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Abstract

IMPORTANCE—Cannabis use during adolescence is known to increase the risk for 

schizophrenia in men. Sex differences in the dynamics of brain maturation during adolescence 

may be of particular importance with regard to vulnerability of the male brain to cannabis 

exposure.

OBJECTIVE—To evaluate whether the association between cannabis use and cortical maturation 

in adolescents is moderated by a polygenic risk score for schizophrenia.

DESIGN, SETTING, AND PARTICIPANTS—Observation of 3 population-based samples 

included initial analysis in 1024 adolescents of both sexes from the Canadian Saguenay Youth 

Study (SYS) and follow-up in 426 adolescents of both sexes from the IMAGEN Study from 8 

European cities and 504 male youth from the Avon Longitudinal Study of Parents and Children 

(ALSPAC) based in England. A total of 1577 participants (aged 12–21 years; 899 [57.0%] male) 

had (1) information about cannabis use; (2) imaging studies of the brain; and (3) a polygenic risk 

score for schizophrenia across 108 genetic loci identified by the Psychiatric Genomics 

Consortium. Data analysis was performed from March 1 through December 31, 2014.

MAIN OUTCOMES AND MEASURES—Cortical thickness derived from T1-weighted 

magnetic resonance images. Linear regression tests were used to assess the relationships between 

cannabis use, cortical thickness, and risk score.

RESULTS—Across the 3 samples of 1574 participants, a negative association was observed 

between cannabis use in early adolescence and cortical thickness in male participants with a high 

polygenic risk score. This observation was not the case for low-risk male participants or for the 

low- or high-risk female participants. Thus, in SYS male participants, cannabis use interacted with 

risk score vis-à-vis cortical thickness (P = .009); higher scores were associated with lower 

thickness only in males who used cannabis. Similarly, in the IMAGEN male participants, cannabis 

use interacted with increased risk score vis-à-vis a change in decreasing cortical thickness from 

14.5 to 18.5 years of age (t137 = −2.36; P = .02). Finally, in the ALSPAC high-risk group of male 

participants, those who used cannabis most frequently (≥61 occasions) had lower cortical 

thickness than those who never used cannabis (difference in cortical thickness, 0.07 [95% CI, 

0.01–0.12]; P = .02) and those with light use (<5 occasions) (difference in cortical thickness, 0.11 

[95% CI, 0.03–0.18]; P = .004).

CONCLUSIONS AND RELEVANCE—Cannabis use in early adolescence moderates the 

association between the genetic risk for schizophrenia and cortical maturation among male 

individuals. This finding implicates processes underlying cortical maturation in mediating the link 

between cannabis use and liability to schizophrenia.

Cannabis is the most common illicit substance used across the world, with the 2012 annual 

prevalence of cannabis use reaching 3.8% (177.63 million users) among people aged 15 to 

64 years.1 Globally, more than 13 million people were dependent on cannabis in 2010; 

annual prevalence of cannabis dependence appears to peak between 20 and 24 years of age 

and is higher in males than females and in high-income countries.2 As with any other illicit 

substance, cannabis use emerges during adolescence. Based on the 2011 European School 

Survey Project on Alcohol and Other Drugs,3 a mean lifetime prevalence of cannabis use 
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among high school students aged 15 to 16 years was 17%, with large variations across the 36 

participating countries (eg, 19% in Germany, 25% in the United Kingdom, and 39% in 

France). The 2014 Monitoring the Future survey4 has reported a lifetime prevalence of 

cannabis use of 35.8% among youth aged 15 to 16 years living in the United States in 2013. 

Thus, a large proportion of individuals are exposed to cannabis during early to middle 

adolescence, a developmental period characterized by the continuing maturation of neural 

circuits.

Adolescence is a period of transition that involves a large number of age-related changes in 

physiological processes (eg, sex hormones) and social environment (eg, peer-peer 

interactions).5,6 Such influences–often in interaction with genetic variations–shape the 

neurobiological features that underly maturation of the adolescent brain, as quantified in 

vivo with magnetic resonance imaging (MRI). A number of large-scale MRI studies of 

typically developing adolescents7–12 have identified age-related changes in gray and white 

matter volumes, cortical thickness, white-matter microstructure, and brain response to 

various stimuli and cognitive processes. Many of these brain metrics show sex differences in 

their trajectories, such as steeper slopes of age-related increases in white matter and 

decreases in (cortical) gray matter in male compared with female adolescents.13,14 These sex 

differences in the dynamics of brain maturation during adolescence may be of particular 

importance with regard to vulnerability of the male brain to external factors, such as 

cannabis exposure, during this period of development. In this context, we note previous 

observations of an earlier onset of schizophrenia in men compared with women; the first 

signs of schizophrenia, the first positive symptoms, and the first admissions occur 3 to 5 

years earlier in men, and the age range of the first sign of mental disorder is from 15 to 24 

years for men (compared with 20–29 years for women).15 Given the solid epidemiologic 

evidence supporting a link between cannabis exposure during adolescence and 

schizophrenia,16 we investigate whether the use of cannabis during early adolescence (by 16 

years of age) is associated with variations in brain maturation as a function of genetic risk 

for schizophrenia, as assessed with the recently developed polygenic risk score.17 We 

address this question in 3 samples of typically developing youth for whom we have obtained 

(1) information about their cannabis use during adolescence; (2) structural T1-weighted MRI 

of the brain; and (3) their polygenic risk score for schizophrenia.17

Methods

Samples and Overall Strategy

The initial analysis was performed in a sample of 1024 adolescents recruited in the context 

of the Saguenay Youth Study (SYS).18 This sample comes from the Saguenay Lac-Saint-

Jean region of Quebec, Canada.19 Magnetic resonance imaging of the brain and information 

about cannabis use were collected at 1 point in a cross-sectional manner from participants 

aged 12 to 18 years.

Follow-up analyses were performed in 2 other population-based samples. The first 

replication sample consisted of 504 male youth recruited from the Avon Longitudinal Study 

of Parents and Children (ALSPAC)20 based in England. The use of cannabis was assessed 

repeatedly throughout adolescence, and MRIs of the brain were collected at 1 point when the 
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participants reached 18 to 21 years of age. The second replication sample consisted of 426 

adolescents recruited in 8 European cities in the context of the IMAGEN Study.21 Magnetic 

resonance images of the brain and information about cannabis use were collected when the 

participants entered the study (time 1; approximately 14.5 years of age) and 4 years later 

(time 2; approximately 18.5 years of age). In addition, cannabis use was assessed in the 

same participants between the 2 MRI sessions (at approximately 16 years of age). 

Characteristics of the study participants for all 3 samples are summarized in eTable 1 in the 

Supplement. Given the known sex differences in brain maturation during adolescence, we 

performed all analyses (SYS and IMAGEN samples) for male and female adolescents 

separately; in the ALSPAC sample, MRIs were available in male participants only. The 

institutional review boards of all participating institutions approved all studies reported 

herein. The parents and adolescents provided written informed consent and assent, 

respectively. All data were deidentified.

In all samples, we used exposure to cannabis by 16 years of age as the main independent 

variable; this choice is consistent with the epidemiologic findings on cannabis use during 

adolescence, with the high dynamics of brain development in early to middle adolescence, 

and with the previous work on the association between cannabis use by 16 years of age and 

structural properties of the adolescent22 and adult23,24 brains. In the SYS sample, we 

classified adolescents as having ever or never used cannabis based on their answer to a 

question about lifetime cannabis use; information about the number of occasions of cannabis 

use in their lives was not available. In the ALSPAC and IMAGEN samples, we were able to 

address the latter question using (ordinal) data on the number of occasions of cannabis use 

by 16 years of age.

We used the mean cortical thickness (across the entire cortical mantle) as the main 

dependent variable. We believe that cortical thickness is a useful metric for capturing the 

cumulative effects of various experiential factors on cortical neurobiological features, 

especially neuropil (ie, dendrites, glial cells) and capillary densities.25 In addition to the 

mean thickness, we have related regional variations in the group differences (users vs 

nonusers) in thickness across 34 cortical regions to those in the expression of the 

cannabinoid receptor 1 gene (CNR1 [NCBI Entrez Gene 1268]) derived from the Allen 

Brain Atlas in the same regions.26 This atlas provides postmortem measurements of gene 

expression obtained in 6 adult brains (1269 cortical samples were used to calculate an 

average for each of the 34 regions). We used CNR1 expression as a proxy of the cannabinoid 

type 1 receptor density to evaluate whether the extent of the relationship between cannabis 

use and cortical thickness varies as a function of this receptor’s density in the cerebral 

cortex, thus testing for the level of specificity in this relationship.

Finally, we asked whether the genetic risk for schizophrenia moderates the relationship 

between cannabis use and cortical thickness. To answer this question, we used imputations 

from genome-wide single-nucleotide polymorphisms (SNPs) obtained in each of the 3 

samples to calculate a polygenic risk score/profile from 108 loci identified by the Psychiatric 

Genomics Consortium in a genome-wide comparison of 36 989 patients with schizophrenia 

and 113 075 controls.17 Risk scores ranged from −2.45 to 2.06 across the 3 samples, with 
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greater scores indicating higher genetic risk for schizophrenia. Additional details of the 

study methods are provided in the eMethods in the Supplement.

Statistical Analysis

All statistical analyses were performed with JMP (version 17 10.0; SAS Institute Inc). Effect 

sizes were calculated using R software (version 3.1.2).27 Linear regression was the primary 

statistical test used. The Cohen d statistic, Pearson correlation, Spearman correlation, and t 
tests were also used as specified in the Results section below and in the eResults in the 

Supplement.

Results

SYS Sample

In male adolescents (459 with available data) in the SYS sample, we observed an interaction 

between cannabis use (never/ever) and the risk score on age-adjusted cortical thickness (t455 

= −2.60; P = .009); as shown in Figure 1A, age-adjusted cortical thickness decreases with 

the increasing risk score in cannabis users (R2 = 0.06; P = .002) but not in nonusers (R2 = 

8.4 × 10−5, P = .87). We observed main effects of cannabis use (t455 = −2.69; P = .008) but 

not the risk score (t455 = 0.16; P = .87). As expected, those who ever used cannabis were 

older than those who never used cannabis, but this relationship does not vary between 

participants with low and high polygenic scores (P = .59, logistic regression). Figure 1B 

shows the differences in thickness across risk score deciles and cannabis use in male 

adolescents; Figure 1C shows the interaction between cannabis use and risk score on age-

adjusted cortical thickness in female adolescents. Results of a vertex-based analysis of the 

interaction between Schizophrenia Risk Score and cannabis groups (ever vs never) vis-à-vis 

cortical thickness are shown in eTable 2 in the Supplement.

The above results are comparable to those obtained when using sex-specific median values 

of the risk score to classify adolescents in the high (ie, above the median) and low (below the 

median) risk groups. We use this strategy in the ALSPAC and IMAGEN samples to evaluate 

the possible effects of cumulative cannabis frequency, given the small number of individuals 

in the different cannabis frequency cells. To allow a comparison of the 3 samples using this 

approach, we have reanalyzed the SYS data using the median-based risk groups (Figure 2A 

and eFigure and eResults in the Supplement).

IMAGEN Sample

In the IMAGEN sample of adolescents (145 male and 188 female participants with available 

data), we were able to evaluate a relationship between frequency of cannabis use (by 16 

years of age) and change in cortical thickness during adolescence (from time 1 

[approximately 14.5 years] to time 2 [approximately 18.5 years] adjusted for scanner 

manufacturer). We observed an interaction between cannabis use (never/ever) and the risk 

score on the adjusted change in cortical thickness (t137 = −2.36; P = .02). In this model, we 

also observed main effects of cannabis use (t137 = −2.29; P = .02) and risk score (t137 = 2.76; 

P = .007). In female participants, we observed a main effect of risk score (t181 = −2.75; P = .

007) but not of cannabis use (t181 = 0.90; P = .37) or the interaction between them (t181 = 
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1.36; P = .18). We were able to evaluate a relationship between frequency of cannabis use 

(by 16 years of age) and change in cortical thickness using the median-based groups (Figure 

2C and eFigure and eResults in the Supplement).

ALSPAC Sample

In this sample of male youth (295 with available data), we were able to evaluate again a 

relationship between the frequency of cannabis use (by 16 years of age) and age-adjusted 

cortical thickness measured from 18 to 21 years of age. First, we found no difference in 

cortical thickness between those who never and those who ever used cannabis, with the latter 

consisting of those who reported cannabis use with any frequency, in the high-risk (P = .78) 

and in the low-risk (P = .61) groups. Second, using the median-split approach (Figure 2C), 

we observed a difference in the high-risk group in age-adjusted cortical thickness (in 

arbitrary units) between those who never used cannabis and the most frequent users (ie, ≥61 

occasions), with a difference of 0.07 (95% CI, 0.01–0.12; P = .02; Cohen d = 0.8). We also 

observed a similar difference between light users (<5 occasions) and the most frequent users 

(difference, 0.11 [95% CI, 0.03–0.18]; P = .004; d = 1.9). No such differences were observed 

in the low-risk group.

Relationship Between Cannabis-Related Differences in Thickness and CNR1 Expression

Expression of CNR1 varies across the 34 cortical regions segmented by FreeSurfer28; as 

shown in Figure 3A, these regional variations are consistent across the 6 donors for whom 

expression data were available (left hemisphere). Figure 3B depicts group differences 

between those who never and ever used cannabis (SYS male participants) as a function of 

CNR1 expression (eTable 3 in the Supplement). We observed high rank-order correlations 

between the group difference in cortical thickness and CNR1 expression across the 34 

regions in the low-risk (Figure 3B, left; ρ = −0.64; P = 7.6 × 10−5) and high-risk (Figure 3B, 

right; ρ = −0.48; P = .005) male SYS participants. Thus, the largest group differences 

between those who never and ever used cannabis were found in regions that showed high 

CNR1 expression (eg, entorhinal and anterior cingulate cortex).

Discussion

Across 3 population-based samples of typically developing youth, we observed a negative 

association between cannabis use in early adolescence and cortical thickness in male 

adolescents with a high genetic risk for schizophrenia, as indicated by their risk profiles 

across 108 genetic loci identified by the Psychiatric Genomics Consortium in a large 

genome-wide comparison of patients with schizophrenia and control individuals.17 This 

association appears to vary with the cumulative frequency of cannabis use before 16 years of 

age, as evaluated in two of the samples. The association may emerge during adolescence, as 

evidenced by the longitudinal MRI data obtained in one of the samples. Male participants 

with low polygenic risk scores and all female participants did not present similar 

associations in our data sets.

Observational studies such as ours cannot attribute causality to the observed relationships. 

Even the longitudinal design does not rule out the possibility that individuals with a 
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particular developmental trajectory may be more likely to experiment with cannabis rather 

than the cannabis exposure affecting the trajectory. Although genetic approaches, such as 

mendelian randomization,29 may address this issue to some extent, only studies in model 

systems allow one to assess the true consequences of cannabis exposure in organisms 

randomized experimentally into different treatments.

Unlike the SYS and IMAGEN samples, the high-risk male participants in the ALSPAC 

sample do not show a difference in cortical thickness between those who never and ever 

used cannabis; only the high-frequency users do. We can only speculate that, with a given 

sample size, the association between less-frequent cannabis use and cortical thickness is less 

robust and, therefore, sensitive to other (confounding) effects that may accumulate with age; 

the ALSPAC sample is almost 5 years older than the SYS sample.

Adolescence is a period of vulnerability with regard to the emergence of psychotic 

disorders,30 perhaps especially in boys.15 Cannabis use during adolescence may be a 

contributing factor; high odds ratios were found for schizophrenia in a 35-year prospective 

study of men16 when the investigators compared frequent cannabis users (>50 occasions by 

those aged 18–19 years) with nonusers. Our findings suggest that cannabis use might 

interfere with the maturation of the cerebral cortex in male adolescents at high risk for 

schizophrenia by virtue of their polygenic risk score. The overall volume of cortical gray 

matter and cortical thickness decrease with age in typically developing male 

adolescents.13,14 Our longitudinal findings suggest that cannabis exposure might accelerate 

such processes, including cortical thinning, in male adolescents with a high polygenic risk 

score. A profound thinning of cortical gray matter was observed during adolescence in 

patients with childhood-onset schizophrenia (onset of symptoms by 12 years of age)31,32 

and, to a much lesser extent, in their nonpsychotic siblings.33 Patients with childhood-onset 

schizophrenia have higher polygenic risk scores for schizophrenia than their siblings.34 

Several studies suggest that associations between cannabis use and various outcomes may be 

particularly pronounced during early (<16 years) adolescence.35–38 Follow-up observations 

of the adolescents in the SYS and IMAGEN samples will allow us to evaluate whether this 

association applies for those who initiate the use of cannabis during late adolescence.

What might underlie cannabis-related thinning of cerebral cortex in male adolescents? In 

general, the following 2 processes may play a key role in shaping cortical thickness during 

male adolescence: (1) experience-driven plasticity and related growth of neuropil, which 

increases cortical thickness over time; and (2) testosterone-induced restructuring of neuropil, 

which decreases cortical thickness over time.

The first process, namely, experience-related plasticity, has been shown to drive changes in 

brain structure, as measured with MRI.39,40 Cannabis may interfere with this process at 

pharmacologic and psychosocial levels. The former possibility is supported by the role of 

cannabinoid type 1 receptors in long-term potentiation41–43 and in various neurotrophic 

events.44 Chronic exposure to cannabis is associated with lower plasma levels of 

neurotrophins, such as brain-derived neurotrophic factor45 and nerve growth factor.46 The 

latter possibility is supported by studies suggesting that cannabis use during adolescence is 

associated with a number of psychosocial phenomena that may limit the richness of 
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educational (eg, dropping out of high school47–49) and extracurricural (eg, lower 

engagement in sports50) experiences during this period of development. These 

pharmacologic and psychosocial pathways together may attenuate over time experience-

related increases in cortical thickness during adolescence.

The second process, namely, testosterone-driven variations in cortical gray matter, has been 

demonstrated in a number of MRI studies of typically developing male adolescents.13,51,52 

Using a functional polymorphism in the androgen-receptor gene, we showed that 

testosterone-related decreases in cortical gray matter during male adolescence are, at least in 

part, mediated by the androgen receptor.13 Which cellular compartments contribute to this 

phenomenon remains unclear; for example, testosterone may influence spine density53 or the 

diameter of intracortical axons.54,55 Interindividual variations in plasma levels of 

testosterone during early adolescence predict cannabis use in late adolescence and cannabis 

dependence in young adulthood.56 Rising levels of testosterone during male adolescence and 

the associated high dynamics in the neurobiological features underlying cortical maturation 

may represent a risk factor with regard to other external (eg, cannabis) and/or internal (eg, 

genetic risk) perturbations. Furthermore, limited evidence supports the possible effects of 

testosterone on potentiating the action of cannabinoid type 1 receptor agonists on 

presynaptic inhibition of excitatory inputs in vitro57 and on transcriptional up-regulation of 

the CNR1 gene.58,59

In this report, the polygenic risk score for schizophrenia calculated with the genome-wide 

significant SNPs (P < 5 × 10−8) showed an association with cortical thickness. This 

association was not in evidence when we calculated the score with the 24 727 nominally 

significant SNPs (P < .05) (eTable 4 in the Supplement). Nevertheless, the latter score is 

superior to the former in predicting liability to schizophrenia.17 This discrepancy may be 

owing to the fact that our study examines the relationship of the polygenic risk score with a 

brain phenotype (cortical thickness) rather than a liability to schizophrenia. This phenotype 

may represent a vulnerability trait that is not specific to a particular psychiatric disorder. 

Similarly, genes have pleiotropic effects on psychopathologic features.60 Herein we show 

that cortical thickness (in male cannabis users) is related only to a risk score based on 

genetic variations most strongly associated with schizophrenia, possibly by virtue of their 

involvement in relevant biological pathways (see below). We speculate that the top SNPs 

relate to brain vulnerability (a first “hit”61), whereas the nominal SNPs contribute to a broad 

array of factors underlying heritability of specific clinical manifestations (disorders), such as 

schizophrenia.

With this evidence, we speculate that the moderating influence of cannabis use on the 

association between the genetic risk for schizophrenia and cortical thickness may represent a 

combination of reduced experience-related brain plasticity taking place on the background 

of testosterone-associated decreases in cortical gray matter. The absence of the latter in 

female adolescents may represent a brain reserve that protects them to a certain extent 

(Figure 1C) from the cannabis-related perturbation of the brain-plasticity pathway. Genetic 

variations in the approximately 20 genes captured by the genetic risk score for schizophrenia 

(±5000 base pairs at each of the 114 SNPs) may increase vulnerability of their bearers by 

reducing the efficiency of neurotransmission (CLCN3 [NCBI Entrez Gene 1182], CHRNA3 
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[NCBI Entrez Gene 1136], HCN1 [NCBI Entrez Gene 348980], CACNB2 [NCBI Entrez 

Gene 783], and GPM6A [NCBI Entrez Gene 2823]), by making the brain more sensitive to 

immunity-related stressors (genes in the major histocompatibility complex), or by their 

involvement in early brain development (CNTN4 [NCBI Entrez Gene 152330], FES [NCBI 

Entrez Gene 2242], BCL11B [NCBI Entrez Gene 64919] and CACNB2 [NCBI Entrez Gene 

783]). The fact that the group differences in regional cortical thickness between those who 

never and ever used cannabis show a gradient as a function of the regional differences in 

CNR1 expression in the same set of cortical regions suggests that the above influences 

indeed interact with the cannabinoid system. Nonetheless, only experimental studies can 

confirm the causal role of the above molecular pathways in mediating the observed 

statistical relationships.

Conclusions

Cannabis use in early adolescence moderates the association between the genetic risk for 

schizophrenia and cortical maturation among male individuals. This finding implicates 

processes underlying cortical maturation in mediating the link between cannabis use and 

liability to schizophrenia.
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Figure 1. Age-Adjusted Cortical Thickness and Polygenic Risk Score for Schizophrenia in the 
Saguenay Youth Study (SYS) Participants
The SYS participants are stratified by cannabis use as never and ever having used. A, 

Among SYS male participants, 317 had never and 142 had ever used cannabis. Regression 

lines for those who never and ever used are plotted with shaded 95% CIs. Median risk score 

is marked with the dotted vertical line. Risk scores range from −1.86 to 1.53, with greater 

scores indicating higher risk. B, Dot plots show age-adjusted cortical thickness across risk 

score deciles of male adolescents who never and ever used cannabis. Mean thickness values 

are marked with solid bars. The Schizophrenia Working Group of the Psychiatric Genomics 
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Consortium17 found that the top decile (based on the top 108 loci) contained about 3 times 

more cases of schizophrenia than the bottom decile (mean odds ratio across 39 samples, 

3.21). C, Among SYS female participants, 319 had never and 171 had ever used cannabis. A 

weak albeit significant relationship between cortical thickness and risk score is seen with 

cannabis exposure. Lines and risk scores are described in part A. Cortical thickness is 

presented in arbitrary units (residuals).
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Figure 2. Dot Plots of Mean Cortical Thickness for Different Groups of Male Cannabis Users at 
High and Low Risk
Thickness values are binned and stacked horizontally within each grouping. Mean thickness 

values are marked with thick black lines. Significant group differences are marked with lines 

and Cohen d statistics. A, Age-adjusted cortical thickness is presented in male participants 

who ever and never used cannabis. B, Change in cortical thickness (time 2 − time 1) by 

number of occasions of use. C, Age-adjusted cortical thickness is presented by number of 

occasions of use. ALSPAC indicates Avon Longitudinal Study of Parents and Children; 

SYS, Saguenay Youth Study. Cortical thickness is presented in arbitrary units (residuals).
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aP < .005, t test.
bP < .05, t test.
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Figure 3. Regional Variations in Group Differences in Cortical Thickness and CNR1 Expression
A. Median values of CNR1 expression (across 6 donors) are plotted as bars for the 34 

cortical regions (left hemisphere); regions are ordered according to the expression values 

(lowest [left] to highest [right]). Median values obtained in each donor (median of all 

samples available for a given cortical region) are indicated by individual points. Lines 

connect expression values belonging to the same donor; solid line connects values 

contributed by a donor with relatively low (flat) expression values. (donor ID:H0351.2002; 

39-year old male). B. Group differences in age-adjusted cortical thickness between male 
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adolescent participants who never and ever used cannabis as a function of CNR1 expression 

in groups at low (left) and high (right) risk from the Saguenay Youth Study (SYS). 

Regression lines are plotted with shaded 95% CIs; correlation statistics are provided. All 

corresponding (mean) values are provided in eTable 3 in the Supplement. The 5 regions with 

highest CNR1 expression are identified by their rank; corresponding names are provided in 

the x-axis of part A. Bankssts indicates banks of superior temporal sulcus.
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