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Abstract. Quantitative histomorphometry (QH) is the process of computerized feature extraction from digitized
tissue slide images to predict disease presence, behavior, and outcome. Feature stability between sites may be
compromised by laboratory-specific variables including dye batch, slice thickness, and the whole slide scanner
used. We present two new measures, preparation-induced instability score and latent instability score, to quan-
tify feature instability across and within datasets. In a use case involving prostate cancer, we examined QH
features which may detect cancer on whole slide images. Using our method, we found that five feature families
(graph, shape, co-occurring gland tensor, sub-graph, and texture) were different between datasets in 19.7% to
48.6% of comparisons while the values expected without site variation were 4.2% to 4.6%. Color normalizing all
images to a template did not reduce instability. Scanning the same 34 slides on three scanners demonstrated
that Haralick features were most substantively affected by scanner variation, being unstable in 62% of compar-
isons. We found that unstable feature families performed significantly worse in inter- than intrasite classification.
Our results appear to suggest QH features should be evaluated across sites to assess robustness, and class
discriminability alone should not represent the benchmark for digital pathology feature selection. © 2016 Society of

Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.4.047502]
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1 Introduction
Quantitative histomorphometry (QH) is the process of comput-
erized extraction of features from digitized slide images.1–12

These features are typically then used with automated classifi-
cation methods to predict disease presence, behavior, and
outcome. A major challenge for QH is the variation among path-
ology images across multiple sites. This variation is induced in
the preparation phase prior to computational image analysis
when tissue samples are stained, mounted onto a glass slide,
and subsequently digitized via a whole slide scanner. Stain
concentration, manufacturer, and batch effects affect the final
appearance of a slide.13 In addition, the specific whole slide
scanner used to digitize a slide can affect the appearance of the
final digital image. All these preparation-induced image varia-
tions can affect the automated analysis of the image and thus the
calculated feature values.

Image variation affects the features computed from an image
and thus poses a problem for diagnostic and predictive algo-
rithms based on these features. A key step in using these
algorithms is choosing which features to use for classification.
Traditional classification-based performance measures such as
accuracy and area under the receiver operating characteristic
curve are typically employed in feature selection methods that

aim to identify features that maximize class discriminability.
But to create a robust classifier, the feature selection algorithm
must consider both discrimination and stability. A feature is sta-
ble if the mean and shape of its distribution is consistent among
cohorts of patients who share disease or clinical profiles or
outcomes. While feature stability has been examined in the
radiology space,14–17 relatively little work has been done in the
context of QH or in digital pathology.

Cross institutional color variation is a well-known problem in
digital pathology as evidenced by the large number of methods
developed to quantify image color and standardize images to a
template.18–21 While standardization of stains and procedures as
suggested in Lyon et al.13 could help reduce variation, logistical
and physical limitations mean that digital color correction will
always be needed to ensure uniform color. Color normalization
(CN) is broadly the process of altering the color channel values
of pixels in a source image so that its color distribution matches
that of a template image. Since image color is affected by prepa-
ration procedure and thus is a possible contributor to feature
instability, one needs to evaluate the effect of CN on the result-
ing feature expression values. Some work has been done to
evaluate the effect of CN on classifier performance in applica-
tions such as mitosis detection,18 but to our knowledge no study
has been performed which examines the link between CN and
feature values or feature stability. Staining and scanning
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procedures should not, in an ideal setting, dramatically affect the
value of a stable feature. An example of an unstable feature is
shown in Fig. 1. The feature value distributions from four data-
sets are shown to be of similar shape but with different means
and modes.

In this paper, we investigate the effect of feature instability on
classification, introduce a method for quantifying feature stabil-
ity across many digital pathology datasets, and determine insta-
bility specifically resulting from use of different whole-slide
scanners. To examine the degree to which site variability affects
feature accuracy, we investigated the degradation of classifier
performance in the context of intra- and intersite classification
of tumor and nontumor regions of prostate tissue for 81 patients.
Stability is evaluated using two feature-based evaluation mea-
sures. The first stability evaluation measure, latent instability
(LI) score, aims to evaluate the inherent randomness of a fea-
ture’s distribution within a single-preparation procedure from
factors such as interpatient feature variation. A low LI would
indicate that intradataset variation is very low and that there
is a low probability of features being different between two data-
sets with similar disease or clinical profiles or outcome due to
random chance. We also introduce a method involving cross-
dataset comparisons for quantifying the frequency at which a
feature is different between datasets via a preparation-induced
instability (PI) score. A high PI would indicate that a feature
is affected by preparation procedures. Lastly, we apply these
methods to a use case involving detecting tumor and nontumor
regions on radical prostatectomy (RP) samples taken from pros-
tate cancer patients based off QH analysis of digitized images.
Our group has previously investigated the role of a number of
different histomorphometric features including gland and
nuclear shape, morphology, orientation, and disorder with pros-
tate cancer presence, grade, aggressiveness, and outcome.22–29

The goal of this study is to identify which of these
classes of features, which are predictive of presence of prostate
cancer, are most stable across sites and scanners. Specifically, in
this paper, we examine the stability of 216 gland lumen and
26 texture features extracted from 80 whole mount prostate
adenocarcinoma (CaP). Our goal was to compare the intra- and

interdataset variations of the prostate histology QH features to
determine if the QH variance across sites is significantly larger
than might be expected due to random chance.

We applied CN to the four datasets and measure feature insta-
bility among datasets before and after normalization. The goal of
the experiment was to gain some insight into the potential of CN
as a technique for reducing feature instability among datasets.
We scanned the 34 slides of a single dataset on three different
scanners to examine the specific contribution of scanner
variation to feature instability. While clearly there are multiple
sources of variance affecting the stability of image features, in
this paper, we focus on two critical aspects in digital pathology,
color variance due to differences in site and slide digitization
and the induced color variation on account of different scanners.

Thus our contributions in this paper are

• A method for evaluating precisely how histomorphomet-
ric features tend to vary across sites with varying prepa-
ration procedures.

• New quantitative measures to evaluate feature stability
across and within datasets, as well as quantitatively
assessing the effect of CN on the resulting feature
expression.

• An evaluation of the stability of 242 QH features from five
feature families in prostate histology across sites before
and after CN and across whole-slide scanners.

The rest of this paper is organized as follows. Section 2
introduces the new metrics used to evaluate feature stability.
Section 3 describes how feature instability affects classification
and the CN, segmentation, and feature extraction techniques
employed. Section 4 lays out the experimental design and quan-
titative results. Section 5 concludes the paper with a summary of
the study and closing remarks.

2 Feature Robustness Indices

2.1 Latent Instability Score

To create a baseline for the expected feature value variation
between images we compared feature distributions within
random splits of a dataset Dk, k ∈ f1;2; 3;4g, Dk ∩ Dr ¼ fg,
r ≠ k. Random halves of Dk were compared against each
other to check for significant differences in feature distribution
between the halves. The end result of this process is a calcula-
tion of a feature’s LI score which represents the probability that
a feature will be different among datasets due to effects not
linked to the specific laboratory. Random dataset splits used
to calculate LI produce subsets that contain different patients
with different image content. LI is a measure of a feature’s inher-
ent variability and the degree to which interpatient variance may
contribute to feature instability when measured across datasets.

We split images ca, a ∈ f1; : : : ; Ng, where N is the number
of images in dataset Dk into two equal parts Si1, Si2, for
i ∈ f1; : : : ; Niterg, where Niter refers to the number of splitting
iterations. S1 and S2 are sets of N∕2 images ca such that the
subsets are unique, all Si1 ∩ Si2 ¼ fg.

From the set of all features F, we examined one feature at
a time, Fj, j ∈ f1; NFg, NF is the total number of features.
We computed the LI of Fj in Dk by taking the percentage of
splits where the vector of feature values fjðSi1Þ and fjðSi2Þ
were statistically significantly different under the Wilcoxon
rank sum test (U), such that

Fig. 1 Smoothed distribution of graph feature F 48 “disorder of nearest
neighbor in 20 pixel radius” from the nonrecurrence Gleason 7
patients of four datasets.
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EQ-TARGET;temp:intralink-;e001;63;752LIkj ¼
1

Niter

XNiter

i¼1

U½fjðSi1Þ;fjðSi2Þ�; U¼
�
1; if pi < 0.05

0; otherwise
;

(1)

where Niter ¼ 1000, and fj is the feature representation of the
j’th feature of all the images in Si1 and Si2, and pi is the p-value
of U in iteration i. U was chosen due to its resilience to the effect
of outliers and its ability to handle unknown distributions.
Feature distributions were considered to be significantly differ-
ent if they were different at the p < 0.05 confidence level. LIkj is
equal to the percentage of splits in which feature Fj was signifi-
cantly different between halves of Dk. Therefore LI ⊂ ½0;1�.

2.2 Preparation-Induced Instability Score

The feature values of two cohorts were compared using U. A
pairwise comparison of each combination of datasets Dk, Dr
was performed over Niter trials using a random three-quarters
of each dataset, creating Di

k and Di
r for every iteration i for a

total of
h
Niter ×

�ND

2

�i
comparisons per feature. From these

comparisons, PI was calculated as a quantitative measure of
the sensitivity of a feature to staining and scanning procedures.
While LI measures how often a feature would be expected to be
different among datasets without any differences among labora-
tories, PI represents how often that feature was actually found to
be different among datasets. The difference between a feature’s
LI and PI thus reveals the effect of laboratory preparation pro-
cedure on that feature.
EQ-TARGET;temp:intralink-;e002;63;418

PIj ¼
1�
ND

2

�XND

k¼1

XND

r¼kþ1

(
1

Niter

XNiter

i¼1

U½fjðDi
kÞ; fjðDi

rÞ�
�
;

U ¼
�
1; if p < 0.05

0; otherwise:
; (2)

PIj is equal to the percentage of pairwise comparisons in which
fj was significantly different among datasets. A high PI paired
with a low average LI suggests that the feature is different
among datasets due to fundamental differences among the data-
sets rather than noise inherent in the feature or interpatient
variability.

3 Methods and Materials

3.1 Significance of Feature Instability

To determine the effect of feature instability and link the image
extracted features to a specific task, we performed an experiment
to test classification of tumor and benign regions in RP speci-
mens. As all the RP patients had prostate cancer, the benign
regions were selected from the noncancerous zones of those spec-
imens. A total of 81 patients from two sites were used for this
classification experiment. Dataset information is provided in
Table 1. To determine the effect of using feature families of vary-
ing stability, classification experiments were performed using
each feature family separately and with all 242 features. The
results of cross-validation within a single site and independent
validation across sites were compared with the hypothesis that
unstable features would perform better in intrasite classification

than in intersite tasks where feature instability would adversely
affect model generalizability. Features were selected using the
Wilcoxon rank-sum significance test between the tumor and
benign regions of the training set at the p < 0.05 significance
level. For patients with multiple tumor or benign regions, only
the largest region of each class was used. Classification was per-
formed using a random forest classifier30 with 50 trees over 100
iterations. In each fold of cross validation, a random two-thirds of
a site’s patients were used for training with the remaining third
used for validation, with all regions of every patient kept in the
same set. Significant features were selected on the training data
independently in each fold.

3.2 Statistical Analysis of Feature Robustness
Indices

The purpose of the LI experiment was twofold. First, a low LIkj
provides confirmation that fj is relatively consistent within Dk.
By looking only within a single dataset, we were able to partially
control for the staining and scanning procedures and hence
potentially identify if there were features that were inherently
noisy even without additional confounding sources of variation.
Second, the frequency of feature difference between the halves
of the datasets allowed for establishment of a baseline for how
often a feature would appear different between two sets due to
random chance. This baseline is the measure by which we may
judge interdataset feature instability. If a distribution was rarely
different between the two halves ofDk, it would appear unlikely
that the feature distribution would be different across two differ-
ent datasets.

A number of confounders affect the interpretation of the PI
results, among them the difference in image content among the
four patient cohorts. We have controlled for some clinical fac-
tors which may affect the resulting features (Gleason sum and
patient outcome). The evidence of site-variation affecting stabil-
ity may be assessed by comparing LI and PI results. Both LI and
PI are arrived at by comparing unique sets of patients. However,
while LI involves comparing patients from the same site, PI
involves comparing images across sites. LI reflects the contri-
bution of interpatient variation to feature instability while PI
includes both patient variation and site-specific variation.
Hence the ratio of PI to LI reflects the contribution of site varia-
tion to increased feature instability, a ratio that allows for the
isolation of the site-induced variability from the image-specific
variations. Further there are a number of factors that are not con-
trolled for in the PI experiment, including image compression
and original image magnification. However, in not controlling
for these factors, we are following data acquisition protocols
typical in digital pathology and which may be encountered in
a typical clinical setting. Our findings suggest that greater

Table 1 Patients used for cancerous and noncancerous region
classification.

D1 D2

Total patients 40 41

With tumor regions only 5 3

With tumor and benign regions 35 38
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attention to standardization of slide preparation, digitization,
and analysis may be needed.

3.3 Color Normalization

We employed the nonlinear stain mapping CNmethod described
by Khan et al.18 to normalize the color of the slide images. This
method maps each stain in the source and template image to a
channel, normalizes the channels, and then converts the image
back to the RGB space. Other methods commonly used for
hematoxylin and eosin (H&E) image normalization such as
histogram color matching31 normalize the RGB channels them-
selves rather than using stain channels. However, this has the
disadvantage of possibly inducing artifacts in the image.18 In
our case, these artifacts severely degrade the performance of
automated gland identification methods and thus necessitate
the use of a stain channel approach. The images in dataset Dk
were color normalized to create dataset DN

k .

3.4 Segmentation

Gland lumen were automatically segmented from digital images
of the cancerous regions of RP whole mount slide images using
the approach described in Nguyen et al.32 To segment lumen,

the algorithm first performed k-means clustering of the colors
of 10,000 randomly selected pixels in an image with k ¼ 4.
Pixels were given a label based on their cluster to define the
prototypical color of nuclei, stroma, cytoplasm, and lumen in an
image. These prototypes were then applied to the entire image to
identify objects. Lumen objects surrounded by nuclei objects
were deemed to be glands and the boundaries of the lumen were
segmented.

3.5 Feature Extraction and Analysis

A total of 216 gland lumen features were extracted from seg-
mented gland lumen after resizing segmentation results and
images to 1.25× magnification. Twenty-six Haralick features
were extracted from the pixel intensity values of the entire image
and involved excluding pixels corresponding to the gland seg-
mentations. The extracted features belonged to five different
families and are described in Table 2. A visualization of the
five feature families is shown in Fig. 2. These features were
chosen for analysis based on their relevance to CaP recurrence
prediction as described in previous work from our group.6,33

Gland features are related to disease aggressiveness since more
aggressive prostate cancer degrades the cohesiveness and regu-
larity of the glands. These 216 features attempt to quantitatively
capture gland morphology, shape, arrangement, and disorder of
glands in the image. Since these features are intended to differ-
entiate cancerous and noncancerous cases and images corre-
sponding to different Gleason grades, there is a need to identify
features that are stable and consistent.

The 51 graph-based features captured the spatial arrange-
ment of the glands as calculated by using gland centroids as
vertices. These include first- and second-order descriptors of
Voronoi diagrams [see Figs. 2(c) and 2(i)], Delaunay triangula-
tions, minimum spanning trees, and gland density.6

The 100 gland shape features measured the average shape of
all the glands in an image as described by the lumen boundaries
and the resulting area, perimeter, distance, smoothness, and
Fourier descriptors.23

The 39 co-occurring gland tensor (CGT) features measured
the disorder of neighborhoods of glands as measured by
the entropy of orientation of the major axes of glands within
a local neighborhood.6 Gland orientations can be visualized in

Table 2 Summary of features examined.

Family Description Features

Graph Descriptors of Delaunay, Voronoi, and
minimum spanning tree diagrams

51

Shape Lumen shape, smoothness, invariant
moments, and Fourier descriptors

100

CGT6 Entropy of gland orientation and
neighborhood disorder

39

Subgraph Local subgraph connectivity and distance
between nodes

26

Texture Relative pixel intensity, contrast, entropy, and
energy

26

Fig. 2 Segmentation and feature visualization for (a–f) an image in D1 and (g–l) an image in D3. (a, g)
Cancerous regions annotated by expert pathologist. Automatically extracted features corresponding to
(b, h) gland shape, (c, i) global gland graphs, (d, j) gland disorder, (e, k) local gland graphs, and (f, l)
Haralick intensity texture.
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Figs. 2(d) and 2(j), where the gland boundaries are color coded
based on the angle of their orientation.

The 26 subgraph features described the connectivity and
clustering of small gland neighborhoods using gland centroids
[see Figs. 2(e) and 2(k)].5

The 26 Haralick texture features measured second-order
intensity statistics.34 These features do not explicitly rely on
gland segmentations.

3.6 Dataset Description

We collected 146 H&E-stained whole mount prostate tissue
RGB images for the purpose of detecting cancerous regions
on RP specimens. A series of QH features (as described in
Sec. 3) previously shown to be predictive of biochemical recur-
rence of prostate cancer were extracted. Two separate cohorts
from the University of Pennsylvania contained 41 and 40
patients, respectively (D1 and D2). The Cancer Genome Atlas35

provided two datasets, 32 patients from the University of
Pittsburgh (D3) and 33 from Roswell Park (D4). All images
were digitized using a whole slide scanner. The images within
D3 and D4 were available in their digital form from the TCGA.
D1 and D2 were originally digitized at 20× magnification on an
Aperio CS2 scanner. The precise make and model of the scanner
used for the cases in D3 and D4 was not known; however, they
were originally digitized at 40× magnification. For each patient,
a representative cancerous region of interest was identified and
annotated by an expert pathologist. Features were calculated
from within the annotated region. All images in all experiments
were downsized to 5× magnification (0.5 μm per pixel) for
gland segmentation and 1.25× (2 μm per pixel) for feature
extraction.

3.6.1 Feature stability experiment

To investigate the stability of these features, we controlled the
populations across the datasets and matched 80 patients for
Gleason score 7 (GS7) and no cancer recurrence within 5 years
of surgery. Fitting these requirements were 16 patients from
D1, 14 from D2, 28 from D3 and 22 from D4. This pruning
was done to ensure that differences in the datasets were not
due to differences in the populations.

3.6.2 Cancerous and noncancerous region classification

To evaluate the performance of classifiers that used varyingly
stable feature families, all images of D1 and D2 were used.
Table 1 describes the 81 patient dataset used in this experiment.

3.6.3 Multiscanner experiment

Thirty four slides from D2 were scanned on a Leica Aperio CS2
(DA

2 ), Phillips IntelliSite Ultra Fast Scanner (DP
2 ), and Roche

Ventana iScan HT (DV
2 ) scanner. While D2 contains 40 slides,

some slides did not successfully scan on every scanner and
hence were not used in this experiment. DA

2 was originally digi-
tized at 20× magnification while DP

2 and DV
2 were digitized

at 40×.

4 Experimental Results and Discussion

4.1 Latent Instability to Evaluate Intradataset
Feature Robustness

Low variation in fj within Dk appeared to suggest that the
differences among cohorts were a result of variation between
the staining and scanning procedures used for the slides.

All feature families across all cohorts exhibited low LI
scores. No feature family in any unstandardized dataset had a
mean LI score higher than 0.0522 as seen in Table 3 and Fig. 3,
indicating just a 5.22% chance of a feature being significantly
different in a random split. These low LI scores were indicative
of low intradataset feature instability. This suggests that within
the same dataset, the features do not tend to vary considerably.

4.2 Preparation-Induced Instability to Evaluate
Feature Robustness Across Cohorts and Sites

To evaluate the effect of CN on feature value calculation and to
investigate the role that CN plays in reduction of interdataset
feature instability, we compared the number of feature distribu-
tions that were significantly different across datasets before and
after normalization. We compared the mean preparation-induced
instability score (μPI) for each family of features shown in
Table 4 and Fig. 4 to the mean latent instability score (μLI)
for that feature family. μPI is the mean of the PI scores of all

Table 3 Mean and standard deviation of LI score by cohort and feature family.

Site Graph Shape CGT Subgraph Texture

D1 0.0499� 0.0048 0.0498� 0.0118 0.0464� 0.0094 0.0473� 0.0101 0.0504� 0.0095

D2 0.0334� 0.0066 0.0326� 0.0087 0.0296� 0.0130 0.0338� 0.0090 0.0357� 0.0071

D3 0.0443� 0.0051 0.0422� 0.0107 0.0522� 0.0188 0.0435� 0.0117 0.0507� 0.0088

D4 0.0449� 0.0060 0.0429� 0.0093 0.0410� 0.0158 0.0437� 0.0055 0.0457� 0.0030

DN
1 0.0543� 0.0064 0.0494� 0.0110 0.0468� 0.0085 0.0490� 0.0095 0.0558� 0.0067

DN
2 0.0493� 0.0048 0.0453� 0.0115 0.0395� 0.0161 0.0443� 0.0120 0.0448� 0.0110

DN
3 0.0363� 0.0065 0.0436� 0.0099 0.0445� 0.0150 0.0418� 0.0128 0.0439� 0.0073

DN
4 0.0459� 0.0053 0.0423� 0.0093 0.0411� 0.0147 0.0469� 0.0070 0.0416� 0.0089

Note: The bold values represent the most stable and least stable feature families amongst the D1−4 and DN
1−4 cohorts.
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the features in a family and μLI is the mean of a family’s LI
across D1−4.

Shape features were found to be most resilient while CGT
features were the most unstable. Shape features were different
among datasets ðμPIShape∕μLIShapeÞ ¼ 4.70 times more often
than would be expected without differences in slide preparation

among datasets while CGT features were ðμPICGT∕μLICGTÞ ¼
11.49 times more likely to be different.

CGT features measure the disorder of lumen orientation
in neighborhoods of glands. Missed and erroneously segmented
gland objects will have a larger effect on CGT features which
compare glands to their neighbors while having less of an effect
on shape measurements. This is consistent with the μPI results.
The families with high μPI, graph, CGT, and subgraph, all
depend on accurate gland detection. In contrast, the shape fea-
tures are largely based off the shape of the lumen. These, there-
fore, appear to be less affected by segmentation errors. Texture
features, which do not rely on segmentation, fall between the
gland arrangement-dependent families and the shape family in
terms of μPI.

4.3 Cancerous and Noncancerous Region
Classification to Determine Effect of Unstable
Feature Families on Independent Validation

As seen in Table 5, the more unstable feature families, graph,
CGT, and subgraph were significantly more accurate in intrasite
classification than in the intersite task (p ¼ 1.6e − 19,
6.9e − 62, and 5.5e − 41). Shape, the most stable feature family,
was the only feature family to perform equally well in intra- and
intersite classification by AUC (AUCIntra ¼ 0.96, AUCInter ¼

Table 4 Mean and standard deviation of PI score in nonrecurrence Gleason 7 images of D1−4 (top row) and DN
1−4 (middle row) and in 34 images of

D2 across three scanners (bottom row).

Dataset Graph Shape CGT Subgraph Texture

D1−4 0.466� 0.184 0.197� 0.102 0.486� 0.193 0.429� 0.168 0.438� 0.201

DN
1−4 0.479� 0.185 0.207� 0.118 0.491� 0.192 0.448� 0.168 0.428� 0.210

DA;P;V
2 0.267� 0.161 0.411� 0.327 0.245� 0.112 0.197� 0.127 0.620� 0.193

Note: The bold values represent the most stable and least stable feature families in each experiment.

Fig. 3 Distribution of LI results by feature family.

Fig. 4 Summary of intra- and interdataset experiment results. (a) Feature family PI results by score
frequency. Score indicates percentage of the 6 1000-iteration subsampled pairwise comparisons
(D1 versus D2, D1 versus D3, D1 versus D4, D2 versus D3, D2 versus D4, D3 versus D4) in which
the given feature was significantly different. Results plotted after grouping the 239 unique feature scores
into 30 bins. (b) Average PI results by feature family computed as the mean score from all the features
within a family.
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0.97, p ¼ 0.88) with slightly higher accuracy in the intersite
task (AccIntra ¼ 0.89, AccInter ¼ 0.90, p ¼ 3.6e − 4). The per-
formance drop of the more unstable features in independent val-
idation and the consistency of the less unstable features suggests
that feature instability affects the model’s generalizability.

4.4 Evaluating Effect of Scanner Variation on
Feature Stability

As seen in Table 4, automated segmentations of the same 34 D2

slides scanned on three different scanners produced features
which were less unstable in three families (global graph,
CGT, and subgraph) and more unstable in one family
(shape). The Haralick texture features were extremely unstable
across scanners with a mean PI of 0.620 compared to 0.438
across D1−4. Notably, all the images used in the D1−4 PI calcu-
lation were digitized using an Aperio scanner including D1 and
D2 which were digitized on the exact same scanner. The scanner
used appears to have a large effect on the texture features, which
are dependent on color and contrast changes induced in the digi-
tized slide images. It is possible the instability measurements of
D1−4 are affected by the Aperio scanner which in turn may
explain the variation in the PI of the texture features between
the two experiments. Figure 5 shows these variations as well
as an example of the blue annotations added onto the slides
by another group; however, features were extracted from regions
entirely inside the blue contour.

The lower instability of the global graph, CGT, and subgraph
families in theDA;P;V

2 experiment is not unexpected. WhileD1−4
vary in sectioning, mounting, and staining procedures in addi-
tion to scanning equipment, DA;P;V

2 only vary in digitization
hardware. It is intuitive that datasets separated only by the scan-
ner used would be more stable than datasets prepared by entirely
different laboratories. However, the large increase in shape
feature PI mean and standard deviation (0.197� 0.102 to
0.411� 0.327) is somewhat surprising as the shape features
were the most stable feature family by a large margin in the
D1−4 experiment. Figure 6 shows that in some regions of inter-
est, the automated segmentation performance varies greatly
across scanners, though we did not undertake a quantitative
assessment of the degree of segmentation variation. The very
large standard deviation in shape feature PI as well as the insta-
bility variation among feature families suggests that some fea-
tures are highly vulnerable to intersite variation while others are
more robust.

4.5 Evaluating Effect of Color Normalization on
Feature Stability

The PI and LI experiments were repeated using color normal-
ized versions of the images ofD1−4 to study the effects of CN on
feature stability. Images were standardized to a template image,
thereby creating normalized datasetsDN

1−4 (see Fig. 7). The tem-
plate image was chosen as one of the images where the auto-
mated segmentation algorithm was able to accurately extract

Table 5 Mean and standard deviation of AUC and accuracy of QH features in distinguishing tumor from benign regions over 100 iterations of
a random forest classifier using Wilcoxon rank-sum test for feature selection at the p < 0.05 confidence level. Intrasite classification performed
using threefold cross validation, intersite classification performed using independent validation. Reported as average of D1 and D2 results.
No texture features were predictive, and the family is therefore not represented here.

Graph Shape CGT Subgraph All families

Intrasite AUC 0.89� 0.12 0.96� 0.03 0.91� 0.07 0.90� 0.10 0.93� 0.05

Intersite AUC 0.83� 0.09 0.97� 0.02 0.80� 0.02 0.84� 0.04 0.95� 0.03

p-Value 5.7 × 10−12 0.88 1.3 × 10−52 2.0 × 10−8 0.29

Intrasite accuracy 0.87� 0.15 0.89� 0.06 0.88� 0.06 0.88� 0.12 0.86� 0.09

Intersite accuracy 0.75� 0.05 0.90� 0.04 0.73� 0.03 0.75� 0.05 0.84� 0.09

p-Value 1.6 × 10−19 3.6 × 10−4 6.9 × 10−62 5.5 × 10−41 0.01

Fig. 5 A D2 patient scanned on the (a) Aperio, (b) Phillips, and (c) Ventana scanners. The blue marker
annotations were added between scans of the patient and were outside the region considered for feature
analysis and thus did not affect feature values.
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the gland boundaries. An example of how the feature values may
change before and after normalization is shown in Fig. 8.

The goal of the CN experiments was to quantify how CN
affected the number of unstable features. A decrease in feature
family PI or LI after normalization would suggest that the process
of CN was playing a role in reducing feature instability across or
within sites. Our results suggest that CN had no effect on overall
feature stability. The largest change in PI between original and
normalized data was a change of 0.019 in the subgraph features
with CN actually increasing intersite instability in four of the five

feature families (see Table 4). The largest change in LI was in
the graph features which had an increase in mean LI of 0.003,
representing a 0.3% point increase in intrasite instability.

CN had a noticeable effect on the distribution of RGB values
in the datasets. The histograms of eight images before and after
normalization are shown in Fig. 9. After normalization, the his-
tograms of each color channel were better aligned and had
a more similar distribution. Notably, the chosen color standardi-
zation method18 does not operate in the RGB space. Hence
the changes in the histograms are merely byproducts of the

Fig. 6 Region of interest of a D2 slide scanned on (a) Aperio, (b) Phillips, and (c) Ventana scanners with
automated gland segmentation results overlaid. It is clear that the automated segmentation performed
much worse on the Phillips scanner in this specific region.

Fig. 7 Illustration of the experiment performed to evaluate the effect of CN on feature stability. (a) Source
image to be normalized, (b) template image, and (c) resulting color transformed image. (d) Color histo-
grams of pre-CN image (a) in solid lines and post-CN image (c) in dashed lines.

Fig. 8 Segmentation and feature visualization on image c1 (a–d) prenormalization and (e–h) postnorm-
alization. (a, e) Automated segmentation results. Automatically extracted features corresponding to (b, f)
global gland graphs, (c, d) gland disorder, and (d, h) local gland graphs.
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normalization of distributions in the color space. Figure 10
shows that the spread of RGB values across D1 was reduced
after normalization.

The results of the CN experiments also reveal that factors
other than color appear to have played a large part in altering
segmentation success and hence the resulting feature values.
The chosen CN scheme is useful for this application because
it attempts to normalize stain concentrations across images.
Clearly the results of our experiments with CN will need to
be validated via other CN schemes.

5 Concluding Remarks
In this paper, we presented a method for quantifying instability
of features across multiple datasets and employed this method to
determine stability in five feature families across four prostate
cancer datasets with known variations due to staining, prepara-
tion, and scanning platforms. We introduced two new indices for
quantifying feature instability and used them to identify which
features previously shown to be predictive of cancer presence
are most robust and stable. We found that all feature families
exhibit differences among datasets from different institutions
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Fig. 9 Histograms of color channel intensity distributions for eight images (a–c) before and (d–f) after
normalization. (a) Red, (b) green, and (c) blue channel intensity distributions in prenormalization images.
(d) Red (e) green, and (f) blue channel intensity distributions in postnormalization images.

Fig. 10 Boxplots of the mean color channel intensities from each image in D1 and D2 (a) before
normalization and (b) after normalization.
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at a rate nearly 5 to 12 times what would be expected based on
random chance. Although shape features were most resilient
across datasets, all feature families exhibited sensitivity to stain-
ing and scanning procedure variations and the shape features
themselves were especially vulnerable to scanner variation.
With intra- and intersite classification, we have demonstrated
that feature instability affects classifier performance and shown
that a feature family’s mean PI may indicate the degree to which
the accuracy of those features may degrade with site variability.
We have demonstrated that while CN can definitely affect
the feature values and their stability, CN alone cannot solve the
problem of interdataset feature instability. We found that the
number of features different among datasets can change after
CN, but in our case this did not resolve feature instability.
Limitations to this study include that we did not consider other
sources of variation that might be affecting the stability of the
feature values, e.g., variations in segmentation. While we quali-
tatively observed that the automated gland segmentations varied
among different scanners, we did not quantitatively determine
the extent or cause of this variation. We did not examine
how these instability scores may vary when using data from
other sites or how sensitive our scores were to the specific tissue
images used to calculate them. Additionally, we only considered
one CN scheme in this work and the results obtained need to be
validated in conjunction with other CN methods. We have not
investigated how stability information may be incorporated in
feature selection or classifier construction and our use case
was confined to a specific application involving cancer detection
on prostate histopathology images. In future work, we will seek
to look at the trade-off between feature discriminability and
stability more comprehensively and in the context of other use
cases. This framework for quantifying feature instability may be
useful in designing and developing future digital pathology-
based computer-aided diagnostic algorithms which will need
robust and discriminating features in order to be generalizable
and consistent across sites.
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