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Mitochondrial complex II or succinate dehydrogenase (SDH)
is at the crossroads of oxidative phosphorylation and the tricar-
boxylic acid cycle. It has been shown that Sdh5 (SDHAF2/SDH5
in mammals) is required for flavination of the subunit Sdh1l
(SDHA in human cells) in yeast. Here we demonstrate that in
human breast cancer cells, SDHAF2/SDH5 is dispensable for
SDHA flavination. In contrast to yeast, CRISPR-Cas9 nickase-
mediated SDHAF2 KO breast cancer cells feature flavinated
SDHA and retain fully assembled and functional complex II, as
well as normal mitochondrial respiration. Our data show that
SDHA flavination is independent of SDHAF2 in breast cancer
cells, employing an alternative mechanism.

A major role of mitochondria, generation of ATP, is carried
out by oxidative phosphorylation (OXPHOS),? comprising four
respiratory complexes of the electron transfer chain, complex I
(CI), CI1, CI1I, and CIV, plus CV with ATP synthase activity.
ClI, also known as succinate dehydrogenase (SDH), contains
four subunits: the hydrophilic SDHA (a flavoprotein) and
SDHB (an iron-sulfur protein), plus the hydrophobic SDHC
and SDHD (1, 2). CII is an important source of reactive oxygen
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species in mitochondria (3—6) and serves as a critical step in
both the tricarboxylic acid (TCA) cycle and OXPHOS, linking
these two essential cellular pathways (1, 2, 7-9). In the TCA
cycle, SDH oxidizes succinate to fumarate (SDH activity) in a
reaction that depends on the presence of FAD in the active site
of SDHA (1, 2, 8, 10). Within OXPHOS, CII transfers electrons
from succinate via [Fe-S] clusters of SDHB to ubiquinone in
SDHC/SDHD, reducing it to ubiquinol; this is the succinate-
quinone reductase (SQR) activity of CII (2, 8, 10, 11).

As SDH is a mitochondrial enzyme involved in both the TCA
cycle and OXPHOS, mutations in its subunits have a profound
effect on clinical presentation. Diseases associated with CII dys-
function include Leigh syndrome, renal cell carcinoma, gastro-
intestinal tumors, and the neuro-endocrine tumors paragangli-
oma (PGL) and pheochromocytoma (12-16). In recent years,
the “list” of germ-line mutations in SDH genes and associated
pathological condition has been growing rapidly due to the
introduction of next generation sequencing (17, 18). However,
many important aspects, including the molecular mechanism
that links many of the mutations with their associated pheno-
types, remain largely unknown. Furthermore, emerging data
have shown that post-translational modifications could also
modulate the activity of SDH (19, 20).

CII is formed by “maturation” of individual subunits and
their stepwise assembly into a holo-complex. SDH subunits are
all encoded by the nuclear genome, synthesized in the cytosol,
and post-translationally imported into mitochondria as
unfolded proteins. They fold inside mitochondria and bind
FAD, [Fe-S] clusters, and heme prosthetic groups that are man-
datory for the maturation of the fully functional complex (21).
Assembly of large protein complexes often requires the assis-
tance of proteins called assembly factors, i.e. proteins that assist
with the formation of the complex, although not forming a part
of the final functional unit. In the last decade, several assembly
factors have been identified and shown to be required for the
correct formation of ClI, viz. Sdh5-Sdh8 in yeast and SDHAF1-
SDHAF4 in humans (21-23). In yeast mitochondria, additional
proteins with less defined function are also required for assem-
bly of SDH, including the flavin transporter FIx1 and the “chap-
erone-like” protein Tcm62 (24).

The flavoprotein SDHA is the catalytic subunit of CII, con-
verting succinate to fumarate. Sdh5 has been identified in yeast
as the assembly factor responsible for flavination of Sdhl,
which involves covalent attachment of the redox cofactor FAD
(25). The G78R mutation in human SDH5/SDHAF2 gene was
shown to be associated with PGL2 (25), and we and others
have reported that the mutation affects interaction of
SDHAF2/SDH5 with SDHA (25-28). SDHAF2/SDH5, which
is not in complex with SDHA, is degraded by the Lon prote-
ase as part of the mitochondrial protein homeostasis (26, 28).
Initially, it was hypothesized that Sdh5 may be necessary
and sufficient for flavination of Sdh1, although an NMR study
showed that Sdh5 cannot bind FAD (27). A biochemical study
revealed that bacterial SAhE (ortholog of human SDH5) is capa-
ble of binding FAD, whereas a genetic study documented the
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presence of flavinated SdhA in SdhE-deleted bacteria (29 -31).
This indicates that data from yeast and bacteria are not fully
compatible. In addition, thermophilic bacteria that lack SdhE
feature flavinated SdhA. In this group of bacteria, flavination of
SdhA does not require an assembly factor; rather, thermal
energy and dicarboxylic acids drive this process (32). Also, it is
not currently clear whether the SDH5 protein that carries out
SDHA flavination in yeast and some bacteria is generally nec-
essary and/or sufficient for flavination of SDHA in higher
organisms.

In this study, we explored the role of the succinate dehydro-
genase assembly factor-2 (SDHAF?2) in flavination of SDHA in
breast cancer cells. We report that SDHA is flavinated and CIl is
functional in SDHAF2 KO cells, suggesting that SDHAF2 is
dispensable for flavination of SDHA in breast cancer cells. This
points to an alternative mechanism of SDHA flavination in
breast cancer cell mitochondria.

Results

Generation of Human SDHAF2 Knock-out Cells—CRISPR-
Cas9 has greatly facilitated “gene editing” by means of nucleases
that are sequence-specific for the target locus of interest. We
used CRISPR-Cas9 nickase with low off-target effects in MDA -
MB-231 cells to generate SDHAF2 KO cells (Fig. 14). Initially,
colonies were screened for deletion of the SDHAF2 gene using
high-resolution melting (HRM), which was further confirmed
by Western blotting (WB) and Sanger sequencing. HRM anal-
ysis showed that the SDHAF2 alleles in two clones (termed KO1
and KO2) were found to show a difference in melting curve (Fig.
1B). Both positive and negative strands were then sequenced
using the Sanger method. Fig. 1C shows that these cell lines
have a 17-24-nucleotide deletion in intron 1 and exon 2 junc-
tion of SDHAF2. Using an SDS-PAGE/WB analysis approach,
we did not detect the SDHAF2 protein in either the SDHAF2
KOL1 or the KO2 sub-lines (Fig. 1D).

Knock-out of SDHAF2 Does Not Affect Flavination and
Steady State of SDHA—W e next assessed the effect of SDHAF2
gene disruption on the steady state levels of several subunits of
respiratory complexes. Fig. 1E shows the steady state levels of
selected electron transfer chain proteins, as assessed by SDS-
PAGE/WB, revealing that they were similar to each other irre-
spective of the SDHAF?2 status. Interestingly, and rather sur-
prisingly, we found that SDHA is flavinated in the absence of
SDHAF2, as documented by a UV fluorescence assay and by
WB using an antibody raised against FAD in both SDHAF2
KO1 and KO2 cells (Fig. 1F).

RNA Interference Approach Recapitulates the SDHAF2 KO
Results—To independently confirm that SDHAF2 is redundant
for SDHA flavination, we knocked down SDHAF?2 using two
different siRNAs, and as a control, universal negative siRNA
was used. Fig. 1G shows that knocking down the SDHAF?2 pro-
tein by two different siRNAs did not affect either the level of
SDHA, or its flavination status.

SDHAF2-deficient Cells Maintain SDH Activity—W e exam-
ined the assembly of the SDH complex in SDHAF2 KO cells. As
shown in Fig. 24, BN-PAGE followed by WB using anti-SDHA
and anti-SDHB revealed fully assembled SDH complex in
SDHAF2 KO cells, comparable with parental cells. Using anti-
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SDHAF?2 IgG and native gels, we confirmed the absence of the
assembly factor in the KO lines (Fig. 24). We next tested
whether the assembled SDH complex in SDHAF2 KO cells is
functional using an in-gel activity assay. As indicated in Fig. 2B,
the in-gel assay revealed that assembled CII in both SDHAF2
KO cell lines is active. CII features two enzymatic activities, i.e.
the SDH activity, whereby the catalytic SDHA subunit in mito-
chondrial matrix oxidizes succinate to fumarate, and the SQR
activity, by means of which electrons generated by succinate
oxidation are transferred via the SDHB [Fe-S] clusters to
ubiquinone, reducing it to ubiquinol (10, 11). We next tested
whether SDH and SQR activities are compromised in SDHAF2
KO cells. We performed analysis of SDH and SQR activities in
the absence and presence of their specific inhibitors 3-nitropro-
pionic acid (3-NP) and thenoyl trifluoroacetic acid (TTFA),
respectively, and found no difference in either of the two activ-
ities between parental and SDHAF2 KO cells (Fig. 2, C and D).
Taken together, SDHAF2 KO breast cancer cells maintain
functionally active CII.

Oxygen Consumption Rate and Respiratory Complex Assem-
bly Are Not Compromised in SDHAF2 KO Cells—To find
whether the absence of SDHAF?2 affects other mitochondrial
respiratory complexes, we assessed the assembly of CI, CIII,
CIV, and CV using BN-PAGE. We found that all complexes as
well as supercomplexes assembled irrespective of the SDHAF2
status (Fig. 2E). Oxygen consumption was then assessed using
the Oxygraph-2k apparatus. Once again, we observed differ-
ences in neither routine nor CI-/CII-dependent respiration
between parental and SDHAF2 KO cells (Fig. 2, F and G).

SDHAF2-deficient Cells Proliferate in Both Glycolytic and
OXPHOS Media—Yeast cells with deleted Sdh5 feature prolif-
eration defects and cannot grow in non-oxidative media; they
also lack SDH activity (25, 27). We observed a decrease in
glucose-dependent proliferation in SDHAF2 KO cells as com-
pared with their parental counterparts (Fig. 2H, left panel). We
then tested whether SDHAF2 KO cells proliferate in galactose-
containing media as a read-out of OXPHOS activity. We found
only a slight difference between the growth of SDHAF2 KO and
parental cell lines in galactose-containing media (Fig. 2H, right
panel). These results indicate that knock-out of SDHAF2/
SDHS5 has a mild effect on the proliferation rate, but this effect
appears to be independent of OXPHOS.

Discussion

SDH integrates two essential mitochondrial pathways,
OXPHOS and the TCA cycle. The flavoprotein SDHA catalyzes
oxidation of succinate to fumarate. For this, a covalent insertion
of FAD (flavination) to SDHA subunit is essential. The yeast
Sdh5 was identified as a protein mediating flavination of Sdh1
(SDHA in mammals) (25). However, studies from certain bac-
terial strains and plants indicate that the function of the SDH5
family proteins may be species-dependent. In this study, we
generated an SDHAF2 KO human breast cancer cell line, and
unexpectedly, identified SDHAF2 to be dispensable for flavina-
tion of SDHA and assembly of the complex. We examined
whether SDHA is flavinated using FAD autofluorescence and
an antibody raised against FAD (Fig. 1F). Both approaches
resulted in identification of flavinated SDHA in SDHAF2 KO
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FIGURE 1. Generation of SDHAF2 knock-out cell lines and SDHA flavination analysis. A, scheme showing SDHAF2 gene structure and sgRNA target. B, HRM
curve analysis of parental cells (Par) and two selected clones. C, analysis of the nucleotide sequence spanning the SDHAF2-targeted region in the SDHAF2 gene
present in the first intron and second coding exon. Reverse complement of sequence (Rev C) was used for antisense strand analyses. Ref. seq, reference
sequence; Fwd, forward; Rev, reverse. D, WB demonstrating absence of SDHAF2 in KO1 and KO2 cell lines. Actin was used as a loading control. E, WB showing
the steady state levels of protein subunits of Cll with anti-Core2 as a loading control. F, SDHA flavination analysis using anti-FAD in WB (upper band) and
fluorescent signal of FAD (middle band) from SDS-PAGE gel exposed to UV light. Coomassie Brilliant Blue R staining was used as a loading control (bottom
bands). G, MDA-MB-231 cells treated with increasing concentrations of two SDHAF2 siRNAs were probed for flavination of SDHA using the UV method and
probing anti-FAD IgG, as well as for the level of SDHAF2 and SDHA using WB. Coomassie Brilliant Blue R (CBB) staining and actin were used as loading control.

-

cells, and this was independently confirmed in SDHAF2 knock-  B-D). In agreement with our data, mouse SDH5 KO (33) and
down cells. We also detected both SQR and SDH activity in  plant cells (34) are viable. Albeit reduced, functional CII was
SDHAF2 KO cells, indicating functionally active CII (Fig. 2, detected on the basis of enzymatic activities of SDH and SQR
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FIGURE 2. Respiratory complex assembly and activity in the absence of SDHAF2. A and E, mitochondria isolated from control and SDHAF2 knock-out cell
lines were solubilized in digitonin and analyzed by BN-PAGE for the assembly of respiratory complexes detected by the indicated antibodies. Par, parental cells.

digitonin-solubilized mitochondria. C and D, SQR (C) and SDH (D) activity was

assessed by the change in absorbance of DCPIP at 600 nm. F and G, analysis of routine respiration (F) and complex I-and lI-driven respiration (G) was performed
in permeabilized cell using the Oxygraph-2k. ETS, electron transfer system; ROX, residual oxygen consumption. H, parental and SDHAF2 KO cells were cultured
in glucose- or galactose-containing media and analyzed for cell proliferation using the crystal violet method. Error bars indicate means = S.D.

and in-gel activity following BN-PAGE in SDHAF2 KO Arabi-
dopsis (34).

To date, studies on the role of SDHAF2 in mammalian sys-
tems have been limited. Fully assembled CII is critical for both
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TCA cycle and OXPHOS functions. For example, SDHD KO
mice were found embryonically lethal (35). SDHB KO mamma-
lian cell lines failed to exert CII activity and featured a reduced
proliferation rate (36, 37). A seminal study linking mutations in
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SDHAF2 and PGL2 ascribed the potential loss of SDHAF2
function to the lack of SDHA flavination. When human
SDHAF?2 was expressed in Sdh5 KO yeast, Sdh1 was again fla-
vinated and CII assembled (25). SDHAF2/SDH5 was also
shown to flavinate SDHA in a cell-free system (38). On the
contrary, our data using breast cancer cells clearly document
that flavination of SDHA and assembly of CII occur in the
absence of SDHAF2, indicating that SDHAF2 is dispensable for
flavination of succinate dehydrogenase.

We have recently shown that the G78R mutation in the
SDHAF?2 gene, previously identified in a PGL2 patient (25),
affects association of the assembly factor with SDHA (26).
SDHAF?2 is now classified as a tumor suppressor. The following
question arises: What is the role of SDHAF2 in the context of
ClI'and how is SDHA flavinated in breast cancer cells? It cannot
be excluded that the species-dependent differences in the role
of SDHAF2 in flavination of SDHA reflect evolutional aspects,
and there might be functional redundancy at least in certain
mammalian cells epitomized here by breast cancer cells. Not-
withstanding the above unresolved questions, our finding
clearly points to the notion that we are far from understanding
all the details of genetics, biology, and function of mitochon-
drial respiratory complexes, as exemplified here by the rela-
tively simple heterotetrameric protein complex CII.

Experimental Procedures

Cell Lines and Media—MDA-MB-231 cells were cultured in
DMEM (Gibco) supplemented with 10% FBS (Sigma) and anti-
biotic-anti-mycotic mixture. Cells were grown at 37 °C under
atmosphere of 5% CO.,.

CRISPR-Cas9-mediated Knock-out—Cells were transfected
with a CRISPR-Cas9 nickase (Cas9n D10A) construct targeting
exon 2 of the human SDHAF2 gene. For this, the Cas9 expres-
sion plasmid CP-C9NI-02 and the sgRNA plasmid (pCRISPR-
SGO01) with guide sequences AAT GAT GTC ACA CTG AGC
AA and CAG CCC AAC AGA TTC CCA AA were used
(GeneCopoeia). To facilitate co-selection of cells expressing the
two vectors, each vector contained a distinct selection marker
for neomycin and hygromycin to select cells expressing Cas9
and sgRNA, respectively. MDA-MB-231 cells were transfected
with a 1:1:1 mixture of the sgRNA construct (L and R) and
vectors encoding Cas9 using Lipofectamine® 3000 reagent
(Invitrogen) as recommended by the manufacturer. Two days
after transfection, cells were selected in 500 ug/ml hygromycin
B and 700 wg/ml neomycin for 72 h, followed by plating at ~1
cell/well in 96-well plates for clonal expansion. Knock-out
clones were identified by high-resolution melting curve, which
was confirmed by WB, using SDHAF2-specific antibodies and
Sanger sequencing.

RNA Interference—Two sets of mission siRNA (Sigma) for
human SDHAF2 (SASI_Hs01_00053252 and SASI_Hs01_
00053255) and universal scrambled RNA (SIC002) were used.
siRNAs were transfected into 50% confluent MB-MDA-231
cells in 6-well plates using Lipofectamine® 3000 reagent (Invit-
rogen) according to the manufacturer’s protocol. Transfected
cells were harvested after 72 h for analysis.

Western Blotting—Protein samples were denatured, sepa-
rated by SDS-PAGE, and transferred onto PVDF membranes
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(Bio-Rad). The membranes were blocked with 5% skim milk
and incubated with anti-SDH5 (1:1000, Cell Signaling), anti-
FAD (1:500, MyBioSource), anti-SDHA, anti-SDHB anti-actin,
anti-HSP60 (1:1000, Abcam), anti-NDUFAY, anti-Core I, or
anti-COX5a IgG (1:1000, Thermo Scientific). Secondary HRP
antibodies were then applied, and the membranes were visual-
ized using the ECL WB substrate (Thermo Scientific).

Isolation of Mitochondria and Blue Native Gel Electro-
phoresis—Mitochondria were isolated from cultured cell lines
as described previously (32, 39, 40). Digitonin-solubilized mito-
chondrial proteins (5-10 ug) were applied and run on 4-16%
gradient BN gels. After electrophoresis, the complexes were
blotted onto PVDF membranes and sequentially probed with
specific antibodies against CI (anti-NDUFA9), CIII (anti-Core
I), CIV (anti-COX5a), and CII (anti-SDHA and anti-SDHB).

In-gel CII Assay—Digitonin-solubilized mitochondrial pro-
teins were separated using high-resolution clear native electro-
phoresis 3 (hrCNE-3) as described previously (41). The gel was
then stained in 5 mm Tris-HCI, pH 7.4, 2.5 mg/ml nitro blue
tetrazolium, 10 mM succinate, and 0.2 mm phenazine methosul-
fate, and the activity was stopped with 50% methanol and 10%
acetic acid.

SQR and SDH Activity—SQR activity was assessed as
described previously (11, 42, 43). Briefly, whole cell lysate (10
pg) was preincubated with 10 mm succinate, 0.2 mM ATP, and 4
M rotenone with/without 1 mm TTFA for 10 min before add-
ing master mix (20 mm KPO,, pH 7.5, 1 mm EDTA, 80 um
2,6-dichlorophenolindophenol (DCIP), and 50 um decylubiqui-
none). DCIP reduction was monitored at 600 nm. SDH activity
was assessed using isolated mitochondria (11, 44). Digitonin-
permeabilized mitochondria were incubated with 2 mm KCN, 4
pg/ml antimycin A, and 10 mm succinate with/without 1 mm
3-NP in phosphate buffer at 30 °C. SDH activity was monitored
at 600 nM following the addition of 1.6 mm phenazine metho-
sulfate and 80 um DCPIP.

FAD Analysis—Flavination of SDHA was analyzed as
described previously (45). In brief, proteins (30 ug) were sepa-
rated by SDS-PAGE. Following electrophoresis, the gel was
briefly rinsed with Milli-Q water and incubated for 20 min in
10% acetic acid. Flavination of SDHA was monitored on a UV
transilluminator using the ChemiDoc system (Bio-Rad). The
gel was stained with Coomassie Blue as a loading control.

Oxygen Consumption Measurements—Cellular oxygen con-
sumption was assessed using the Oxygraph-2k apparatus (Oro-
boros Instruments) according to a standard procedure (46, 47)
with the following agents: 1 uMm oligomycin, 1.2 um carbonyl
cyanide 4-(trifluoromethoxy) phenyl-hydrazone (FCCP), and
0.5 uMm rotenone. For CI- and CII-dependent respiration, digi-
tonin-permeabilized cells were used.

Cell Proliferation—For the cell growth assay, 10,000 cells
were seeded in a 12-well culture plate. On the next day, cells
were rinsed twice in PBS and either 5 mm galactose or 24 mm
glucose DMEM was added to each well, and then the plates
were incubated at 37 °C. Cell density was determined by stain-
ing with crystal violet.

Statistics—All experiments were repeated at least three
times, and results were expressed as mean * S.D. Representa-
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tive images of gels or traces are shown. Quantitated data are the
average of =3 experiments.

Author Contributions—A. B.-G. designed and performed experi-
ments, and analyzed data, A. B.-G.,L. D.,J. R.,and]. N. conceived the
research, interpreted the data, and wrote the manuscript.
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