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Melanoma differentiation-associated gene 7 (MDA-7/IL-24)
exhibits cytotoxic effects on tumor cells while sparing untrans-
formed cells, and Bcl-x(L) is reported to efficiently block the
induction of cell death by MDA-7/IL-24. The expression of Bcl-
x(L) is regulated at the level of RNA splicing via alternative 5�

splice site selection within exon 2 to produce either the pro-apo-
ptotic Bcl-x(s) or the anti-apoptotic Bcl-x(L). Our laboratory
previously reported that Bcl-x RNA splicing is dysregulated in a
large percentage of human non-small cell lung cancer (NSCLC)
tumors. Therefore, we investigated whether the alternative RNA
splicing of Bcl-x pre-mRNA was modulated by MDA-7/IL-24,
which would suggest that specific NSCLC tumors are valid tar-
gets for this cytokine therapy. Adenovirus-delivered MDA-7/
IL-24 (Ad.mda-7) reduced the viability of NSCLC cells of vary-
ing oncogenotypes, which was preceded by a decrease in the
ratio of Bcl-x(L)/Bcl-x(s) mRNA and Bcl-x(L) protein expres-
sion. Importantly, both the expression of Bcl-x(L) and the loss of

cell viability were “rescued” in Ad.mda-7-treated cells incu-
bated with Bcl-x(s) siRNA. In addition, NSCLC cells ectopically
expressing Bcl-x(s) exhibited significantly reduced Bcl-x(L)
expression, which was again restored by Bcl-x(s) siRNA, sug-
gesting the existence of a novel mechanism by which Bcl-x(s)
mRNA restrains the expression of Bcl-x(L). In additional mech-
anistic studies, inhibition of SRC and PKC� completely ablated
the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s) mRNA
ratio and cell viability. These findings show that Bcl-x(s)
expression is an important mediator of MDA-7/IL-24-in-
duced cytotoxicity requiring the SRC/PKC� signaling axis in
NSCLC cells.

A number of studies have demonstrated that the overexpres-
sion of Bcl-x(L) in cells confers apoptosis resistance as well as
cooperates with oncogenic factors (e.g. c-Myc) in tumorigenesis
(1–10). The regulation of Bcl-x(L) expression can be complex at
times, consisting of both transcriptional and post-transcrip-
tional processes. In regard to post-transcriptional processing/
alternative splicing, the BCL-x gene, via alternative 5� splice site
(5�SS)5 selection within exon 2, produces either the Bcl-x(s)
isoform through activation of an upstream/proximal 5�SS or
the Bcl-x(L) isoform through activation of a downstream/distal
5�SS. A number of studies have demonstrated that Bcl-x(s), in
contrast to Bcl-x(L), promotes apoptosis (9, 11–14). Hence, the
alternative 5�SS selection of Bcl-x pre-mRNA emerged as a
potential target for anti-cancer therapeutics. For example, Tay-
lor et al. (15) demonstrated that Bcl-x 5�SS selection can be
specifically modulated using antisense oligonucleotides spe-
cific against the Bcl-x(L) 5� splice site. Treatment of cells with
these oligonucleotides induced an increase in the expression of
Bcl-x(s) and a decrease in the expression of Bcl-x(L), resulting
in sensitization of NSCLC cells to chemotherapeutic agents
(15). These findings were also demonstrated by Kole and co-
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workers (16) in additional cancer types as well as in vivo models.
Thus, regulation of the 5�SS selection within the Bcl-x exon 2 is
a critical factor in determining whether a cancer cell is suscep-
tible or resistant to apoptosis in response to chemotherapy
(15–19).

In cells, Bcl-x 5�SS selection is regulated by the generation of
de novo ceramide in response to apoptotic stimuli such as the
chemotherapeutic agent, gemcitabine (20, 21). More recent
studies by Zhou and co-workers (22) and Chang et al. (23) ver-
ified these early findings and extended the list of chemothera-
peutic agents to emetine, a potent protein synthesis inhibitor,
and amiloride, a potassium-conserving diuretic. Later studies
from our laboratory identified the RNA splicing factor,
SAP155, as a regulator of the 5�SS selection of Bcl-x pre-mRNA
(24, 25), and this RNA trans-factor was required for the effect of
ceramide on the alternative 5�SS selection of Bcl-x pre-mRNA
in NSCLC cells (24, 25).

In the present study, the role of melanoma differentiation-
associated gene-7/interleukin-24 (MDA-7/IL-24) was exam-
ined in the context of Bcl-x 5�SS selection. MDA-7/IL-24 is a
cytokine classified as a member of the IL-10 gene family that
was initially identified through a subtraction hybridization
approach using a differentiation therapy model of human mel-
anoma (26). MDA-7/IL-24 potently inhibits cell growth and
induces apoptosis in various epithelial cancers both in vitro and
in vivo, including lung cancers (27). In contrast, MDA-7/IL-24
has shown no lethality toward normal cells (28).

The ability of MDA-7/IL-24 to inhibit cell growth of tumor
cells and to induce apoptosis in tumor cells has been attributed,
in part, to modulation of the expression of Bcl-x(L) (27, 29, 30).
Specifically, a potential functional role for changes in Bcl-x(L)
expression in adenovirus-delivered MDA-7/IL-24 (Ad.mda-7)-
induced apoptosis was suggested by the finding that forced
overexpression of Bcl-x(L) diminished the apoptotic effect of
Ad.mda-7 in lung carcinoma cells (27, 29). The possible link to
Bcl-x 5�SS selection was suggested in this mechanism as the
induction of ceramide production plays a decisive role in MDA-
7/IL-24-mediated apoptosis (31, 32).

In this study, we explored the hypothesis that MDA-7/IL-24
reduces the levels of Bcl-x(L) by modulating the 5�SS selection
of Bcl-x pre-mRNA in a de novo ceramide-dependent manner.
Indeed, we demonstrate that MDA-7/IL-24 induces the activa-
tion of the Bcl-x(s) 5� splice site, thereby lowering the Bcl-x(L)/
(s) ratio in NSCLC cells, and thus, instigating the down-regula-
tion of Bcl-x(L). Surprisingly, this mechanism was ceramide-
independent, but the loss of SAP155 expression was still
observed. Furthermore, the expression of Bcl-x(s) mRNA was
shown to be a major component in the ability of MDA-7/IL-24
to induce the loss of cell viability as well as induce the loss of
Bcl-x(L) expression. Exploration of the signal transduction
pathway mediating this distal mechanism in response to MDA-
7/IL-24 identified the SRC/PKC� signaling axis as critical.
These findings, therefore, suggest that induction of Bcl-x(s)
mRNA may prove an effective therapeutic avenue to enhance
the cancer-specific killing of MDA-7/IL-24 treatment, which
may be an effective treatment for NSCLC lung tumors present-
ing with a low Bcl-x(L)/(s) ratio.

Results

Ad.mda-7 Induces a Loss of Cell Viability in NSCLC Cells—
Previously, MDA-7/IL-24 was reported to induce cytotoxic
effects on NSCLC cell lines without affecting non-transformed
counterparts (27, 28). Our initial studies confirmed this cyto-
toxic effect in regard to adenovirus-delivered MDA-7/IL-24
(Ad.mda-7) for several established NSCLC cell lines with dif-
fering oncogenotypes (A549, H838, and H1299) after 48 and
72 h (Table 1 and Fig. 1, A–C). Of note, no loss of viability was
observed in these cell lines within �24 h of Ad.mda-7 treat-
ment (data not shown). Importantly, Ad.mda-7 treatment had
no significant effect on the viability of non-transformed,
immortalized lung epithelial cells (HBEC-3KT cells; Fig. 1D).
Hence, Ad.mda-7 elicits cytotoxicity in tumorigenic lung cells
regardless of oncogenotype, while sparing non-cancerous lung
cells as reported previously (27, 28).

Ad.mda-7 Induces Alterations in the 5� Splice Site Selection of
Bcl-x Pre-mRNA—The loss of Bcl-x(L) expression is a required
mechanism for MDA-7/IL-24-induced loss of cell viability in
several cancer cell types (mesothelioma I-45xL, GBM glioblas-
toma, and prostate carcinoma cells) (29, 30 –32). The alterna-
tive splicing of Bcl-x pre-mRNA is one method of regulating
Bcl-x(L) expression. Indeed, alterations in Bcl-x splicing are
sensitive to ceramide production, and MDA-7/IL-24 is
reported to increase ceramide synthesis (20, 21, 24, 25, 33).
Furthermore, the ceramide-sensitive RNA trans-factor,
SAP155, promotes the formation of Bcl-x(L) mRNA, and
siRNA targeting SAP155 results in decreases in the Bcl-x(L)/
Bcl-x(s) mRNA ratio in NSCLC cells (25). Thus, we hypothe-
sized that MDA-7/IL-24 treatment induces the down-regula-
tion of SAP155 and the subsequent lowering of the Bcl-x(L)/
Bcl-x(s) mRNA ratio prior to the observed loss of viability (less
than 48 h). Consistent with this hypothesis, A549 cells treated
with Ad.mda-7 for 24 h exhibited a reduction in SAP155 pro-
tein levels (Fig. 2A). Short-term treatment of NSCLC cells with
Ad.mda-7 also induced a significant decrease in Bcl-x (L)/(s)
mRNA ratios when compared with control Ad.CMV adenovi-
rus (Fig. 2A). This effect of Ad.mda-7 was both concentration-
dependent and stable for �36 h (Fig. 2, B and C). Ad.mda-7 also
altered Bcl-x alternative splicing in H838 cells (Fig. 2D), dem-
onstrating translatability to other NSCLC cell lines of differing
oncogenotypes. To determine whether the effect was specific to
NSCLC cells, the ovarian cancer cell lines (SKOV and DOV)
were treated with either Ad.CMV or Ad.mda-7 (Fig. 2D). These
cell lines also demonstrated significant changes in Bcl-x splic-
ing. Importantly, Bcl-x alternative splicing was not affected by
Ad.mda-7 in non-transformed HBEC-3KT cells, correlating
with a lack of cytotoxicity induced by MDA-7/IL-24 (Fig. 2E).
Lastly, we examined whether the effect of MDA-7/IL-24 on
RNA splicing was specific for Bcl-x pre-mRNA. In this regard,

TABLE 1
Characterization of NSCLC cell lines
Characterization of the NSCLC cell lines utilized in this study is shown. For each cell
line, their histology as well as Ras and p53 mutational status are represented.

Cell line NSCLC histology Mutational status

A549 Adenocarcinoma WT p53, K-RasG12V mutation
H838 Adenocarcinoma p53 mutation, WT Ras
H1299 Adenocarcinoma p53 null, N-RasQ61K mutation
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we tested the capacity of MDA-7/IL-24 to affect the splicing
ratios of Mcl-1(L)/(s) and CD44, but no effect on the alternative
splicing of these pre-mRNAs was observed (Fig. 2F). Hence,
MDA-7/IL-24 induces a reduction in the Bcl-x(L)/Bcl-x(s)
mRNA ratio, which was not due to a generalized effect on con-
stitutive RNA splicing.

Ablation of Bcl-x(s) “Rescues” Ad.mda-7-elicited Cytotoxicity—
As shown in this study, Ad.mda-7 reduces the cell viability on
NSCLC cells and decreases the ratio of Bcl-x(L)/(s) mRNA.
Although these data intriguingly correlate, they do not deter-
mine whether or not the Bcl-x splicing is a required mechanism
for Ad.mda-7-induced killing or simply secondary to its pro-

FIGURE 1. Ad.mda-7 induces the loss of cell viability in NSCLC cells, but in not non-transformed lung epithelial cells. Cells (1 � 104) were transduced with
the indicated MOI (PFU/cell) of either ad.mda-7 or Ad.CMV control virus. After the indicated incubation time, the cells were assayed for cell viability using a
WST-1 assay as described under “Experimental Procedures.” A, A549 cells. B, H838 cells. C, H1299 cells. D, HBEC-3KT cells. Data are expressed as mean of the
percentage of viability � S.D. Data are representative of six separate determinations on two separate occasions.
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apoptotic effect. Furthermore, we posited the question: is it the
loss of Bcl-x(L) or the production of Bcl-x(s) that plays a role in
MDA-7/IL-24-induced loss of cell viability? To answer this
question, we again treated NSCLC cells with Ad.mda-7, and
first examined Bcl-x(L) expression. Indeed, it is currently
known that MDA-7/IL-24 treatment reduces Bcl-x(L) expres-
sion, and that cells ectopically expressing Bcl-x(L) are resistant
to MDA-7/IL-24-induced cytotoxicity (29). In line with these
published observations, we observed that MDA-7/IL-24
reduced Bcl-x(L) protein levels in A549 cells after a 48-h incu-
bation (Fig. 3A). The Ad.mda-7-elicited reduction in Bcl-x(L)
protein was also evident in H838 cells, but not HBEC-3KT cells
(Fig. 3, B and C). Surprisingly, Ad.mda-7 was not able to stim-

ulate the detectable expression of Bcl-x(s) protein (Fig. 3, A–C).
Other laboratories have also reported difficulty detecting
endogenous Bcl-x(s), and typically, either 10-fold more protein
extract or high ectopic expression of Bcl-x(s) is required to
detect the protein (9, 15, 21, 34). Thus, it was unclear whether
Bcl-x(s) mRNA or protein was sufficient to mediate the cyto-
toxic effects of MDA-7/IL-24.

To address whether Ad.mda-7 exerts its cytotoxic effect via
the production of Bcl-x(s), A549 cells were treated with the
Bcl-x(s)-targeted siRNA followed by treatment with either
Ad.mda-7 or Ad.CMV. As anticipated, MDA-7/IL-24-stimu-
lated Bcl-x(s) mRNA levels were reduced by Bcl-x(s) siRNA
(Fig. 4A). To examine whether the expression of Bcl-x(s)

FIGURE 2. Ad.mda-7 induces the activation of the Bcl-x(s)/proximal 5� splice site of Bcl-x pre-mRNA. A, cells (1.2 � 105) were transduced with 150 MOI of
either ad.mda-7 or Ad.CMV control virus. After 24 h, total RNA and protein were extracted. Total protein was subjected to SDS-PAGE analysis and Western
immunoblotting for MDA-7, SAP155, and �-actin (left panel). Total RNA was subjected to quantitative/competitive RT-PCR analysis (competitive qRT-PCR) of
Bcl-x splice variants and the corresponding Bcl-x(L)/(s) mRNA ratios (Ratio (L)/(s)). The ratio of Bcl-x(L) to Bcl-x(s) mRNA was determined by densitometric
analysis of RT-PCR fragments (p � 0.01, n � 6). Data are expressed as mean � S.D. B and C, cells (1.2 � 105) were transduced with either the indicated MOI of
either Ad.mda-7 or Ad.CMV control virus for 24 h (B) or 150 MOI of either Ad.mda-7 or Ad.CMV control virus for the indicated time (C). Total RNA was extracted
and subjected to competitive qRT-PCR analysis of Bcl-x splice variants and the corresponding Bcl-x(L)/(s) mRNA ratios. Data are expressed as mean � S.D. D and
E, The indicated cells (1.2 � 105) were transduced with 150 MOI of either Ad.mda-7 or Ad.CMV control virus. After 24 h, total RNA was extracted and subjected
to quantitative/competitive RT-PCR analysis as in panel A. Data are expressed as mean � S.D. F, the same samples utilized in panel B were subjected to
competitive qRT-PCR analysis of Mcl-1 and CD44 splice variants. For all panels, data are representative of six separate determinations on two separate
occasions.
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mRNA was a mediator of MDA-7-induced cell death, NSCLC
cells were again treated with Bcl-x(s) siRNA, followed by either
Ad.CMV or Ad.mda-7 for 48 and 72 h. Central to this study,
NSCLC cells treated with Bcl-x(s) siRNA exhibited a significant
increase in viability following Ad.mda-7 treatment when com-
pared with NSCLC cells treated with control siRNA after 48
and 72 h (Fig. 4B). These data demonstrate that Ad.mda-7
induces cell death, at least in part, by the expression of Bcl-x(s)
mRNA.

The Expression of Bcl-x(s) mRNA Restrains the Expression of
Bcl-x(L)—Our above data suggest that the expression of Bcl-
x(s) is an important mechanism for MDA-7/IL-24-induced cell
death. As mentioned previously, the Bcl-x(s) protein was not
detected after Ad.mda-7 treatment. However, we did find that
the levels of Bcl-x(L) protein were dramatically preserved by the
down-regulation of Bcl-x(s) mRNA (Fig. 5A). Specifically, A549
cells were again treated with Ad.mda-7 in the presence or
absence of Bcl-x(s) siRNA. Remarkably, NSCLC cells treated
with Bcl-x(s) siRNA exhibited significantly enhanced levels of
Bcl-x(L) protein when compared with control siRNA. These
data demonstrate that Bcl-x(s) siRNA (i.e. specific removal of
Bcl-x(s) mRNA) rescued the loss of Bcl-x(L) protein expression
induced by Ad.mda-7 (Fig. 5A). This effect was not mediated at
the mRNA level for Bcl-x(L), as the expression of Bcl-x(L)
mRNA did not mimic the observed effects on the protein (data
not shown). Thus, Bcl-x(L) protein expression is negatively reg-
ulated by Bcl-x(s) expression.

To determine whether the expression of the coding sequence
of Bcl-x(s) mRNA was mediating this effect on Bcl-x(L) expres-
sion, Ad.Bcl-x(s), which contains only the coding mRNA, was
used to express this cDNA in A549 cells. The expression of
Bcl-x(s) coding mRNA induced a significant (58%) reduction in
the levels of Bcl-x(L) protein (Fig. 5B). More importantly, co-
treatment with Bcl-x(s) siRNA completely blocked this effect,
with no effect observed for Bcl-x(s) siRNA or coding cDNA on
the levels of Bcl-x(L) mRNA (data not shown). These data dem-
onstrate, for the first time, a novel mechanisms by which MDA-

7/IL-24 induces cytotoxicity in tumor cells, at least in part, by
generating Bcl-x(s) mRNA, which reduces Bcl-x(L) protein lev-
els, and thereby, limits the cytoprotective effects of Bcl-x(L).

MDA-7/IL-24-induced Alterations in Bcl-x Pre-mRNA Are
Independent of Ceramide-generating Pathways—As mentioned
previously, MDA-7/IL-24 is known to induce ceramide synthe-
sis via the de novo pathway (24, 25, 33), and Bcl-x 5�SS selection
has been previously reported by our laboratory to be responsive
to de novo ceramide production elicited by gemcitabine (20, 21,
24, 25). Therefore, we hypothesized that MDA-7/IL-24-in-
duced reductions in the Bcl-x(L)/Bcl-x(s) splicing ratio
required de novo ceramide production. Surprisingly, incuba-
tion of MDA-7/IL-24-treated A549 cells with fumonisin B1 or
myriocin, two inhibitors of de novo ceramide synthesis, were
unable to inhibit the effect of MDA-7/IL-24 on the Bcl-x(L)/
Bcl-x(s) splicing ratio (Fig. 6, A and B). Additional inhibitors of
sphingolipid synthesis such as acid and neutral sphingomyeli-
nase did not affect the ability of MDA-7/IL-24 to reduce the
Bcl-x(L)/Bcl-x(s) splicing ratio (data not shown). These data
demonstrate that MDA-7/IL-24 affects the alternative splicing
of Bcl-x pre-mRNA via a ceramide-independent pathway.

MDA-7/IL-24-induced Alterations in Bcl-x pre-mRNA
Require the SRC/PKC� Signaling Axis—Because the mecha-
nism by which MDA-7/IL-24 induced the activation of the Bcl-
x(s) 5� splice site was independent of ceramide signaling, we
undertook a broad-based approach to identify the signaling
pathway required for MDA-7/IL-24 to affect Bcl-x RNA splic-
ing. To identify a target pathway, we subjected A549 cells to an
array of small molecule inhibitors (Table 2) targeting critical
factors in signaling pathways related to MDA-7/IL-24-induced
cell death (e.g. ER stress, SRC kinase, and protein kinase C
(PKC) signaling pathways). Of these, the SRC inhibitor, Src-1,
and the broad spectrum PKC inhibitor, Gö 6983, completely
inhibited the ability of MDA-7/IL-24 to reduce the Bcl-x(L)/(s)
mRNA ratio (Fig. 7, A and B). Interestingly, Inoue et al. (35)
demonstrated that SRC signaling pathways were involved in
MDA-7/IL-24 signaling, and other laboratory groups have
demonstrated that the novel PKC isoform, PKC�, is a down-
stream mediator of SRC signaling (70). For this reason, we
treated NSCLC cells with rottlerin, a reported inhibitor of
PKC� (36), and specific PKC� and SRC siRNA. Both the small
molecule inhibitor of PKC� and down-regulation of the enzyme
by siRNA blocked the ability of MDA-7/IL-24 to reduce the
Bcl-x(L)/(s) mRNA ratio and to rescue MDA-7-mediated cyto-
toxicity (Fig. 7, B and C). Taken together, these data indicate
that MDA-7/IL-24-induced alterations in Bcl-x pre-mRNA
splicing are dependent on the SRC/PKC-� signaling axis (Fig.
7D), but independent of de novo ceramide generation.

Discussion

A number of studies have been published demonstrating that
alternative splicing is often dysregulated in cancer (24, 25,
37– 45). For example, modifications in the alternative splicing
of apoptotic factors such as Bcl-x, caspase 9, and Mcl-1 have
been linked to the resistance to chemotherapy of neoplastic
cells (20, 21, 24, 25, 37, 38, 44, 45). In this study and for the first
time, we show that MDA-7/IL-24 treatment of NSCLC cells
alters the 5�SS selection of Bcl-x pre-mRNA, thereby increasing

FIGURE 3. Ad.mda-7 induces the down-regulation of Bcl-x(L) in NSCLC
cells, but not in non-transformed lung epithelial cells. The indicated cells
(1.2 � 105) were transduced with 150 MOI of either Ad.mda-7 or Ad.CMV
control virus. After 48 h, total protein was extracted and subjected to SDS-
PAGE analysis/Western immunoblotting for Bcl-x(L) and �-actin. A, A549 cells.
B, H838 cells. C, HBEC-3KT cells. Data are representative of four separate deter-
minations on two separate occasions.
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the pro-apoptotic Bcl-x(s) mRNA relative to anti-apoptotic
Bcl-x(L) in A549 cells. The effect of MDA-7/IL-24 treatment on
alternative splicing was specific to Bcl-x pre-mRNA, as
Ad.mda-7 treatment had no effect on the ratio of Mcl-1(L)/
Mcl-1(s) as well as any of the numerous CD44 splice variants.
The effect of MDA-7/IL-24 on activating the Bcl-x(s) 5�SS also
appeared to be independent of the oncogenotype (Table 1), as
Ad.mda-7 also decreased the Bcl-x(L)/(s) ratio in H838 cells.
The effect of MDA-7/IL-24 on Bcl-x 5�SS selection was also
evident in other epithelial tumor cells such as the SKOV3 ovar-
ian cancer cell line (p53 deletion, normal Ras), although to a
lesser degree. Hence, the specific effect of MDA-7/IL-24 on the
activation of the Bcl-x(s) 5�SS translates to multiple oncogeno-
types as well as various solid tumor types, suggesting a broad-
based mechanism that can be exploited for cancer therapeutics.

In regard to the therapeutic efficacy of MDA-7/IL-24, our
findings in this study led to the hypothesis that the alternative
5�SS selection of Bcl-x pre-mRNA was an important mecha-

nism for MDA-7/IL-24 to simply lower the expression of Bcl-
x(L) and enhance the cytotoxic effects of this cytokine on can-
cer cells. In contrast to this hypothesis, we observed that
siRNAs specifically targeting Bcl-x(s) significantly blocked the
MDA-7/IL-24-induced cytotoxicity to NSCLC cells. These data
initially suggested that the expression of Bcl-x(s), and not just
the down-regulation of Bcl-x(L), induced by activation of the
proximal 5�SS in exon 2, was important in the cytotoxic effects
elicited by MDA-7/IL-24. What was most surprising in regard
to the above findings is the lack of observed expression for Bcl-
x(s) protein, although an increase in the mRNA is observed.
Hence, the expression of Bcl-x(s) protein is unlikely to be medi-
ating the cytotoxic effects of MDA-7/IL-24, and this study
begins to clarify a decade-old question regarding the function of
Bcl-x(s). In particular, previous studies suggested that Bcl-x(s)
functions by dimerizing with Bcl-x(L) to sequester Bcl-x(L)
from Bax association (34). Although the studies examining this
interaction in vitro are compelling, albeit on occasion in oppo-

FIGURE 4. Specific down-regulation of Bcl-x(s) mRNA significantly inhibits the loss of cell viability induced by Ad.mda-7. A, A549 cells (1.2 � 105) were
transfected with Bcl-x(s) (siBcl-x(s), 100 nM) or control siRNA (siCON, 100 nM) and transduced with 150 MOI of either Ad.mda-7 or Ad.CMV control virus. After 48 h,
total RNA was extracted and subjected to competitive (left panel) and quantitative (right panel) RT-PCR analysis of Bcl-x splice variants. The ratio of Bcl-x(L) to
Bcl-x(s) mRNA was determined by densitometric analysis of RT-PCR fragments (p � 0.01, n � 6). The relative levels of Bcl-x(s) mRNA were determined as detailed
under “Experimental Procedures” and normalized to 18s RNA. Data are expressed as mean � S.D. and are representative of six separate determinations on two
separate occasions. Scr siRNA, scrambled siRNA. B, A549 cells (1 � 104) were concomitantly treated as in panel A with the indicated MOI of either Ad.mda-7 or
Ad.CMV control virus. After 48 or 72 h, the cells were assayed for cell viability using a WST-1 assay as described under “Experimental Procedures.” Data are
expressed as mean of the percentage of viability of Ad.mda-7/Ad.CMV � S.D. Data are representative of six separate determinations on two separate occasions.
For the 48 h panel (left), * � p � 0.01 comparing lanes 3 and 4. For the 72 h panel (right), * � p � 0.01 comparing lanes 1 and 2 while ** � p � 0.01 comparing
lanes 3 and 4.
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sition of earlier studies on Bcl-x(s) function (9, 34), the Bcl-x(s)
protein itself is rarely observed in most cell types unless ectop-
ically expressed (9, 15, 21, 34). In addition, 10-fold more protein

extract has been required to detect Bcl-x(s) at the protein level
in previously reported studies (15, 21). The findings from our
laboratory over the years may even suggest that the Bcl-x(s)
protein may have been misidentified as a separate Bcl-x splice
variant (Fig. 5B) (see for example Refs. 24, 25). Regardless, the
current study indicates that the expression of the Bcl-x(s)
mRNA, not the protein, regulates the biological effects of
MDA-7/IL-24-induced loss of cell viability by reducing the pro-
tein levels of Bcl-x(L). For example, NSCLC cells treated with
Bcl-x(s) siRNA significantly rescued the reduction in Bcl-x(L)
expression induced by Ad.mda-7 as well as treatment with
Ad.Bcl-x(s). These data suggest that Bcl-x(s) mRNA functions
to inhibit the expression of Bcl-x(L) rather than the Bcl-x(s)
protein, directly antagonizing the function of the Bcl-x(L)
protein.

The mechanism by which Bcl-x(s) coding mRNA elicits this
effect remains unclear, although the data suggest that the effect
occurs at the level of Bcl-x(L) protein synthesis or turnover/
stability. One can surmise that the removal of the portion of
exon 2 sequence encoding for the Bcl-x(L) mRNA induces the
formation of a new RNA cis-element or hairpin structure that
competes for the association of an RNA trans-factor or RNA-
binding protein important in the synthesis of the Bcl-x(L) pro-
tein. Indeed, cytosolic polyadenylation binding proteins such as
the CPEB family members play roles in regulating cytoplasmic
polyadenylation, and thus, regulating the translation of pro-
teins in response to cellular stress. These proteins bind specific
RNA cis-elements, and Bcl-x(s) may simply act as a scavenger
for an activating CPEB2, such as CPEB2B, which has roles in
driving anoikis resistance and metastasis in triple negative
breast cancer (43). Although this is a plausible mechanism, the
effect of Bcl-x(s) mRNA on Bcl-x(L) protein expression may
also occur at the post-translational level as there is a dramatic
and rapid loss of Bcl-x(L) protein observed in response to
Ad.mda-7. Indeed, Bcl-x(s) mRNA may also bind/sequester
factors that stabilize the Bcl-x(L) protein, leading to the degra-
dation of the protein. In support of this possibility, Fisher and
co-workers (29) have shown that MDA-7/IL-24 can induce the
loss of Bcl-x(L) at the post-translational level. Lastly, another
possibility, albeit remote, exists in that Bcl-x(s) mRNA acts as a

FIGURE 5. Specific down-regulation of Bcl-x(s) mRNA significantly inhibits
the loss of Bcl-x(L) protein induced by Ad.mda-7 and Ad.Bcl-x(s). A, A549 cells
(1.2 � 105) were transfected with Bcl-x(s) (siBcl-x(s), 100 nM) or control siRNA
(siCON, 100 nM) and transduced with 150 MOI of either Ad.mda-7 or Ad.CMV
control virus. After 48 h, total protein was extracted. Total protein was subjected
to SDS-PAGE analysis and Western immunoblotting for Bcl-x(L) and �-actin. Data
are representative of six separate determinations on two separate occasions. B,
A549 cells (1.2�105) were transfected with Bcl-x(s) (100 nM) or control siRNA (100
nM) and transduced with 500 MOI of either Ad.Bcl-x(s) or Ad.CMV control virus.
After 24 h, total protein was extracted. Total protein was subjected to SDS-PAGE
analysis and Western immunoblotting for Bcl-x(L)/(s) and�-actin. *�nonspecific
band or a different Bcl-x splice variant (Bcl-x�). Data are representative of six
separate determinations on two separate occasions.

FIGURE 6. Ad.mda-7 induces the activation of the Bcl-x(s)/proximal 5�
splice site of Bcl-x pre-mRNA independent of de novo ceramide genera-
tion. A and B, A549 cells (1.2 � 105) were pre-treated with 100 �M fumonisin
B1 (FB1) (A) or 100 nM myriocin (Myr) (B) for 4 h, followed by transduction with
150 MOI of either Ad.mda-7 or Ad.CMV control virus. After 24 h, total RNA was
extracted and subjected to quantitative/competitive RT-PCR analysis of Bcl-x
splice variants. The ratio of Bcl-x(L) to Bcl-x(s) mRNA (Ratio (L)/(s)) was deter-
mined by densitometric analysis of RT-PCR fragments (p � 0.01, n � 6). Data
are expressed as mean � S.D. and are representative of at least three separate
determinations on two separate occasions

TABLE 2
List of Inhibitors
Signaling pathways and factors examined for involvement in the alternative splicing
of Bcl-x pre-mRNA modulated by MDA-7/IL-24 as analyzed by small molecule
inhibitors are shown. The table depicts the inhibitors and their respective concen-
trations utilized in this study. Signaling pathways were examined for effects on the
ratio of Bcl-x(L)/(s) mRNA utilizing small-molecule inhibitors at doses well char-
acterized in the scientific literature and previously utilized in studies on A549 cells
(43– 47). mTOR, mammalian target of rapamycin. N/C, no change; iPLA2, intracel-
lular phospholipase A2.

Inhibitor Method of action Concentration Outcome

Salubrinal ER stress inhibitor 15 �M N/C
Bromoenol lactone

(BEL)
iPLA2 inhibitor 20 �M N/C

PKC Y translocation
peptide

PKC� inhibitor 100 �M N/C

Rapamycin mTOR inhibitor 10 �M N/C
Gö 6983 Pan-PKC inhibitor 100 nM Inhibition
Rottlerin PKC� inhibitor 50 �M Inhibition
Src inhibitor-1 Src inhibitor 50 nM Inhibition
PKC� siRNA PKC� inhibitor 100 nM Inhibition
SRC siRNA SRC inhibitor 100 nM Inhibition
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FIGURE 7. Ad.mda-7 induces the activation of the Bcl-x(s)/proximal 5� splice site of Bcl-x pre-mRNA via the SRC/PKC� signaling axis. A, A549 cells were
treated with Src inhibitor (SRC-1), pan-PKC-inhibitor (Gö 6983), or rottlerin (Rott) for the times indicated under “Experimental Procedures.” Cells were then
exposed to Ad.mda-7 or Ad.CMV virus for 24 h. Cells were then harvested, and the ratio of Bcl-x(L)/(s) was determined. Veh, vehicle. B, A549 cells were
transfected with either scrambled (si0), PKC� (siPCK�) or SRC siRNA (siSRC), and 48 h later, protein and RNA were harvested and the levels of SRC, PKC-�, MDA-7,
and actin, as well as the ratio of Bcl-x(L)/(s) mRNA, were determined. The ratio of Bcl-x(L) to Bcl-x(s) mRNA was determined by densitometric analysis of RT-PCR
fragments. IB, immunoblot. Data are expressed as mean � S.D. and are representative of three separate determinations on two separate occasions. C, A549 cells
were exposed to either siRNA directed toward SRC or PKC� for 48 h, and then exposed to MDA-7 for 24 h. Cells were then assayed using the WST-1 reagent as
described under “Experimental Procedures.” Data are expressed as mean � S.D. and are representative of six separate determinations on two separate
occasions (* � p � 0.01, n � 6). D, schematic of how MDA7 suppresses cell survival by alteration of Bcl-x splicing via a SRC/PKC� signaling pathway. Specifically,
intracellular MDA7 expression promotes the activation of the Bcl-x(s) 5� splice site via either an intracellular receptor event or ER stress to induce SRC and PKC�
activation, which may involve a direct or indirect effect of PKC� on SAP155 (down-regulation) or other RNA trans-factors to up-regulate Bcl-x(s) level and
down-regulate Bcl-x(L) level. As SAP155 is down-regulated by MDA-7 and cannot conclusively be determined as the regulatory RNA trans-factor, PKC� is likely
affecting Bcl-x 5� splice site selection in an indirect fashion. The overall main theme of the study is that intracellular MDA-7 reduces cell viability through directly
manipulating the level of anti-apoptotic Bcl-x(L) via affecting Bcl-x 5� splice site selection, which requires the SRC/PKC� signaling pathway.
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ribozyme for removal of the Bcl-x(L) protein. Although unlikely
and not previously recorded for mammalian cells, several types
of RNA mechanisms first thought to be limited to lower organ-
isms have now been reported in mammalian cells such RNA
trans-splicing and cytosolic RNA splicing (e.g. XBP-1 pre-RNA
associated with the unfolded protein response) (44, 45). Over-
all, the ability of Bcl-x(s) mRNA to regulate the expression of
Bcl-x(L) is novel and warrants future studies to identify this
intriguing new mechanism.

In this study, we also delved into the signaling mechanism
regulating the 5�SS selection of Bcl-x pre-mRNA in response to
MDA-7/IL-24. Specifically, we show that SAP155, an RNA
trans-factor reported by us as a major regulator of the 5�SS
selection of Bcl-x pre-mRNA, was down-regulated by this cyto-
kine (24, 25). Chalfant and co-workers (24, 25) and Fisher and
co-workers (33) identified ceramide generation and subsequent
activation of ceramide-induced protein phosphatases as a
major mechanism by which certain chemotherapies reduced
the survival of NSCLC cells. Furthermore, MDA-7/IL-24
induced cell death via a ceramide-dependent pathway in some
cancer cell types (32, 33). Based on these studies, we examined
the role ceramide in MDA-7/IL-24-induced reductions in Bcl-
x(L)/Bcl-x(s) pre-mRNA ratios, but surprisingly, the ceramide
synthase inhibitor, fumonisin B1, was unable to block MDA-7/
IL-24-elicited alterations in Bcl-x alternative splicing. Further-
more, myriocin, which inhibits ceramide synthesis at the level
of sphingolipid biosynthesis, had no effect on MDA-7/IL-24-
induced changes in Bcl-x(L)/Bcl-x(s) mRNA ratios. Additional
inhibitors of ceramide generation also had no effect. Therefore,
MDA-7-induced changes in Bcl-X splicing must occur in a cer-
amide-independent manner.

The ceramide-independent nature of the signaling mecha-
nism regulating Bcl-x RNA splicing in response to Ad.mda-7
led to a more broad-based approach and identified the SRC/
PKC� signaling pathway responsible for the modulation in
Bcl-x RNA splicing in response to MDA-7/IL-24 (35). This was
a novel finding as this is in contrast to previous signaling path-
ways reported to regulate Bcl-x RNA splicing in cancer such as
the PI3K/PKC� pathway or PKC	 signaling in non-cancerous
cells (see for example Refs. 24, 25, 71, 72). One may surmise that
MDA-7/IL-24 logically acts to drive terminal differentiation
pathways, explaining the SRC activation paradigm as well as
PKC�, which are implicated in a number of differentiation pro-
cesses. Indeed, our laboratories have previously shown that
anoikis-resistant cancer cells induced SRC activation in
response to MDA-7/IL-24, which correlated with signifi-
cantly higher cell death (46). Thus, although SRC signaling is
usually linked to pro-survival/oncogenic pathways, MDA-7/
IL-24 may reinstate the normal cell cycle checkpoints, allowing
for additional oncogenic stress (1SRC activation) to induce
cellular senescence and subsequent loss of viability for the can-
cer cell. Validation of this hypothesis may aid in explaining why
SRC inhibitors did not show strong clinical effectiveness for
breast and lung cancer as a single agent (47, 48). Overall, this
study allows the postulation that multiple signaling pathways
exist to modulate specific RNA trans-factors to repress or acti-
vate the Bcl-x(s) 5�SS, suggesting that this splicing event is a key
distal point for numerous cell signaling pathways, and thus,

may have broad roles in a number of biological functions as
well as be exploited to enhance the killing of NSCLC cells.

In regard to the RNA trans-factor modulated by the SRC/
PKC� pathway, this study does not conclusively demonstrate
that SAP155 is the mediator of the activation of the Bcl-x(s) 5�
splice site in response to MDA-7, but several key pieces of data
implicate this RNA trans-factor in this paradigm. First, the lev-
els of SAP155 are decreased in response to MDA-7 prior to an
effect on Bcl-x RNA splicing, and our laboratory and others
showed that this level of SAP155 reduction in cells would
induce the activation of the Bcl-x 5� splice site (25, 49). Second,
MDA-7 did not significantly affect the levels of SAM68, hnRNP
H, hnRNP K, and SRSF1, RNA trans-factors reported to affect
Bcl-x RNA splicing in other cell systems (data not shown) (50,
51). Thus, SAP155 is a strong candidate as a regulating RNA
trans-factor in this signaling cascade. Whether PKC� directly
affects the expression of SAP155 or another regulatory RNA
trans-factor via phosphorylation or indirectly via additional
downstream members of the signaling cascade is unknown. A
study by White et al. (52) suggests that PKC� and the RNA
trans-factor, hnRNP K, are linked in another type of apoptosis
mechanism. Although hnRNP K levels were not affected by
MDA-7, one can also hypothesize that PKC� may directly phos-
phorylate hnRNP K in response to MDA-7 to affect Bcl-x 5�
splice site selection. It is also plausible that PKC� phosphory-
lates SAP155 as regulation of this RNA trans-factor by protein
kinases and phosphatases has been reported (53–56). Further-
more, PKC� has also been shown to translocate to the nucleus
in response to apoptotic agonists (57), which localizes the
enzyme in proximity to RNA splicing factors. Indeed, Cocco
and co-workers (58) demonstrated that phosphoinositide-spe-
cific phospholipase C� 1 (PI-PLC�1) will translocate to the
nucleus with stimuli and is associated with RNA trans-factors
(e.g. SRSF3). Thus, the enzyme that generates the activating
second messenger lipid of PKC�, diacylglycerol, is also localized
to appropriate intracellular areas to mediate the direct regula-
tion of RNA splicing. Future studies will focus on delineating
the direct nature of this mechanism.

One open question from this study is whether MDA-7/IL-24
is driving cell death via receptor-mediated events using the
IL-20R1/IL-20R2 and IL-22R1/IL-20R2 receptors or via intra-
cellular pathways. For example, NSCLC cell lines have been
reported to lack canonical cell surface IL-20/IL-22 receptor
pairs for MDA-7/IL-24 such as the H1299 and A549 cell lines
used in this study (59, 60). Accordingly, the MDA-7/IL-24 para-
crine loop is not active in these NSCLC cells, and alternative
intracellular signaling pathways involving ER stress have been
implicated for Ad.mda-7 effects in other cancer cell types (e.g.
prostate cancer cell lines) lacking the surface receptors (46, 59).
Indeed, PKC� activation has been implicated in response to ER
stress (57), suggesting that Ad.mda-7 in NSCLC cells is induc-
ing the activation of the Bcl-x(s) 5� splice site via this pathway.
On the other hand, our data demonstrating that inhibitors of
ER stress pathways had no effect on Bcl-x RNA splicing (Table
2) argue against these pathways mediating the effects of
Ad.mda-7, and thus, suggest a receptor-mediated pathway.
Indeed, there is a lack of knowledge as to whether the MDA-7/
IL-24 expressed intracellularly can act in an autocrine fashion
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outside of a paracrine mechanism due to differences in affinity
for IL-20R homo-dimers. Furthermore, the MDA-7/IL-24
receptors may be sequestered internally in NSCLC, much like
the FAS receptor in prostate cancer cells as shown by Norris
and co-workers (61). Thus, a comprehensive study is necessary
to delineate the current conundrum of whether the MDA-7/
IL-24 receptors are sequestered intracellularly and active, and
thus, can bind MDA-7/IL-24 expressed internally to mediate
cell signaling events.

In conclusion, an important mechanism by which MDA-7/
IL-24 elicits lethality to NSCLC cells has been identified (i.e. via
altering the alternative splicing of Bcl-x pre-mRNA to increase
Bcl-x(s) mRNA at the expense of Bcl-x(L) mRNA). Our data
further suggest that the expression of Bcl-x(s) mRNA reduces
the Bcl-x(L) available to bind Bax, or stabilize mitochondrial
membranes, enhancing the cytotoxic effects of MDA-7/IL-24
on NSCLC cells. As several clinical trials for MDA-7/IL-24 are
ongoing for the treatment of various cancers, our findings sug-
gest that the modulation of Bcl-x 5�SS selection may promote
the therapeutic efficacy of this cytokine. Furthermore, assaying
the Bcl-x(L)/(s) mRNA ratio in patient tumors undergoing
MDA-7/IL-24 therapy may serve as a biomarker for determin-
ing the efficacy of this therapy during treatment.

Experimental Procedures

Materials

DMEM, RPMI, FBS, and penicillin/streptomycin (100 units/
ml penicillin G sodium, and 100 �g/ml streptomycin sulfate)
were obtained from Invitrogen Life Technologies. NSCLC cell
lines of various oncogenotypes (Table 1), A549, H838, and
H1299 cells, were obtained from ATCC (Manassas, VA).
HBEC-3KT cells were a gracious gift of Drs. John Minna and
Jerry Shay (University of Texas-Southwestern, Dallas, TX) (62).
The Bcl-x(s) adenovirus, which was propagated as reported
previously (34), was a gracious gift of Dr. Gabriel Nunez (Uni-
versity of Michigan, Ann Arbor, MI).

Cell Culture

A549, H838, and H1299 cells were grown in 50% RPMI 1640
and 50% Dulbecco’s modified Eagle’s medium supplemented
with L-glutamine, 10% (v/v) fetal bovine serum, 100 units/ml
penicillin G sodium, and 100 �g/ml streptomycin sulfate. All
NSCLC cell lines were used within 6 months and verified by the
company via characteristic morphology consistent with epithe-
lial origin, a positive result for epithelial cell marker cytokeratin
18, and where applicable, by mutational analysis and genotyp-
ing. HBEC-3KT cells were used within 6 months of receipt from
the Minna and Shay laboratory, and were validated as described
previously by them (62). These cells were cultured with kerati-
nocyte serum-free medium containing bovine pituitary extract
and recombinant epidermal growth factor (Life Technologies).
All cells were maintained at less than 80% confluency under
standard incubator conditions (humidified atmosphere, 95%
air, 5% CO2, 37 °C).

Quantitative/Competitive RT-PCR Assays

Competitive qRT-PCR—Total RNA from cell lines was iso-
lated using the RNeasy� Mini Kit (Qiagen Inc., Valencia, CA)

according to the manufacturer’s protocol. Total RNA (1 �g)
was reverse-transcribed using Superscript III reverse tran-
scriptase (SuperScriptTM First-Strand Synthesis System for
RT-PCR, InvitrogenTM), and PCR was performed for Bcl-x
splice variants as described previously (20, 21, 24, 25). The
final PCR products were resolved by 5% Tris borate-EDTA
acrylamide gel electrophoresis, stained with SYBR� Gold
(InvitrogenTM), and visualized using a Molecular Imager� FX
(Bio-Rad) with a 488-nm EX (530-nm BYPASS) laser. This
assay is quantitative in regard to comparing the ratio of Bcl-x(L)
to Bcl-x(s) mRNA between different samples.

Standard Real-time qRT-PCR—Total RNA and reverse tran-
scription were undertaken as described above for quantitative/
competitive RT-PCR. For real-time quantitative PCR, the levels
of Bcl-x(L) and Bcl-x(s) mRNA were individually determined
using quantitative PCR in accord with the TaqMan technology
(Applied Biosystems) specific to Bcl-x(L), Bcl-x(s), and 18S
RNA as described previously by us (24, 25). The cDNA was
amplified using ABI 7900HT.

Western Immunoblotting

Cells were lysed using CelLyticTM lysis buffer (Sigma-Al-
drich) supplemented with protease Inhibitor cocktail (Sigma-
Aldrich). Protein samples (10 �g) were subjected to 10% SDS-
PAGE, transferred to a PVDF membrane (Bio-Rad), and
blocked in 5% milk/1� PBS-0.1% Tween (M-PBS-T) for 2 h.
Primary antibodies were anti-MDA-7/IL-24 (1:1,000; Gen-
Hunter), anti-Bcl-x(L)/(s) (1:1,000; BD Biosciences), anti-
SAP155 (1:2,000; Abcam), anti-Src (1:1,000; Sigma-Aldrich),
anti-PKC� (Cell Signaling, 1:1000), and anti-�-actin (1:1,000;
Sigma-Aldrich). Secondary antibodies were HRP-conjugated
goat anti-mouse or anti-rabbit (1:5,000; Sigma-Aldrich).
Immunoblots were developed using Pierce enhanced chemilu-
minescence (ECL) reagents and Bio-Max film.

Small Interfering RNA Transfection

For inhibition of Bcl-x(s) expression, cell lines were trans-
fected with Bcl-x(s) siRNA (5�-GCU UUG AAC AGG AUA
CUU U-3�), or as a control, scrambled siRNA of the same length
(Dharmacon, Lafayette, CO) or commercially available PKC�
or Src siRNA (Dharmacon) using DharmaFECT 1 transfection
reagent (Dharmacon) as described previously by us (24, 25,
63– 66). Briefly, cell lines were plated in 6-well tissue culture
dishes and allowed to rest overnight. At 50% confluence, cells
were transfected with siRNA (100 nM) using DharmaFECT 1 in
Opti-MEM I reduced-serum medium. After 48 h, RNA and/or
protein were isolated.

Small Molecule Inhibitor Studies

For these studies, A549 cells (1.2 � 105) were plated into
6-well tissue culture plates. The following day, medium was
removed and replaced with the appropriate complete growth
medium. Cells were subsequently treated with sham control
(1:1000) or the appropriate concentration of active inhibitor
(myriocin (100 nM, 4 h), fumonisin B1 (100 �M, 4 h) (Calbi-
ochem), or Salubrinal (15 �M, 30 mins) (Tocris), bromoenol
lactone (20 �M, 30 mins) (Sigma-Aldrich), rottlerin (50 �M, 30
mins) (Sigma-Aldrich), rapamycin (10 �M, 3 h) (Sigma-Al-
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drich), or Gö 6983 (100 nM, 30 mins) (Sigma-Aldrich), prior to
the addition of Ad.control or Ad.mda-7 virus. After the desig-
nated incubation times, total RNA and/or protein was isolated
(67– 69).

WST-1 Assay

Cells (1.0 � 104) were plated into each well of a 96-well plate
in 0.1 ml of medium. After 24 h at standard incubator condi-
tions, the cells were transfected with siRNA and/or transduced
with adenovirus as described previously (24, 25, 37, 38). After
the designated incubation times, WST-1 reagent (Roche
Applied Science) was added to the cells (final 1:10 dilution), and
the cells were incubated along with the reagent for 30 min. The
plates were then read against a blank using a microplate
(ELISA) reader at 420 – 480 nm with the reference wavelength
�600 nm.

Generation of Ad.5.mda-7 and Ad.5/3-mda-7

Recombinant serotype 5 and serotype 5/serotype 3 adeno-
viruses to express MDA-7/IL-24 (Ad.mda-7) or control
(Ad.CMV empty vector) were generated as described elsewhere
(29). Cells were infected with the designated adenoviruses at an
appropriate multiplicity of infection (MOI) as indicated in the
figure legends.

Statistical Analysis

Statistical differences between treatment groups were deter-
mined by either analysis of variance or a Newman-Keuls mul-
tiple comparison test. p values less than or equal to 0.05 were
considered significant.
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