samples that were obtained
from 116 actual test samples copied 10000 times. Then, using
combinations of the markers shown in Table 4, the discrim-
ination time of the artificial test samples was measured by
changing the number of markers one by one from 3 to 6. The
discrimination time was defined as the time from the start
to the end of the discrimination process, and the time was
measured using the clock function.

3.3. Results

3.3.1. Optimal Combinations of Markers. Table 4 shows the
candidate combinations of the markers that were obtained
from 100 times of resampling per number of markers and
their discrimination performances. A dash symbol in the
table indicates that no combinations meeting the constrained
conditions of sensitivity and specificity existed. Based on
sensitivity under the constrained condition of a specificity of
0.5, a combination of the four markers of tumor number x
tumor size, vp, ICG, and liver damage was considered to be
optimal, among the four candidates.

3.3.2. Influence of the Number of Training Samples on Discrim-
ination Performance. The relationship between the number
of training samples and sensitivity is shown in Figure 5. The

0 0.2 0.4 0.6 0.8 1
1 — specificity

—@— Proposed method
—>%~ Tokyo Score
- Modified JIS
—A— TNM classification

FIGURE 6: ROC curve.

horizontal lines indicate the 95% confidence intervals of the
sensitivity values.

3.3.3. Performance Comparison between the Classifier and
Existing Liver Scoring Systems. Discrimination performances
were compared between the discrete Bayes classifier and
existing liver scoring systems. The classifier was evaluated by
well-known indices such as F1 and the diagnostic odds ratio
[23, 24], and the results are shown in Table 5. Furthermore,
the results of the ROC analysis are shown in Figure 6.
The discrete Bayes classifier does not use a cutoft value but
instead constructs ROC curves to determine sensitivity and
specificity by changing the markers one by one from 3 to 6.
Additionally, between the marker numbers of 3 and 4, the
sensitivity and specificity were the same at 0.86 and 0.49,
respectively.

3.3.4. Computational Complexity. The relationship between
the number of markers and CPU time as the number of
markers is changed one by one from 3 to 6 is shown in
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TABLE 5: Results from the proposed method and existing liver scoring systems.

(a) Results using 28 recurrence test samples and 88 nonrecurrence test samples

Index Proposed method Modified JIS with 3 TNM classification with 2 Tokyo score with 2
Accuracy 0.58 0.77 0.34 0.49
Sensitivity, recall 0.86 0.57 0.96 0.71
Specificity 0.49 0.83 0.14 0.42
F1 measure 0.49 0.54 0.41 0.40
Youden index 0.35 0.40 0.10 0.13
Diagnostic odds ratio 5.73 6.49 4.26 1.81

(b) Results using 28 test samples/class obtained by resampling

Index Proposed method Modified JIS with 3 TNM classification with 2 Tokyo score with 2
Accuracy 0.67 [0.66, 0.69] 0.70 [0.69, 0.71] 0.55 [0.54, 0.56] 0.57 [0.55, 0.58]
Sensitivity, recall 0.86 0.57 0.96 0.71
Specificity 0.49 [0.46, 0.52] 0.83[0.81, 0.85] 0.14 [0.12, 0.16] 0.42 [0.39, 0.44]
F1 measure 0.73 [0.72, 0.73] 0.66 [0.65, 0.67] 0.68 [0.68, 0.69] 0.62 [0.62, 0.63]
Youden index 0.35[0.32, 0.37] 0.40 [0.38, 0.42] 0.10 [0.08, 0.12] 0.13 [0.11, 0.16]
Diagnostic odds ratio 6.03 [5.39, 6.67] 7.88 [6.22, 9.53] 4.62 [3.86, 5.38] 1.95 [1.74, 2.15]
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FIGURE 7: Relation between the number of markers and discrimina-
tion time.

Figure 7, suggesting that linear computational complexity was
observed.

3.4. Discussion. Based on the results of this experiment,
it was revealed that a combination of 4 markers (tumor
number x tumor size, vp, ICG, and liver damage) selected
from among the 10 candidates was optimal. Next, when
the influence of the training sample size on discrimination
performance was investigated, as shown in Figure 5, the
number of training samples almost converged to 100 from the
viewpoint of the sensitivity. The discrimination performance
was compared with that of three existing representative
liver scoring systems. Discrimination performance of the
discrete Bayes decision rule using the optimal combination
of markers against test samples showed a sensitivity of
0.86 and a specificity of 0.49, as shown in Table 5(a). The

discrete Bayes classifier achieved high sensitivity, which is
an important indicator of the prediction of early recurrence,
and the decrease in specificity was smaller than that of the
existing scoring systems. Because we tried not to miss cancer
recurrence, we adopted an evaluation standard in which
sensitivity is maximum by maintaining the specificity at a
certain level.

Meanwhile, in terms of accuracy and the F1 measure, we
assumed that the numbers of recurrence test samples and
nonrecurrence test samples were the same. Then, using 28
recurrence test samples and 28 nonrecurrence test samples
that were derived by the resampling method, we indepen-
dently reevaluated them 100 times. The results are shown
in Table 5(b). From Table 5(b), we see that if the numbers
of test samples in two classes are the same, this method is
superior to the existing scoring methods in terms of the
F1 measure. Next, as shown in Figure 6, an ROC curve
was constructed using the data shown in Table 5(a), which
shows that the curve for the proposed method is located
above the curves of the existing scoring methods, suggesting
that the proposed method is better than the existing scoring
methods. In addition, when the number of markers was
greatly changed, the specificity and sensitivity did not change
significantly. Finally, we performed calculation experiments
showing that as the number of markers is increased, the
discrimination time also increases in linear order, which
indicates that this method has an advantage in computational
cost for big data such as methylation or genes that have
several hundreds of thousands and several tens of thousands
of candidate markers, respectively.

In addition, we point out an advantage of the discrete
Bayes classifier over the existing scoring systems. Because the
existing scoring systems require the use of specific markers,
they cannot be used when the data of the markers are
insufficient. However, the proposed technique can be used
by selecting an optimal combination of markers from the
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laboratory data that a patient already has. Moreover, the
physician is presented with the markers that should be added
to improve discrimination performance for each patient. In
this way, on the basis of the technique proposed here, the best
personalized medicine can be expected.

4. Conclusion

In this paper, a discrete Bayes decision rule that predicts
early recurrence of highly refractory liver cancer with a
high degree of accuracy was proposed. This discrete Bayes
decision rule can deal not only with qualitative data but
also with quantitative data by discretization. Discrimination
experiments enabled us to predict early recurrence of liver
cancer with higher sensitivity than that of the Tokyo Score,
the Modified JIS, and the TNM classification, which are
existing representative scoring systems. Realization of per-
sonalized medicine via this discrete Bayes decision rule may
be expected.

One of the main limitations of this paper was the use of
a small amount of sample data from a single institution. This
limited the evaluation of the performance. Further study is
needed to evaluate the proposed method using data collected
from other institutions. In addition, this method uses the
hypothesis of independence without discussion to simplify
the calculations. Although verification of independence is
difficult, a study on independence such as the adoption of
Bayesian networks will be a future challenge. Also, because
the discrimination ability of this method depends on the
cutoft value used when marker values are discretized, opti-
mization will also be an interesting challenge.
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