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Abstract

Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality.

No vaccine is available to prevent HCV infection. To design an effective vaccine, under-

standing immunity against HCV is necessary. The memory B cell repertoire was character-

ized from an intravenous drug user who spontaneously cleared HCV infection 25 years

ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immor-

talized B cells were used to study antibody-mediated immunity against the HCV E1E2 gly-

coproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed

potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the

other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized

non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epi-

tope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized

epitope II and domain B. These data show that a subject, who spontaneously cleared HCV

infection 25 years ago, still has circulating memory B cells that are able to secrete broadly

neutralizing antibodies. Presence of such memory B cells strengthens the argument for

undertaking the development of an HCV vaccine.

Introduction

Hepatitis C is one of the major global public health problems with around 180 million people
chronically infected [1] and 500,000 deaths every year from hepatitis C-related complications
[2]. Recently, novel antiviral therapies have been shown to be very effective in clearing chronic
infections [3–6]. However, Hepatitis C virus (HCV) infection often goes unnoticed due to the
asymptomatic character of the infection and therefore further spread continues. In addition,
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these new treatment options are prohibitively expensive and not accessible for most people
worldwide. It is therefore unlikely that these treatment options will ultimately minimize the
burden of hepatitis C in the world. For this, a vaccine to prevent primary infections is needed.
However, such a vaccine is currently not available.

To guide the development of a vaccine, better understanding of the HCV immunity in sub-
jects that spontaneously clear the infection is needed. Spontaneous clearance of the primary
HCV infection occurs in 25 to 40% of the infected individuals [7–9]. Importantly, clearance
rates after HCV reinfection appear to be increased, as observed among injecting drug users
[10]. In addition, the duration and level of viremia is reduced during a reinfection compared to
the primary infection [10,11]. These observations suggest that following primary infection,
immunologicalmemory against HCV is generated. Strong and broad T cell responses have
been associated with clearance of primary HCV infection [12,13] and importantly, HCV spe-
cific memory T cells have been detected up to 18 years after infection [14]. In contrast to T cell
immunity, less is known about the long-term memory B cell response. A potent and broad neu-
tralizing antibody response against HCV has been associatedwith spontaneous clearance, espe-
cially during the early phase of infection [15,16]. In addition, several broadly neutralizing
monoclonal antibodies showed protection against HCV infection in vivo [17,18], suggesting
that broadly neutralizing antibody can contribute to viral clearance only when they are present
and develop rapidly after infection.However it is unknown if long-term memory B cells capa-
ble of producing broadly neutralizingmonoclonal antibodies does develop after spontaneous
clearance and if these memory B cells can produce these antibodies quickly after reexposure, If
so, this will strengthen the argument for undertaking the development of an HCV vaccine elic-
iting such neutralizing antibody response.

One strategy of vaccine development is based on information on the structure of the virus
envelope surface protein in complex with potent broadly neutralizing antibodies. Understanding
how these antibodies bind and fix the generally metastable viral envelope fusion proteins have to
guide vaccine design. Using such structure based vaccine approach, several groups have been
able to elicit neutralizing antibodies against viruses like human immunodeficiencyvirus, influ-
enza viruses and human respiratory syncytial virus in animal models [19–21]. Such an approach
may be applicable for HCV also, especially since the crystal structure of a partly truncated E2
envelope protein was recently solved in complex with an antibody [22,23]. Additional novel anti-
bodies against E1E2 would facilitate development of more and higher quality E1E2 structures.

Most of the human antibodies that broadly bind E1E2 and neutralize HCV, target the E2
protein. Three epitopes have been definedwhich are located in or around the CD81 binding
site: epitope I (amino acids (aa) 412–423), epitope II (aa 434–446) and domain B (aa 523–535)
[24–27]. In addition, some broadly reactive and neutralizing antibodies recognize a region
adjacent to domain B named domain C or AR2 (aa 538–549) [27,28]. Only few human broadly
neutralizing antibodies recognizing E1 have been isolated. Two of these antibodies IgH-505
and IgH-526 target the linear epitope aa 313–327 [29]. More recently, antigenic regions 4 and
5, located at the interface of E1 and E2, were described [30]. Since these antibodies were iso-
lated from chronic HCV patients, it is yet unknown if subjects who spontaneously clear HCV
infectionmake such antibodies and if only these, or additional epitopes are targeted.

We therefore studied the E1E2 specificmemory B cell repertoire in an injecting drug user
who spontaneously cleared HCV infection. 25 years after viral clearance, we could still find cir-
culating, HCV broadly neutralizing B cells. Four of five isolated antibodies were able to neutral-
ize HCV pseudotypedparticles (pp) of different genotypes and targeted epitope II and domain
B. Interestingly, one antibody recognized an epitope composed of domain C/AR2 and AR5
suggesting that more than one epitope on E2 may need to be the target for developing an HCV
vaccine.

Long-Term B Cell Response against HCV
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Materials and Methods

Ethics Statement

The Amsterdam Cohort Study was conducted in accordance with the ethical principles set out
in the declaration of Helsinki and was approved by the Amsterdam Medical Center institu-
tional medical ethics committee. Written informed consent is obtained prior to data collection
from every participant [31].

Subject Selection

Participant D18926 was selected from the Amsterdam Cohort Study on HIV among injecting
drug users, a prospective cohort study which started in 1985. Study participants visited the Amster-
dam Health Serviceevery 4 to 6 months, where bloodwas drawn and participants completed a
standardized questionnaire about their health, risk behavior, and socio-demographic situation.

Participant D18926 was tested HCV seropositive at cohort entry in 1986 [32] and indicated
that he started injecting drugs 1.5 year earlier and continued injecting drugs for 13 years. At
cohort entry and during entire follow-up time, HCV RNA was negative as determined at least
once for each follow up year by the VERSANT1 HCV RNA Qualitative Assay (Siemens Medi-
cal Solutions Diagnostics) which has a detection limit of 5 IU/mL. The characteristics of the
patient are summarized in Table 1.

Generation of Immortalized B Cells

For this study, 7E7 fresh peripheral bloodmononuclear cells were obtained from participant
18926 and memory B cells were immortalizedby introducing BCL6 and BCL-xL by retrovirus
mediated gene transfer as describedpreviously [33]. In brief, human CD27+IgG+ memory B cells
were isolated and after stimulation with CD40 Ligand and interleukin-21, the cells were trans-
duced with a retroviral vector containing the transgenes BCL6, BCl-xL and the marker gene GFP.
Transduced B cells were maintained in culture with irradiated CD40 Ligand expressing L-cells
and recombinant mouse interleukin-21. The transduced B cells are characterized by the surface
expression of the immunoglobulin and secrete immunoglobulin into the culture supernatant.

Isolation of Cross-Reactive Antibodies

To isolate B cells secreting E1 and / or E2 specific antibodies, we used two approaches: i)
immortalizedpolyclonal B cells were seeded at 100 cells per well in a 96 well plates and

Table 1. Characteristics of participant D18926.

Demographics Participant D18926

Age 1 29 years

Sex Male

Year of cohort entry 1986

Year of last follow up 2011

period of injecting drugs 1985–1999

HIV status Seronegative

IL28B genotype

SNP rs8099917 T/G

SNP rs12979860 C/T

1 at cohort entry, SNP: single nucleotide polymorphism

doi:10.1371/journal.pone.0165047.t001
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maintained in culture for 2 weeks. Antibodies in supernatant of B cell cultures were screened for
binding to 293T cells transfectedwith E1E2 (H77 derived) expression plasmids by flow cytome-
try using BD Perm/Wash buffer (BD Biosciences) as describedby the manufacturer. In brief,
fixed and permeabilizedE1E2 transfected 293T cells were pre-incubated with B cell supernatants
prior to addition of the secondarypolyclonal goat anti human Immunoglobulin (Ig)G-PE anti-
body (Southern biotech) at 1:800 dilution. B cells from positive wells were single cell cultured and
after 3 weeks screened for E1E2 binding (H77 derived) and tested for binding to genotypes 1 to 4
by flow cytometryor ii) immortalizedB cells were incubatedwith E2-his from isolate AMS.2b.21
(gt 2b), stained with monoclonal mouse anti-His Alexa Fluor 647 antibody (Qiagen, 1:400
diluted) and positive B cells were bulk sorted, cultured and further enriched for HCV E2 specific-
ity by another round of single cell sorting using E2-his from isolate H77 (gt 1a).

E1E2 Sequences and Plasmids

E1E2 sequence of isolate H77, (Genbank accession no. AAB67037) was a gift from Dr Jean
Dubuisson [34]. E1E2 sequences from the isolates UKN4.11.1, UKN5.15.7 and UKN6.5.340
(accession no. AY734986, EF427672 and AY736194 respectively) [35,36] were synthesized by
GeneArt (Invitrogen) and cloned into the pcDNA3.1 Zeo(+) vector (Invitrogen).

From plasma of local chronically infected patients, AMS E1E2 sequences were isolated
using the Boom extractionmethod [37]. In brief, RNA was purified from stored plasma, cDNA
was synthesized and the sequences of E1 and E2 were obtained (AMS.1b.2, AMS.2b.21,
AMS.3a.26 and AMS.4d.8 see Genbank accession no. KR094962, KR094963, KR094964 and
KR094965).

To determine which amino acids of E2 are crucial for antibody binding, the H77 E1E2
sequences were synthesized with single alanine mutations. 25 E2 mutants were generated either
by GeneArt (Invitrogen), by using primers coding for the specificmutation (Biolegio) or by use
of the QuikChange II XL Site-DirectedMutagenesis Kit (Agilent). If the residue of interest was
alanine, it was substituted by a glycine.

To generate HCVpp viruses 2 plasmids are needed next to a vector expressing the E1E2
sequences: the phCMV vector containing the MLV gag/pol and the phCMV packaging vector
encoding the Luciferase gene (both are a gift from Dr Jean Dubuisson).

Soluble E2 Protein and Antibodies

To obtain purified E2 proteins, the E2 ectodomain (aa 384–717) from isolate H77 and isolate
AMS.2b.21 containing a His6-tag (E2-his) were cloned into the pCPEO-ST vector and pro-
duced in 293T cells (directly acquired from ATCC, CRL-11268). After harvest of the culture
supernatant, the E2-his was purified using a HisTrap FF column on an ÄKTA Explorer 10s
(GE healthcare).

From broadly reactive B cells the VH and VL were sequenced, cloned and recombinant anti-
body produced [38]. In brief, total RNA was isolated from B cells and after generation of
cDNA, the sequences were obtained from the heavy and light chain by PCR. To produce
recombinant antibodies, the VH and VL sequences were cloned onto the human IgG1 and
kappa constant regions in pcDNA3.1 (Invitrogen). 293T/17 cells were transiently transfected
and recombinant antibodies were purified using the MabSelect SuRe column (GE Healthcare)
on an ÄKTA explorer. The H53 antibody [39] was a gift from Dr Jean Dubuisson.

Enzyme-Linked Immunosorbent Assay (ELISA)

Binding of recombinant antibodies to E1 and/or E2 was determined using an ELISA in which
(a) the aa 384–717 E2 ectodomainwith a His6 tag or (b) a 1% triton lysate of 293T/17 cells

Long-Term B Cell Response against HCV
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transfected with E1E2 was captured on plates coated with Galanthus nivalis lectin (GNA)
(Sigma) as describedpreviously [30]. In brief, pre-coated plates were blocked with 1% fish skin
gelatin (Sigma) and 0.05% tween in phosphate buffered saline before antibodies were added.
To detect bound antibodies, the plates were incubated with horseradish peroxidase conjugated
polyclonal goat anti-human IgG (Jackson, 1:2500 diluted). Bound antibodies were detected
using 3,3’, 5,5’ tetramethyl benzidine (Sigma) and the reaction was stopped using H2SO4. Opti-
cal density (OD) at 450nm was measured with an EnVision Multilabel Reader (PerkinElmer).

Neutralization Assay with HCVpp

Neutralization assays were performed as describedpreviously [40]. In brief, HCVpp expressing
E1E2 from isolates H77 (gt 1a), AMS.1b.2 (gt 1b), AMS.2b.21 (gt 2b), AMS.3a.26 (gt 3a),
UKN4.11.1 (gt 4) and AMS.4d.8 (gt 4d), were incubated for 1 hour at 37°C with 50 to
0.0008 μg/mL of antibody before being spin-inoculated (2000 x g for 45 minutes) onto Huh-7
cells (a gift from François Cosset) seeded one day in advance. After 3 days, the Huh-7 cells
were lysed using Bright-Glo™ Luciferase Assay System (Promega Corporation).Neutralization
was determined by the reduction in luciferase activity compared to background and control
samples. Only HCVpp supernatants, which generated luciferase activity 10 times the back-
ground, were included (S1 Fig). The background was subtracted from the relative light value of
each well. Antibody neutralization activity was calculated using the mean relative light unit
from wells incubated without antibodies. Antibody concentration to reach 50% neutralization
or (IC50) and antibody concentration to reach 90% neutralization (IC90) were determined
using nonlinear regression analysis. The data were analyzed using Prism software (GraphPad).
VSV-G pp was used as control for aspecific effect.

Competition Assays by Flow Cytometry

To determine antibody inhibition of CD81 binding to E2, an intracellular staining was per-
formed using BD Perm/Wash buffer (BD Biosciences) as describedby the manufacturer. In
brief, fixed and permeabilizedE1E2 transfected 293T cells were pre-incubated with antibody
prior to addition of the large extracellular loop of CD81 (CD81-LEL) taggedmouse Fc (Sino
biological). After washing, the polyclonal Alexa Fluor 647 conjugated goat anti-mouse Fc anti-
body (Jackson, 1:12800 diluted) was added and fluorescencewas measured using a BD FACS-
Canto TM II flow cytometer (BD Biosciences). The data were analyzed using FlowJoTM

software (FlowJo). The inhibition of CD81 binding to E1E2 was calculated using the percentage
of Alexa Fluor 647 positive cells from wells incubated without antibodies.

To determine antibody competition for E2 binding, flow cytometry assays were performed
in a similar fashion as described above with the following adaptation: Fixed and permeabilized
E1E2 transfected 293T cells were pre-incubated with non-labeled antibody prior to addition of
E1E2 specific antibodies AR3B, AR4A or AT12-011, which were conjugated with Alexa Fluor
647.

Surface Plasmon Resonance (SPR) Analysis

Antibody affinity for the HCV envelope glycoprotein E2 was determined using SPR as
describedpreviously [38]. In brief, an amine-specific EasySpot gold-film gel-type SPR-chip
(Ssens BV) was spotted with anti-HCV antibodies. After deactivation of the sensor and wash-
ing, concentration series of HCV E2-his was injected to measure binding kinetics. Data were
analyzed using Sprint software (IBIS Technologies BV). KD was calculated as dissociation con-
stant / association constant.

Long-Term B Cell Response against HCV

PLOS ONE | DOI:10.1371/journal.pone.0165047 October 24, 2016 5 / 18



To determine antibody-binding competition on E2, SPR assays were performed in a similar
fashion as described above. But, after immobilizing one antibody on the chip, followed by E2
capture, the second antibody was injected. If no signal was obtained with the second antibody
both antibodies recognized an identical epitope or at least an epitope in close proximity.

Results

Isolation of E1E2 Specific Monoclonal Antibodies

In 2011, approximately 25 years after the estimated date of HCV acquisition, peripheral blood
mononuclear cells were obtained from fresh bloodof participant D18926. CD27+IgG+memory
B cells were isolated (8.4E5 cells) and immortalized. B cells specific for E1E2 were isolated (i)
by screening 7.7E05 cells for binding to 293T cells expressing E1E2 from gt 1a (H77) by flow
cytometry and (ii) by two rounds of cell sorting with E2 from AMS.2b.21 (gt 2b) followed by
sorting with E2 from H77 (gt 1a). During screening,monoclonal B cell cultures were also tested
for binding to a panel of E1E2 proteins from gt 1a (H77), 1b (AMS.1b.2), 2b (AMS.2b.21), 3a
(AMS.3a.26) and 4a (UKN4.11.1). Antibodies AT12-007, -009, -010, -011 and AT13-021
showed binding to E1E2 from genotypes 1,2, 3 and 4. Since AT12-008 and AT12-012, showed
binding to E1E2 from gt 1a only we discontinued characterizing them (S2 Fig).

The variable regions VH and VL of the five cross-reactive antibodies were cloned onto the
human IgG1 and kappa constant regions to produce recombinant antibodies. Sequence charac-
teristics of antibodies are described in Table 2. The recombinant monoclonal antibodies AT12-
007, AT12-009, AT12-010, AT12-011 and AT13-021 were first tested for binding to a panel of
E1E2 derived from six different genotypes 1a (H77), 1b (AMS.1b.2), 2b(AMS.2b.21), 3a
(AMS.3a.26), 4 (UKN4.11.1), 4d (AMS.4d.8), 5 (UKN5.15.7) and 6 (UKN6.5.340) by ELISA at
1 μg/mL (Fig 1). All recombinant antibodies bound to E1E2 from all genotypes tested.

Neutralization Activity of Monoclonal Antibodies

Antibody neutralization was tested using the HCVpp system expressing gt 1 to 4. Antibodies
AT12-009 and AT13-021 neutralized all HCVpp within a concentration range of 0.001 to
0.94 μg/mL, while AT12-007, AT12-010 and AT12-011 had a more restricted neutralization.
AT12-007 and AT12-010 neutralized all HCVpp except gt 4d and/or 4a, while AT12-011 neu-
tralizedHCVpp from gt 1a, 1b and 2b only (Fig 2 and S3 Fig).

Interference with CD81 Binding

Since CD81 is one of the major HCV receptors and the majority of the neutralizing antibodies
interfere with E2 binding to CD81, we performed a CD81 inhibition assay and found that all
our antibodies also interfered with CD81 binding to E1E2 although potencies differed between

Table 2. Antibody sequence characteristics.

AT12-007 AT12-009 AT12-010 AT12-011 AT13-021

Isotype IgG1 IgG1 IgG1 IgG1 IgG1

V gene VH1-24 VH1-69 VH1-69 VH1-69 VH1-69

Number of mutations in VH (nt) 17 (9R/8S) 34 (26R/8S) 23 (16R/7S) 36 (27R/9S) 20 (13R/7S)

Number of mutations in VL (nt) 19 (13R/6S) 17 (12R/5S) 20 (16R/4S) 8(7R/1S) 9(8R/1S)

CDR3H length (aa) 17 27 20 13 19

Antibody heavy and light chain genes sequences were analyzed using the IMGT/V-QUEST database. VH: variable domain of the heavy chain, VL: variable

domain of the light chain, R: replacement mutations, S: silent mutations nt: nucleotide, CDR: complementarity determining region, aa: amino acids.

doi:10.1371/journal.pone.0165047.t002
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antibodies (Fig 3). As for the neutralization assay, AT12-009 and AT13-021 most efficiently
inhibited CD81-LEL binding to E1E2, with IC50 values of 2.2 and 3.4 μg/mL respectively.

Binding Properties

To determine if the epitopes targeted by the antibodies are linear or non-linear, we tested anti-
body binding at a concentration of 1 μg/mL to native E1E2 glycoproteins captured on a GNA
coated ELISA plate vs. binding to denatured E1E2 proteins (isolate H77). Fig 4A shows that all
five antibodies bind a conformation dependent, non-linear epitope. The AP33 control anti-
body, which is directed against a linear E2 epitope, is the only antibody not affected by the
denaturation of the E1E2 proteins. In addition, all five antibodies were directed against an epi-
tope present on soluble E2, as they all bound to soluble recombinant E2 from isolate H77
expressed without E1 (Fig 4B). Finally, we determined the equilibriumdissociation (KD) of the
antibodies for H77 and AMS.2b.21 derived E2 by SPR analysis (Table 3 and S4 and S5 Figs).
Similar to the results of the neutralization assay, AT12-007 and AT12-010 showed preferred
binding to isolate AMS.2b.21 (3.8 nM and 22.8 nM respectively) compared to binding to E2
from isolate H77 (44 nM and 39.3 nM respectively). The antibodies AT12-009 and AT13-021,
with the most potent and broad neutralization profiles, had higher affinities than AT12-007
and AT12-010 (1.3 nM and 14.2 nM for E2 gt 1 and 2.3 nM and 2 nM for E2 gt 2). Interest-
ingly, AT12-011 showed a more than four times higher affinity for E2 (0.2 nM for gt 1 and 0.3
nM for gt 2b) than the other antibodies.

Fig 1. Breadth of cross-reactive antibodies against E1E2 glycoproteins. Antibodies were tested for binding to E1E2 protein derived from different

genotypes by ELISA. E1E2 containing cell lysates were incubated on GNA pre-coated wells before antibodies were added at 1 μg/mL. A lysate from non-

transfected cells and the RSV F protein specific antibody D25 were used as negative controls. The y-axis indicates the mean optical density (OD) at 450 nm

and the errors bars represent one standard deviation (SD). E1E2 sequences are indicated between brackets and assays were performed in duplicate.

doi:10.1371/journal.pone.0165047.g001
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Epitope Mapping

To identify the antibody binding epitope on E2, SPR competition experiments were performed
using His6 tagged E2 (E2-his) from isolate H77. As shown in Fig 5A, AT12-007, -009, -010 and
AT13-021 compete for binding to E2. In contrast, AT12-011 did not compete for binding with
any other antibody, indicating that AT12-011 binds a different epitope on E2. The SPR curves
are shown in S6 Fig.

Competition assays were performed using the well-characterized antibodies AR3B, AR4A
and H53. AR3B binds epitope II (aa 434–446) and domain B (aa 523–535), AR4A binds the
stem region of E2 and the N terminal region of E1, while H53 binds the AR1 domain which is
comprised of the two regions: a first one from aa 483 to aa 485 and second one from aa538 to
aa 549 (domain C /AR2) [27,28,30]. Fixed E1E2 transfected 293T cells were pre-incubated with
non-labeled antibody prior to addition of AR3B, AR4A or AT12-011 directly conjugated with
Alexa Fluor 647. AT12-007, -009, -010 and AT13-021 fully inhibited the binding of AR3B indi-
cating that the epitope of these antibodies comprises the AR3 domain (Fig 5B). However,
AT12-010 and AT13-021 binding was also partial inhibited by AR4A, suggesting that their epi-
topes are not restricted to the AR3B domain only. Binding of AT12-011 was partially inhibited
by AR3B but inhibition was more pronounced by H53, suggesting that the epitope of AT12-
011 partially overlaps with AR1 and is in close proximity to AR3.

Fig 2. Antibody neutralization of HCVpp. HCV antibody neutralizing activity was determined by pre-incubation of HCVpp with antibodies (50 μg/mL

with to 0.0008 μg/mL) before being added to Huh-7 cells. 50 and 90% inhibitory concentrations (IC50 and IC90 in μg/mL) were determined using non-linear

regression analysis. The grey colors indicate the range of neutralization: an IC50 <0.1 μg/mL (black), 0.1–1 μg/mL (dark grey), 1–10 μg/mL (light grey) and

>50 μg/mL (white). IC90 are in parentheses. The mean value of three triplicate experiments is shown.

doi:10.1371/journal.pone.0165047.g002
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To determine which amino acid residues in E2 are important for antibody binding, we gen-
erated a panel consisting of 25 H77 E2 alanine mutants with mutations at positions shown to
affect binding of neutralizing antibodies [28,30,41,42]. Cell lysates of 293T cells transfected
with mutant forms of E1E2 were incubated on GNA pre-coated plates before antibodies were
added (1000–0.2 ng/mL). The concentrations at which antibodies reach 50% binding or half
maximal effective concentration (EC50) were determined using non-linear regression analysis.
Fig 6 presents the percentage of antibody binding to E2 mutants compared the binding to the

Fig 3. Antibodies compete CD81 binding to E2. Cells transfected E1E2 from isolate H77 were pre-incubated with different

concentrations of the indicated antibodies before CD81-LEL at 0.05 μg/mL was added. (A) D25 was used as isotype negative

control. The y-axis indicates the percentage inhibition of CD81 and the errors bars represent one SD. (B) Antibody concentration to

reach 50% inhibition of CD81 binding (IC50) in μg/mL. The IC50 was determined using non-linear regression analysis. The assay was

performed in duplicate and at least repeated once.

doi:10.1371/journal.pone.0165047.g003
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wild-type protein, which was calculated by dividing the EC50 obtained with wild-type E1E2
sequence by the EC50 obtained with the mutant form times 100. In agreement with the

Fig 4. Antibodies recognize non-linear epitopes on soluble E2. (A) Antibody binding to denatured E1E2 was tested by ELISA. A cell

lysate of 293T cells transfected with E1E2 (H77) was treated with 20 mM Dithiothreitol and 0.4% Sodium dodecyl sulfate (denatured E1E2)

or directly added on GNA pre-coated plate (native E1E2). Subsequently the antibodies were added at 1 μg/mL. A lysate of non-transfected

cells, a native E1E2 cell lysate, AP33 an antibody specific for a linear epitope on E2 and D25 were used as negative and positive controls.

(B) The binding of antibodies to H77 derived E2 was tested by ELISA. The antibodies (1 μg/mL) were added to wells pre-coated with His6

tagged E2 (E2-his). Phosphate buffered saline (PBS) coated wells and D25 were used as negative controls. In A) and B) the y-axis indicates

the mean Optical density (OD) at 450nm and the errors bars represent one SD. The assay was performed in duplicate wells and repeated in

at least one separated experiment.

doi:10.1371/journal.pone.0165047.g004
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competition data, AT12-007, -009, -010 and AT13-021 showed reduced binding (�25%) to
alanine mutants located in epitope II, domain B and W616. Differences in E2 binding between
these 4 antibodies were only observed in epitope I and II. For example, AT12-009, the most
potent neutralizing antibody seemed less dependent on residues in epitope II. On the contrary,
AT12-010, with a more restricted neutralization profile, had a relatively large binding epitope
including residues W420 (epitope I), S424, A439, Y443 (epitope II), P484 (AR1) and V538
(domain C/AR2). No reduction in binding was observedusing alanine mutants specific for

Table 3. Affinity of the antibodies for HCV E2.

AT12-007 AT12-009 AT12-010 AT12-011 AT13-021

E2 genotype 1a Ka (10−5 s-1 M-1) 4.6 (± 0.9) 8.6 (± 0.8) 3.6 (± 0.5) 13.6 (± 3.9) 2.9 (± 0.6)

Kd (10−5 s-1) 184 (± 31) 11 (± 1.6) 142 (± 43) 3.9 (± 1.7) 36 (± 8.9)

KD (nM) 44 (± 16) 1.3 (± 0.3) 39.3(± 6.4) 0.3 (± 0.1) 14.2 (± 6.2)

E2 genotype 2b Ka (10−5 s-1 M-1) 5.0 (± 0.3) 8.9 (± 1.6) 4.6 (± 1.2) 8.8 (± 3.4) 5.3 (± 0.4)

Kd (10−5 s-1) 19 (± 0.6) 20 (± 1.5) 98 (± 4.2) 1.1 (± 0.5) 10 (± 0.3)

KD (nM) 3.8 (± 0.1) 2.3 (± 0.5) 22.8(± 4.2) 0.2 (± 0.1) 2.0 (± 0.1)

Affinity of the antibodies for HCV E2 was measured for E2 (A) from isolate H77 (genotype 1a) (B) E2 from isolate AMS.2b. 21 (genotype 2b) by direct SPR.

Antibodies were immobilized on a chip before injecting a concentration series of E2-his (0.1 to 2.0 μg/ml). The assays were performed in triplicate and the

mean of equilibrium dissociation constant (KD) is shown (+/- variance). ka: association constant, kd: dissociation constant.

doi:10.1371/journal.pone.0165047.t003

Fig 5. Antibody competition. (A) Antibody competition assay was performed by SPR using H77 derived E2-his. When the antibodies (indicated in rows)

were immobilized on the chip and had captured E2, a second antibody (indicated in columns) was injected. Absence of binding after injection of the second

antibody indicated the antibodies competed for E2 binding (grey); if the injected antibody bound antibody-captured E2, this was considered to be not

competing (white). The assay was performed in triplicate and repeat in one separated experiment. (B) Antibody competition assay was performed by flow

cytometry using cells transfected with E1E2 from isolate H77. Cells were pre-incubated with 20 μg/mL of the indicated antibodies before Alexa Fluor 647

conjugated antibodies at their EC50 were added. The percentage of binding was calculated using the percentage of Alexa Fluor 647 positive cells from wells

incubated without antibodies. The gray scale indicates the relative binding level: white 100% -75%, light grey 75% -50%, dark grey 50% -25% and black

25%–0%. D25 was used as isotype negative control. The mean value of three duplicate experiments is shown.

doi:10.1371/journal.pone.0165047.g005
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AR4 and epitope I, except for AT12-010 which showed reduced binding to W420. In contrast
to AT12-007, -009, -010 and AT13-021, the binding of AT12-011 was not affected by any of
the alanine mutants in epitope I, epitope II, domain B or AR4. Consistent with the results of
the competition assay, AT12-011 did show reduced binding (�50%) to alanine mutants at
position W549 and R639 located in AR1/ domain C /AR2 and AR5 respectively. These data
suggest that AT12-011 binds an epitope which is at least comprised of amino acid also affecting
binding of AR5 and AR2/domain C located in close proximity to AR3 binding.

Discussion

In this study, we analyzed the memory B cells of an injecting drug user who spontaneously
cleared a HCV infection 25 years ago and had not been injecting drugs for the last 12 years.
Our main finding is that at the time we obtained fresh bloodwe could retrieve circulating
memory B cells that could produce broadly neutralizing antibodies specific for HCV E2.
Although we showed that a long-term memory B cells can develop against the HCV E1E2 gly-
coproteins, it is still unclear if all subjects who spontaneously clear HCV infection develop such
B cell memory.

From this subject who spontaneously cleared HCV infection, we could isolate five broadly
neutralizing antibodies, which may or may not have been part of the primary immune response
against HCV in the past. Although the functions and roles of the antibodies in HCV clearance
and infection are still unclear, it was shown that the development of a neutralizing antibody
response against E1E2 glycoproteins during the early phase of infection is associated with viral
clearance [15,16]. In addition, several broadly neutralizing antibodies showed protection
against HCV infection in vivo [17,18] suggesting that broadly neutralizing antibody contribute
to viral clearance. Therefore, it is tempting to speculate that the broadly neutralizing antibodies
we retrieved from the memory B cell pool 25 years after primary infectionmay have contrib-
uted to viral clearance.

It should be noticed that the subject reported injecting drugs for 13 years following clear-
ance of primary infection and was part of a population of drug users with a HCV antibody
prevalence of 84% and an incidence of 6–27 initial infections per 100 person-years [32]. In
addition, he indicated having shared needles once in a cohort where borrowing is underre-
ported [43]. Taken together, it is not unlikely that this subject, during his drug use career, was
re-exposed to HCV and possibly may have had reinfections, which occurred frequently in this
cohort [44]. Because of possible HCV reexposures, it is unknown if the subject developed the
memory B cells capable of producing the broadly neutralizing antibodies during primary infec-
tion or upon a reexposure.

All antibodies are able to inhibit the binding of E1E2 to the HCV receptor CD81. In addi-
tion, two of the broadly reactive antibodies, AT12-009 and AT13-021, are able to neutralize
HCVpp of genotypes 1 to 4 with high potency. Due to commercial restrictions, we however did
not test these antibodies in the HCV cell culture system (HCVcc). But since Urbanowicz et al.
showed that neutralization potency correlated between the HCVpp and the HCVcc system

Fig 6. Antibody epitope mapping. To determine the more exact antibody-binding epitope single alanine amino acid

substitutions were introduced in the E1E2 sequence from isolate H77 and antibody binding was tested by ELISA.

E1E2 containing cell lysates were incubated on GN lectin pre-coated wells before adding an antibody (1 to 0.0002 μg/

mL). Antibody concentrations needed to get 50% binding (EC50) was determined using non-linear regression analysis.

The relative binding was calculated by dividing the EC50 obtained on wild-type protein versus alanine-mutant protein

times 100. The gray scale indicates the relative binding level: Black 0% -25%, grey 25% -50% and white 50% -150%.

The E2 mutants (rows) were designated X123Y where 123 is the residue position, X indicates the wild-type amino acid

residue in H77 and Y indicates the replacing amino acid. The EC50 which could not be calculated because of very

weak binding were indicated by <10%. The data are the mean values of two experiments performed in duplicate.

doi:10.1371/journal.pone.0165047.g006
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[45] we presume that the AT antibodies will also show neutralization in the HCVcc system.
However, the potency of these antibodies may differ between the systems.

Broadly neutralizing antibodies, retrieved from chronically infected patients,
[28,30,41,46,47] generally target epitopes located in E2 (e.g. epitope I, epitope II, domain B and
the AR4 and AR5 epitopes). Recently the E2 structure and the spatially organization of epitope
II and domain B were revealed [22]. Epitope II and domain B overlap and form the epitope for
antibodies like AR3. The importance of this epitope was shown by De Jong et al. who demon-
strated that combinations of AR4 and AR3 antibodies not only protect mice from HCV infec-
tion but can also cure infection [17]. Since antibodies against these antigenic domains have
been isolated from chronically infected patients [28], it remains unclear if antibodies against
these epitopes are also elicited by subjects who spontaneously cleared HCV infection. In this
study 4 out of 5 antibodies target residues in epitope II and antigenic domain B, identical epi-
topes recognizedby antibodies discovered from chronic patients. Thus, it seems that both
chronically infected patients and those who clear the infection can elicit antibodies against the
same epitopes. As suggested by Pestka et al. [15], this could indicate that timing of the immune
response is important and that failure to clear the infection is related to a delay in the develop-
ment of neutralizing antibodies rather than to the type of epitope targeted.

For in vivo protection, De Jong et al. showed that antibody AR4 which targets an epitope
located at the interface of the stem-region of E2 and the N-terminal region of E1, was needed
to get full protection in mice, while protection using only AR3 antibodies was incomplete
[17,30]. In our study we did not recover antibodies specific for this stem-region. Similarly to
the CBH-7 antibody which also targets domain C [26,48], AT12-011 binding to E2 is very effi-
cient but it is not broadly neutralizing (besides gt 1 and 2), suggesting that its epitope is
expressed differently on virus particles of the different genotypes or the epitope’s function is
different between genotypes. In addition, Swan et al. showed that domain C specific antibodies
can found in sera and that chronically infected patients with reduced liver fibrosis in general
seem to have domain B and C specific antibodies [49]. Collectively, this suggests that several
epitopes on E1E2 may need to be targeted by a HCV vaccine.

In conclusion, we demonstrated that 25 years following spontaneous clearance broadly neu-
tralizing antibodies from the memory B cell pool specific for E2 could be detected in a subject
who spontaneously cleared HCV infection and remained injecting drugs for another 13 years.
The existence and presence of such a long-term memory B cells strengthens the argument for
undertaking the development of an HCV vaccine.

Supporting Information

S1 Fig. Infectivity of HCV pseudoparticles(pp).HCVpp carryingHCV envelope proteins
from genotypes 1 to 4 were kept for 1 hour at 37°C before being added to Huh-7 cells. To deter-
mine the background infectivity of the assay, supernatant of 293T cells transfected only with
phCMV-gag/pol and phCMV-Luciferase (no envelope glycoprotein control) was used. The
mean value of a triplicate experiment is shown and the errors bars represent one standard devi-
ation (SD).
(TIFF)

S2 Fig. Screening for cross-reactiveantibodies to E1E2. B cells specific for E1E2 were isolated
using two strategies. (A) B cell supernatants were screened for binding to 293T cells expressing
E1E2 by flow cytometry. E1E2 transfected 293T cells were permeabilizedbefore adding B cell
supernatants containing antibodies. First, B cell supernatant were screened for binding to 293T
cells expressing E1E2 from gt 1a (H77) (top panel). Then, positive B cell supernatants were
tested for binding E1E2 from genotype 1 to 4 (bottom panel). Non-transfected expressing
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293T cells were used as control for non-E1E2 specific binding. (B) B cells specific for E1E2
were isolated with two rounds of cell sorting with E2 (AMS.2b.21, genotype 2b) followed by E2
from H77, genotype 1a. First, B cell supernatant of AT13-021 was tested binding on gt1a H77
E2 ELISA (top panel). Supernatant containing AT13-021 was tested for binding to E1E2 pro-
teins derived from genotype 1 to 4 by ELISA (bottom panel). D25 was used as isotype control.
(TIF)

S3 Fig. Antibody neutralization curves.HCV antibody neutralizing activity was determined
by pre-incubation of (A) VSV-G pp or HCVpp from isolates (B) H77 (genotype 1a), (C)
AMS.1b.2 (genotype 1b), (D) AMS.2b.21 (genotype 2b), (E) AMS.3a.26 (genotype 3a), (F)
UKN4.11.1 (genotype 4) and (G) AMS.4d.8 (gt4d) with antibodies (50 μg/mL to 0.0008 μg/
mL) before being added to Huh-7 cells. The mean value of two triplicate experiments is shown
and the errors bars represent one standard deviation (SD).
(TIFF)

S4 Fig. SPR curve fits of the binding of antibodies to E2 genotype 1a. A concentration series
of H77 derived E2-his (0.1–2.0 μg/mL) is injected in duplicate over an antibody-coated SPR
chip. SPR data is shown as black curve. SPR curves are fit to a 1:1 binding model to obtain
kinetic constants; curve fits are shown as grey lines.
(TIF)

S5 Fig. SPR curve fits of the binding of antibodies to E2 genotype 2b. A concentration series
of E2-his from genotype 2b isolate AMS.2b.21 (0.1–2.0 μg/mL) is injected in duplicate over an
antibody-coated SPR chip. SPR data is shown as black curve. SPR curves are fit to a 1:1 binding
model to obtain kinetic constants; curve fits are shown as grey lines.
(TIF)

S6 Fig. Antibody competition by SPR. E2-his (2.0 μg/mL) is first injected over an antibody-
coated SPR chip. After binding E2-his, a second antibody is injected. If the second antibody
binds to the antibody-E2 complex, this indicates that the second antibody has a different epi-
tope than the first antibody.
(TIF)
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