Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1996 Dec 1;98(11):2478–2488. doi: 10.1172/JCI119066

D-glucose-induced dysmorphogenesis of embryonic kidney.

Y S Kanwar 1, Z Z Liu 1, A Kumar 1, M I Usman 1, J Wada 1, E I Wallner 1
PMCID: PMC507705  PMID: 8958210

Abstract

An organ culture system was used to study the effect of D-glucose on embryonic kidneys, and to delineate the mechanism(s) relevant to their dysmorphogenesis. Metanephroi were cultured in the presence of 30 mM D-glucose. A notable reduction in the size and population of nephrons was observed. Ureteric bud branches were rudimentary and the acuteness of their tips, the site of nascent nephron formation, was lost. Metanephric mesenchyme was atrophic, had reduced cell replication, and contained numerous apoptotic cells. Competitive reverse transcriptase-PCR analyses and immunoprecipitation studies indicated a decrease in expression of heparan sulfate proteoglycan (perlecan). Status of activated protein-2 was evaluated since its binding motifs are present in the promoter region of the perlecan gene. Decreased binding activity of activated protein-2, related to its phosphorylation, was observed. D-glucose-treated explants also had reduced levels of cellular ATP. Exogenous administration of ATP restored the altered metanephric morphology and reduced [35S]sulfate-incorporated radioactivity associated with perlecan. The data suggest that D-glucose adversely affects the metanephrogenesis by perturbing various cellular phosphorylation events involved in the transcriptional and translational regulation of perlecan. Since perlecan modulates epithelial/mesenchymal interactions, its deficiency may have led to the metanephric dysmorphogenesis and consequential atrophy of the mesenchyme exhibiting accelerated apoptosis.

Full Text

The Full Text of this article is available as a PDF (962.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi M., Akazawa S., Akazawa M., Trocino R., Hashimoto M., Maeda Y., Yamamoto H., Kawasaki E., Takino H., Yokota A. Effects of insulin and myo-inositol on embryo growth and development during early organogenesis in streptozocin-induced diabetic rats. Diabetes. 1991 Dec;40(12):1574–1579. doi: 10.2337/diab.40.12.1574. [DOI] [PubMed] [Google Scholar]
  2. Ayo S. H., Radnik R. A., Garoni J. A., Glass W. F., 2nd, Kreisberg J. I. High glucose causes an increase in extracellular matrix proteins in cultured mesangial cells. Am J Pathol. 1990 Jun;136(6):1339–1348. [PMC free article] [PubMed] [Google Scholar]
  3. Ayo S. H., Radnik R., Garoni J. A., Troyer D. A., Kreisberg J. I. High glucose increases diacylglycerol mass and activates protein kinase C in mesangial cell cultures. Am J Physiol. 1991 Oct;261(4 Pt 2):F571–F577. doi: 10.1152/ajprenal.1991.261.4.F571. [DOI] [PubMed] [Google Scholar]
  4. Baker L., Piddington R., Goldman A., Egler J., Moehring J. Myo-inositol and prostaglandins reverse the glucose inhibition of neural tube fusion in cultured mouse embryos. Diabetologia. 1990 Oct;33(10):593–596. doi: 10.1007/BF00400202. [DOI] [PubMed] [Google Scholar]
  5. Buchanan T. A., Freinkel N. Fuel-mediated teratogenesis: symmetric growth retardation in the rat fetus at term after a circumscribed exposure to D-mannose during organogenesis. Am J Obstet Gynecol. 1988 Mar;158(3 Pt 1):663–669. doi: 10.1016/0002-9378(88)90050-6. [DOI] [PubMed] [Google Scholar]
  6. Cagliero E., Forsberg H., Sala R., Lorenzi M., Eriksson U. J. Maternal diabetes induces increased expression of extracellular matrix components in rat embryos. Diabetes. 1993 Jul;42(7):975–980. doi: 10.2337/diab.42.7.975. [DOI] [PubMed] [Google Scholar]
  7. Cagliero E., Maiello M., Boeri D., Roy S., Lorenzi M. Increased expression of basement membrane components in human endothelial cells cultured in high glucose. J Clin Invest. 1988 Aug;82(2):735–738. doi: 10.1172/JCI113655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chinnaiyan A. M., Dixit V. M. The cell-death machine. Curr Biol. 1996 May 1;6(5):555–562. doi: 10.1016/s0960-9822(02)00541-9. [DOI] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Clapp W. L., Abrahamson D. R. Regulation of kidney organogenesis: homeobox genes, growth factors, and Wilms tumor. Curr Opin Nephrol Hypertens. 1993 May;2(3):419–429. [PubMed] [Google Scholar]
  11. Cohen I. R., Grässel S., Murdoch A. D., Iozzo R. V. Structural characterization of the complete human perlecan gene and its promoter. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10404–10408. doi: 10.1073/pnas.90.21.10404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Comess L. J., Bennett P. H., Burch T. A., Miller M. Congenital anomalies and diabetes in the Prima Indians of Arizona. Diabetes. 1969 Jul;18(7):471–477. doi: 10.2337/diab.18.7.471. [DOI] [PubMed] [Google Scholar]
  13. Deuchar E. M. Embryonic malformations in rats, resulting from maternal diabetes: preliminary observations. J Embryol Exp Morphol. 1977 Oct;41:93–99. [PubMed] [Google Scholar]
  14. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Eriksson U. J., Borg L. A. Protection by free oxygen radical scavenging enzymes against glucose-induced embryonic malformations in vitro. Diabetologia. 1991 May;34(5):325–331. doi: 10.1007/BF00405004. [DOI] [PubMed] [Google Scholar]
  16. Eriksson U. J., Lewis N. J., Freinkel N. Growth retardation during early organogenesis in embryos of experimentally diabetic rats. Diabetes. 1984 Mar;33(3):281–284. doi: 10.2337/diab.33.3.281. [DOI] [PubMed] [Google Scholar]
  17. Fang W., Rivard J. J., Ganser J. A., LeBien T. W., Nath K. A., Mueller D. L., Behrens T. W. Bcl-xL rescues WEHI 231 B lymphocytes from oxidant-mediated death following diverse apoptotic stimuli. J Immunol. 1995 Jul 1;155(1):66–75. [PubMed] [Google Scholar]
  18. Finley B. E., Norton S. Effects of hyperglycemia on mitochondrial morphology in the region of the anterior neuropore in the explanted rat embryo model: evidence for a modified Reid hypothesis as a mechanism for diabetic teratogenesis. Am J Obstet Gynecol. 1991 Dec;165(6 Pt 1):1661–1666. doi: 10.1016/0002-9378(91)90011-f. [DOI] [PubMed] [Google Scholar]
  19. Freinkel N., Lewis N. J., Akazawa S., Roth S. I., Gorman L. The honeybee syndrome - implications of the teratogenicity of mannose in rat-embryo culture. N Engl J Med. 1984 Jan 26;310(4):223–230. doi: 10.1056/NEJM198401263100404. [DOI] [PubMed] [Google Scholar]
  20. Fuhrmann K., Reiher H., Semmler K., Fischer F., Fischer M., Glöckner E. Prevention of congenital malformations in infants of insulin-dependent diabetic mothers. Diabetes Care. 1983 May-Jun;6(3):219–223. doi: 10.2337/diacare.6.3.219. [DOI] [PubMed] [Google Scholar]
  21. Fukui M., Nakamura T., Ebihara I., Shirato I., Tomino Y., Koide H. ECM gene expression and its modulation by insulin in diabetic rats. Diabetes. 1992 Dec;41(12):1520–1527. doi: 10.2337/diab.41.12.1520. [DOI] [PubMed] [Google Scholar]
  22. Gonzalez K., McVey S., Cunnick J., Udovichenko I. P., Takemoto D. J. Acridine orange differential staining of total DNA and RNA in normal and galactosemic lens epithelial cells in culture using flow cytometry. Curr Eye Res. 1995 Apr;14(4):269–273. doi: 10.3109/02713689509033525. [DOI] [PubMed] [Google Scholar]
  23. Hauguel-de Mouzon S., Louizeau M., Girard J. Functional alterations of type I insulin-like growth factor receptor in placenta of diabetic rats. Biochem J. 1992 Nov 15;288(Pt 1):273–279. doi: 10.1042/bj2880273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hauguel-de Mouzon S., Peraldi P., Alengrin F., Van Obberghen E. Alteration of phosphotyrosine phosphatase activity in tissues from diabetic and pregnant rats. Endocrinology. 1993 Jan;132(1):67–74. doi: 10.1210/endo.132.1.8419148. [DOI] [PubMed] [Google Scholar]
  25. Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
  26. Kanwar Y. S., Liu Z. Z., Kumar A., Wada J., Carone F. A. Cloning of mouse c-ros renal cDNA, its role in development and relationship to extracellular matrix glycoproteins. Kidney Int. 1995 Nov;48(5):1646–1659. doi: 10.1038/ki.1995.460. [DOI] [PubMed] [Google Scholar]
  27. Kanwar Y. S., Rosenzweig L. J., Linker A., Jakubowski M. L. Decreased de novo synthesis of glomerular proteoglycans in diabetes: biochemical and autoradiographic evidence. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2272–2275. doi: 10.1073/pnas.80.8.2272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kanwar Y., Yoshinaga Y., Liu Z., Wallner E., Carone F. Biosynthetic regulation of proteoglycans by aldohexoses and ATP. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8621–8625. doi: 10.1073/pnas.89.18.8621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kashihara N., Watanabe Y., Makino H., Wallner E. I., Kanwar Y. S. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6309–6313. doi: 10.1073/pnas.89.14.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kasinath B. S., Grellier P., Choudhury G. G., Abboud S. L. Regulation of basement membrane heparan sulfate proteoglycan, perlecan, gene expression in glomerular epithelial cells by high glucose medium. J Cell Physiol. 1996 Apr;167(1):131–136. doi: 10.1002/(SICI)1097-4652(199604)167:1<131::AID-JCP15>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  31. Kitzmiller J. L., Gavin L. A., Gin G. D., Jovanovic-Peterson L., Main E. K., Zigrang W. D. Preconception care of diabetes. Glycemic control prevents congenital anomalies. JAMA. 1991 Feb 13;265(6):731–736. [PubMed] [Google Scholar]
  32. Koseki C., Herzlinger D., al-Awqati Q. Apoptosis in metanephric development. J Cell Biol. 1992 Dec;119(5):1327–1333. doi: 10.1083/jcb.119.5.1327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lelongt B., Makino H., Dalecki T. M., Kanwar Y. S. Role of proteoglycans in renal development. Dev Biol. 1988 Aug;128(2):256–276. doi: 10.1016/0012-1606(88)90289-8. [DOI] [PubMed] [Google Scholar]
  34. Liu Z. Z., Dalecki T. M., Kashihara N., Wallner E. I., Kanwar Y. S. Effect of puromycin on metanephric differentiation: morphological, autoradiographic and biochemical studies. Kidney Int. 1991 Jun;39(6):1140–1155. doi: 10.1038/ki.1991.145. [DOI] [PubMed] [Google Scholar]
  35. Liu Z. Z., Kumar A., Wallner E. I., Wada J., Carone F. A., Kanwar Y. S. Trophic effect of insulin-like growth factor-I on metanephric development: relationship to proteoglycans. Eur J Cell Biol. 1994 Dec;65(2):378–391. [PubMed] [Google Scholar]
  36. Nagata M., Nakauchi H., Nakayama K., Nakayama K., Loh D., Watanabe T. Apoptosis during an early stage of nephrogenesis induces renal hypoplasia in bcl-2-deficient mice. Am J Pathol. 1996 May;148(5):1601–1611. [PMC free article] [PubMed] [Google Scholar]
  37. Nerlich A., Schleicher E. Immunohistochemical localization of extracellular matrix components in human diabetic glomerular lesions. Am J Pathol. 1991 Oct;139(4):889–899. [PMC free article] [PubMed] [Google Scholar]
  38. Otani H., Tanaka O., Tatewaki R., Naora H., Yoneyama T. Diabetic environment and genetic predisposition as causes of congenital malformations in NOD mouse embryos. Diabetes. 1991 Oct;40(10):1245–1250. doi: 10.2337/diab.40.10.1245. [DOI] [PubMed] [Google Scholar]
  39. PEDERSEN L. M., TYGSTRUP I., PEDERSEN J. CONGENITAL MALFORMATIONS IN NEWBORN INFANTS OF DIABETIC WOMEN. CORRELATION WITH MATERNAL DIABETIC VASCULAR COMPLICATIONS. Lancet. 1964 May 23;1(7343):1124–1126. doi: 10.1016/s0140-6736(64)91805-7. [DOI] [PubMed] [Google Scholar]
  40. Platt J. L., Brown D. M., Granlund K., Oegema T. R., Klein D. J. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside. Dev Biol. 1987 Oct;123(2):293–306. doi: 10.1016/0012-1606(87)90388-5. [DOI] [PubMed] [Google Scholar]
  41. Reeves W. H., Kanwar Y. S., Farquhar M. G. Assembly of the glomerular filtration surface. Differentiation of anionic sites in glomerular capillaries of newborn rat kidney. J Cell Biol. 1980 Jun;85(3):735–753. doi: 10.1083/jcb.85.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Roy S., Sala R., Cagliero E., Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A. 1990 Jan;87(1):404–408. doi: 10.1073/pnas.87.1.404. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Setty S., Anderson S. S., Wayner E. A., Kim Y., Clegg D. O., Tsilibary E. C. Glucose-induced alteration of integrin expression and function in cultured human mesangial cells. Cell Adhes Commun. 1995 Aug;3(3):187–200. doi: 10.3109/15419069509081286. [DOI] [PubMed] [Google Scholar]
  46. Smeaton T. C., Eichner R. D. Measurement of DNA with an automatic spectrophotometer. Anal Biochem. 1983 Jun;131(2):394–396. doi: 10.1016/0003-2697(83)90189-6. [DOI] [PubMed] [Google Scholar]
  47. Soler N. G., Walsh C. H., Malins J. M. Congenital malformations in infants of diabetic mothers. Q J Med. 1976 Apr;45(178):303–313. [PubMed] [Google Scholar]
  48. Strieleman P. J., Connors M. A., Metzger B. E. Phosphoinositide metabolism in the developing conceptus. Effects of hyperglycemia and scyllo-inositol in rat embryo culture. Diabetes. 1992 Aug;41(8):989–997. doi: 10.2337/diab.41.8.989. [DOI] [PubMed] [Google Scholar]
  49. Striker G. E., Peten E. P., Carome M. A., Pesce C. M., Schmidt K., Yang C. W., Elliot S. J., Striker L. J. The kidney disease of diabetes mellitus (KDDM): a cell and molecular biology approach. Diabetes Metab Rev. 1993 Apr;9(1):37–56. doi: 10.1002/dmr.5610090105. [DOI] [PubMed] [Google Scholar]
  50. Ueda N., Shah S. V. Endonuclease-induced DNA damage and cell death in oxidant injury to renal tubular epithelial cells. J Clin Invest. 1992 Dec;90(6):2593–2597. doi: 10.1172/JCI116154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vasan S., Zhang X., Zhang X., Kapurniotu A., Bernhagen J., Teichberg S., Basgen J., Wagle D., Shih D., Terlecky I. An agent cleaving glucose-derived protein crosslinks in vitro and in vivo. Nature. 1996 Jul 18;382(6588):275–278. doi: 10.1038/382275a0. [DOI] [PubMed] [Google Scholar]
  52. WATANABE G., INGALLS T. H. Congenital malformations in the offspring of alloxan-diabetic mice. Diabetes. 1963 Jan-Feb;12:66–72. doi: 10.2337/diab.12.1.66. [DOI] [PubMed] [Google Scholar]
  53. Wada J., Liu Z. Z., Alvares K., Kumar A., Wallner E., Makino H., Kanwar Y. S. Cloning of cDNA for the alpha subunit of mouse insulin-like growth factor I receptor and the role of the receptor in metanephric development. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10360–10364. doi: 10.1073/pnas.90.21.10360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ziyadeh F. N., Sharma K., Ericksen M., Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor-beta. J Clin Invest. 1994 Feb;93(2):536–542. doi: 10.1172/JCI117004. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES