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The evolutionarily conserved RNA polymerase II transcrip-
tion factor D (TFIID) complex is composed of TATA box-bind-
ing protein (TBP) and 13 TBP-associated factors (Tafs). The
mechanisms by which many Taf subunits contribute to the
essential function of TFIID are only poorly understood. To
address this gap in knowledge, we present the results of a molec-
ular genetic dissection of the TFIID subunit Taf2. Through sys-
tematic site-directed mutagenesis, we have discovered 12 taf2
temperature-sensitive (ts) alleles. Two of these alleles display
growth defects that can be strongly suppressed by overexpres-
sion of the yeast-specific TFIID subunit TAF14 but not by over-
expression of any other TFIID subunit. In Saccharomyces cerevi-
siae, Taf14 is also a constituent of six other transcription-related
complexes, making interpretation of its role in each of these
complexes difficult. Although Taf14 is not conserved as a TFIID
subunit in metazoans, it is conserved through its chromatin-
binding YEATS domain. Based on the Taf2-Taf14 genetic inter-
action, we demonstrate that Taf2 and Taf14 directly interact
and mapped the Taf2-Taf14 interaction domains. We used this
information to identify a Taf2 separation-of-function variant
(Taf2-�C). Although Taf2-�C no longer interacts with Taf14 in
vivo or in vitro, it stably incorporates into the TFIID complex. In
addition, purified Taf2-�C mutant TFIID is devoid of Taf14,
making this variant a powerful reagent for determining the role
of Taf14 in TFIID function. Furthermore, we characterized the
mechanism through which Taf14 suppresses taf2ts alleles, shed-
ding light on how Taf2-Taf14 interaction contributes to TFIID
complex organization and identifying a potential role for Taf14
in mediating TFIID-chromatin interactions.

RNA polymerase II and the general RNA polymerase II tran-
scription factors (TFIIA,3 -B, -D, -E, -F, and -H) are required for

mRNA gene transcription in all eukaryotes (1, 2). These factors
assemble at gene promoters to form the preinitiation complex
(PIC), a macromolecular assembly required for accurate initia-
tion of transcription. A rate-limiting step for PIC formation is
the association of TBP, or its multisubunit chaperones TFIID
and SAGA, with the promoter. In the yeast Saccharomyces
cerevisiae (Sc), SAGA dominates on gene promoters that
respond to stress, whereas TFIID dominates on so-called
“housekeeping” genes (3–5). These housekeeping genes often
do not contain consensus TATA boxes (so-called “TATA-less”
genes, although these genes do contain TATA-like sequences)
and instead probably rely on the ability of TFIID to engage with
promoter DNA and/or active chromatin to stimulate transcrip-
tion (6, 7).

The evolutionarily conserved TFIID complex is composed of
TBP and 13 TBP-associated factors (Tafs 1–13) (8, 9). Tafs dis-
play myriad biochemical activities including binding to pro-
moter-DNA (10 –19), binding to or enzymatically modifying
chromatin (20 –25), binding to gene-specific transactivators
(26 –29), binding to the general transcription factors (30 –34),
and binding to Mediator (35). However, few examples exist
where the importance of these activities has been genetically
and biochemically interrogated to assess the impact of loss-of-
function variants on transcription activation (25, 30, 31, 36, 37).

The overall trilobed structure of TFIID is conserved between
budding yeast and metazoans (38, 39). In addition, our labora-
tory has defined the subunit stoichiometry and location of the
evolutionarily conserved TFIID subunits using electron
microscopy (EM) coupled with difference mapping and immu-
nolabeling (8, 40 – 42). Consistent with these findings, a recon-
stituted human eight-Taf complex (Tafs 2, 4, 5, 6, 8, 9, 10, and
12) docks well into the yeast TFIID structure and displays sub-
unit stoichiometry similar to yeast TFIID (43, 44).
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Budding yeast does display some significant differences with
regard to TFIID structure and promoter architecture. First, the
metazoan Taf1 double bromodomain and the Taf3 plant
homeobox domain (PHD) finger, domains that directly interact
with modified chromatin, are missing from the yeast homologs
(45– 47). Second, yeast TFIID contains an additional subunit,
Taf14 (8). Third, in metazoan TFIID, Tafs 1 and 2 bind to the
initiator (INR) core promoter element (10, 12), and Tafs 6 and 9
bind to the downstream promoter element (11). Neither the
INR nor the downstream promoter element has been unambig-
uously identified in the yeast system (1).

Despite these differences, yeast have evolved mechanisms to
achieve similar TFIID promoter-DNA binding and chromatin
recognition activities. Instead of having a double bromo-
domain covalently attached to Taf1, the double bromodomain
protein Bdf1 (bromodomain factor-1) is a TFIID-associated
protein (48, 49), and its occupancy in genome-wide analyses
correlates with Taf1 occupancy (7). Although not conserved as
a TFIID subunit, Taf14 is conserved through its YEATS domain
(50). This domain, which is also present in the super elongation
complex proteins AF-9 and ENL (51–53), was recently shown
to bind to acetylated and crotonylated lysine 9 of histone H3
(H3K9) (23, 24), marks associated with active transcription (54,
55). In regard to ScTFIID promoter recognition, footprinting
analyses have demonstrated that both metazoan and ScTFIID
display extended footprints with contacts spanning nearly 100
bp (8, 17, 56). ScTFIID histone fold pairs Taf4/Taf12 and Taf6/
Taf9 also display in vitro DNA binding activities, although
binding has not been shown to be sequence-specific (15). In
addition, structural analyses with ScTFIID-TFIIA-activator in
complex with promoter-DNA position DNA in contact with
the C terminus of Taf2 (57). Taken together, these observations
demonstrate that TFIID promoter-DNA and chromatin inter-
action activities are maintained in the yeast system. However,
how these activities contribute to TFIID transcriptional activa-
tion function remains undefined.

In addition to its role in TFIID, Taf14 is also a subunit or
associated protein of six other transcription-related complexes
(52, 58 – 60). Although Tafs 1–13 are essential for life (46,
61– 65), Taf14-null cells display temperature-sensitive (Ts)
growth and defects in expression of galactose (GAL) and DNA
repair genes (23, 52). Still, how Taf14 contributes to TFIID
structure or function remains poorly understood because
mutations in TAF14 could impact the function of all of the
transcription-related complexes with which it associates. To
begin to understand TAF14 function in vivo, we need true sep-
aration-of-function variants that can specifically dissociate
Taf14 from a single complex without disrupting its ability to
perform its other functions.

We have minimal understanding of Taf2 function despite the
fact that it was the first yeast Taf discovered (10, 46, 61). Our
laboratory was the first to discover the location of Taf2 within
the TFIID complex (41). In addition to its INR binding function,
metazoan Taf2 directly interacts with Taf8, and this interaction
is critical for Taf2 to localize to the nucleus (44). For RNA po-
lymerase II to clear the promoter and begin productive elonga-
tion, TFIID appears to isomerize in a Taf2-dependent manner
to release TFIID from downstream promoter sequences (66,

67). However, none of these biochemical activities have been
genetically dissected. In fact, Taf2 has never been subjected to
structure-function analysis in any system. While this manu-
script was in preparation, a cryo-EM structure of human TFIID
allowed Louder et al. (68) to describe the structure of Taf2 in
molecular detail. However, this structure was not interrogated
genetically or biochemically. Consequently, we have minimal
understanding of how Taf2 contributes to TFIID-dependent
transcription in vivo.

In this study, we performed a systematic molecular genetic
dissection of Taf2 to address this gap in knowledge. Our anal-
yses identified a genetic interaction between TAF2 and TAF14.
We demonstrate that these two subunits directly interact and
define the interaction domains in both subunits. Despite Taf14
being present in multiple copies per TFIID subunit, mutation in
Taf2 can completely disrupt the ability of Taf14 to associate
with the TFIID complex. Taf14-less TFIID-containing cells dis-
play defects in growth and transcript abundance for the highly
transcribed TFIID-dominated ribosomal protein-encoding
genes. Furthermore, our data indicate that the Taf14 YEATS
domain contributes to TFIID function.

Results

I-TASSER Prediction of Taf2 Structures—To understand the
role of Taf2 in TFIID function, we initially pursued classical
approaches that have been successfully used to identify TFIID
subunit functional domains. First, primary amino acid
sequences from S. cerevisiae (yeast), Homo sapiens (human),
and Drosophila melanogaster (fly) Taf2 were subjected to
ClustalW sequence alignment to identify “hot spots” of amino
acid sequence homology that we could target for mutagenesis.
These analyses have been successfully applied to the histone
fold domain-containing Tafs as well as the conserved TBP C
terminus (47, 62, 63, 65, 69). Yeast Taf2, which encodes a
1407-aa protein, only displays weak sequence conservation
with human (1199 aa) and fly (1221 aa) Taf2, �15% sequence
identity and �32% sequence similarity (Fig. 1, B and C). In
addition, the amino acids that are conserved do not cluster in
hot spots but instead are distributed throughout the amino acid
sequence. Second, we performed systematic �100-amino acid
N-terminal, C-terminal, and internal deletion mutagenesis as
described previously (28, 36, 70, 71) to generate 49 deletion
variants. TAF2 is a single copy essential gene. Thus, to perform
genetic complementation assays, we used a pseudodiploid
TAF2 wild-type (WT) strain for plasmid shuffle analysis as
described previously (28, 32, 36, 47). Forty-eight of these vari-
ants were unable to complement a taf2-null strain and failed to
stably incorporate into the TFIID complex (summarized in
supplemental Table 1). The single variant that could comple-
ment a taf2-null strain (Taf2(1–1307)) displayed no discernible
adverse growth, steady-state protein levels, or TFIID stable
incorporation phenotypes. Third, we created a hydroxylamine-
mutagenized TAF2 plasmid mutant library (62) to generate
taf2ts variants. However, none of the 20 taf2ts alleles identified
in a plate growth-based screen displayed acute loss of function
in liquid culture when shifted to the non-permissive tempera-
ture (37 °C) (data not shown) as has been shown to occur for Ts
alleles for every essential yeast Taf (4).
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To overcome these technical hurdles, we hypothesized that a
structure-guided site-directed mutagenesis strategy would suc-
cessfully identify Taf2 amino acids critical for Taf2 function.
However, at the time of this study, no 3D structural information
existed for Taf2. Thus, to generate a putative 3D model for
Taf2, we used the 3D structural prediction program I-TASSER
to generate models for yeast, human, and Drosophila Taf2
structures (Fig. 1, A, B, and C, respectively) (72). I-TASSER has
been successfully used in the gene regulation field to model
structurally intractable proteins (68, 73, 74). Despite the weak
amino acid sequence conservation, I-TASSER predicts that the
Taf2 structures from these three different organisms display
the same general features. Particularly, the N terminus of Taf2
is predicted to contain a �-sheet motif, the central portion and
majority of the molecule are composed of HEAT repeats, and
the C terminus is predicted to form another �-sheet motif along
with an unstructured region. As noted above, while this manu-
script was in preparation, a high resolution cryo-EM structure
of human Taf2 was described, and it exhibits the same general
architecture predicted by our study (68). Given the similarities
among the yeast, human, and Drosophila Taf2 predicted struc-

tures, we concluded that our in silico generated yeast Taf2
structure was a suitable model from which to design a struc-
ture-based site-directed mutagenesis screen.

Site-directed Mutagenesis of TAF2—To further genetically
interrogate yeast TAF2, we designed two classes of TAF2 site-
directed variants comprising 87 mutants. These variants pri-
marily consisted of Ala block substitution mutations but also
included charge reversal mutations (see supplemental Table 2).
Class I mutants, designed based on predicted solvent accessi-
bility and proximity to evolutionarily conserved residues, con-
tained 58 variants. Class II mutants, designed based on pre-
dicted solvent inaccessibility and to include mutations of
groups of conserved amino acids, contained 29 variants. All
variants were engineered to contain a three-copy HA tag and
SV40 nuclear localization sequence (HAx3NLS) (HA) N-termi-
nal tag. Importantly, HA-Taf2 phenocopies untagged Taf2 in
genetic complementation assays and can efficiently and stably
incorporate into the TFIID complex (Fig. 2, A and B). Every
variant was scored for its ability to genetically complement a
taf2-null strain at both permissive (25 °C) and non-permissive
temperatures (37 °C) as well as by �-HA immunoblotting to
ensure each variant accumulated to levels similar to WT Taf2.

Results for these analyses are described in detail in supple-
mental Table 2. In summary, of the Class I variants, 36% dis-
played a genetic complementation defect including five that
were inviable and eight variants that were both slow growing at
the permissive temperature and Ts at the non-permissive tem-
perature (Fig. 2; taf2-ts1 through taf2-ts8). Of the Class II vari-
ants, 62% displayed a genetic complementation defect includ-
ing 10 that were inviable and four variants that were both slow
growing at the permissive temperature and Ts at the non-per-
missive temperature (Fig. 2; taf2-ts9 through taf2-ts12). Of
note, none of the variants displayed dominant negative pheno-
types. Surprisingly, none of the variants displayed drastic
reduction in steady-state protein levels (�2�), even variants
that could not complement the taf2-null strain.

To assess the mechanism by which the loss-of-function Taf2
variants fail to complement the taf2-null strain, inviable and
taf2ts variants were subjected to �-HA co-immunoprecipita-
tion (co-IP) (Fig. 2B and supplemental Table 2). A strain
expressing untagged WT Taf2 was used as a negative control.
Despite similar steady-state protein levels and IP efficiency,
none of the loss-of-function taf2 mutant variants tested could
co-precipitate either the TFIID-specific subunits Taf7 and Taf8
or Taf14 as efficiently as HA-Taf2. These results suggest that
these mutations disrupt Taf2-TFIID subunit interactions, con-
tributing to growth defects.

TAF14 Overexpression Suppresses Select taf2ts Growth
Phenotypes—Considering that all of the loss-of-function taf2
variants display defects in stable incorporation into the TFIID
complex, likely as a result of disruption of specific Taf2-TFIID
subunit interactions, we hypothesized that artificially driving
Taf2-TFIID stable incorporation would suppress the taf2ts-as-
sociated growth defects. Ideally, if a taf2ts mutant variant has a
reduction in binding affinity to a TFIID subunit, increasing
concentration of that subunit could drive complex formation
and rescue the ability of Taf2 to stably associate with TFIID. To
this end, we individually overexpressed every TFIID subunit

S. cerevisiae

H. sapiens

D. melanogaster

N

N

N

C

C

C

A.

B.

C.

Similarity Yeast
Taf2 32%

Similarity Yeast
Taf2 31%

FIGURE 1. 3D structural prediction of Taf2 homologs suggests similar
structures despite low overall sequence conservation. A–C, the primary
amino acid sequences of S. cerevisiae Taf2 (A), H. sapiens Taf2 (B), and D. mela-
nogaster Taf2 (C) were analyzed using the ClustalW sequence alignment algo-
rithm and the 3D structural prediction program I-TASSER. Evolutionary
sequence conservation and predicted 3D structural models indicating sec-
ondary structure (pink, �-strand; cyan, �-helix; tan, random coil) are shown. N
and C termini are labeled. Sequence alignment similarity scores of H. sapiens
and D. melanogaster compared with S. cerevisiae are displayed next to the
predicted structures in B and C, respectively.
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(Fig. 3A) in strains harboring the taf2ts variants. We have pre-
viously shown that overexpressed TFIID subunits TAF4 and
TAF11 have displayed positive genetic interactions with TOA2,
a protein that directly interacts with the TFIID complex, dem-
onstrating that overexpression of individual TFIID subunits is a
viable method for identifying genetic interactions (32).

Overexpression of TAF1, TAF3, TAF7, TAF8, and TAF14
resulted in dominant negative growth phenotypes, consistent
with published results (75). As expected, overexpression of
TAF2 could complement growth for all taf2ts variants (Fig. 3B
and data not shown). In addition, we observed strong taf2ts

allele-specific suppression when we overexpressed TAF14 but
not for any of the other non-TAF2 TFIID subunits (Fig. 3, B and
C, see taf2-ts6 versus taf2-ts7 and ts8). TAF14 overexpression
suppression of the taf2-ts7-associated growth phenotype was
particularly potent, rescuing growth to near WT levels at both
permissive and non-permissive temperatures.

Although five of the 12 taf2ts variants displayed mild growth
improvement, TAF14 overexpression suppression of taf2-ts7
and -ts8 significantly improved growth at all temperatures

tested. The amino acids mutated in the taf2-ts7 and -ts8 vari-
ants map to adjacent �-helixes in the yeast Taf2 predicted
structure, whereas taf2-ts6 is predicted to reside on the oppo-
site side of the molecule (Fig. 3D). These results suggest that
amino acids mutated in the taf2-ts7 and -ts8 form a domain that
is likely involved in Taf2-TFIID subunit physical interactions,
potentially Taf2-Taf14 interaction. Because of the potency of
the genetic interaction between TAF14 and taf2-ts7, further
molecular and genetic analyses were performed with taf2-ts7.

TAF14 Overexpression Suppresses Defects in Ribosomal Pro-
tein Gene Transcript Abundance Associated with taf2-ts7—We
hypothesized that strong taf2-ts7 growth defects likely result in
a reduction in abundance of ribosomal protein-encoding gene
(RPG) transcripts, a class of genes that is TFIID-dominated
(3–7). To assess RPG transcripts, log phase growing yeast
strains, harboring either TAF2 or taf2-ts7 and containing either
an empty overexpression vector or a TAF14 overexpression
vector, were abruptly shifted to the non-permissive tempera-
ture for 2 h followed by RNA extraction and quantitative
reverse transcription-PCR (qRT-PCR). We have assessed RPG
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Taf2 Molecular Genetic Dissection and Taf14 Interaction

22724 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 43 • OCTOBER 21, 2016



transcript abundance using this temperature shift paradigm
using Ts variants for TAF1–TAF13, TOA1, and TOA2 (28, 32,
36).

We found that taf2-ts7 without TAF14 overexpression dis-
plays a statistically significant �3-fold reduction compared
with TAF2 in TFIID-dominated RPG transcripts (RPS3, RPS5,
RPS8A, and RPS9B; Fig. 4A) without a concomitant significant
decrease in SAGA-dominated transcripts (PGK1 and PYK1;
Fig. 4A), RNA polymerase I transcripts (RDN58; Fig. 4B), or
RNA polymerase III transcripts (SNR6; Fig. 4C) (54). The RPG
transcript defects were ameliorated when TAF14 was overex-
pressed in the taf2-ts7 strain. These data suggest that the ability
of taf2-ts7 to appropriately regulate RPG transcript abundance
is aided by elevated TAF14 levels.

TAF2 and TAF14 Directly Interact in Vitro—The simplest
model for the genetic interaction between Taf2 and Taf14 is
that these two proteins directly interact. Consistent with this
hypothesis, Taf2 was identified as a Taf14-interacting protein
in a genome-wide yeast two-hybrid screen but was not authen-
ticated as a direct interaction (59). To determine whether Taf2
and Taf14 directly interact, Taf1-TAP-purified TFIID, malt-
ose-binding protein (MBP), and MBP-Taf2, all purified from
yeast (see “Materials and Methods”), were subjected to Far-
Western blotting with and without purified recombinant His6-
Taf14 (Fig. 5A). His6-Taf14-bound proteins were detected with
antigen affinity-purified anti-Taf14 IgG (60). When His6-Taf14
was omitted from the Far-Western blotting, the only signals
observed were for purified Taf14 from the TFIID complex as
well as trace amounts of Taf14 that co-purify with the yeast-

generated MBP-Taf2. Upon overlay with His6-Taf14, His6-
Taf14 bound to both Taf2 from TFIID and MBP-Taf2 but not
MBP or other TFIID subunits. To extend these analyses to solu-
tion binding assays, increasing concentrations of MBP-Taf2
were mixed with either purified recombinant His6-glutathione
S-transferase (GST) or His6-GST-Taf14 in the presence of BSA
as a nonspecific competitor and subjected to GST pulldown.
His6-GST-Taf14 specifically bound MBP-Taf2 in a dose-depen-
dent and saturable manner (Fig. 5B). Thus, we have shown
through two independent methods that Taf2 and Taf14 specif-
ically and directly interact in vitro.

The Taf2 C Terminus Is Necessary and Sufficient for Binding
Taf14 in Vitro and in Vivo—Using the Far-Western blotting
assay, we determined the domain of Taf2 where Taf2 and Taf14
directly interact (Fig. 6). To this end, purified MBP-Taf2 (lane
1), His6-Taf2(1– 407) (lane 2), His6-Taf2(401–1007) (lane 3),
His6-Taf2(1001–1407) (lane 4), His6-Taf2(1001–1207) (lane
5), and His6-Taf2(1201–1407) (lane 6) were subjected to Far
Western blotting as described above (Taf2-purified forms in
Fig. 6A, left; constructs diagrammed in Fig. 6B). When His6-
Taf14 was omitted from the overlay, the only signal present
was the co-purifying Taf14 in the MBP-Taf2 sample. Upon
His6-Taf14 overlay, His6-Taf14 bound to MBP-Taf2 (lane 1),
His6-Taf2(1001–1407) (lane 4), and His6-Taf2(1201–1407)
(lane 6). These results suggest that the Taf14 binding domain
resides in Taf2(1201–1407).

As described above, our systematic 100-aa TAF2 truncation
analysis showed that Taf2(1–1307) could complement a taf2-
null strain and stably incorporate into the TFIID complex,
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whereas Taf2(1–1207) could do neither (supplemental Table
1). Because these C-terminal amino acids contain the Taf14
binding domain, we hypothesized that a finer truncation anal-
ysis of the Taf2 C terminus may define the amino acids neces-
sary for Taf14 binding in vivo. TAF2 was subjected to 10-aa
serial truncations of its C terminus. These variants were ana-
lyzed for their ability to complement a taf2-null strain, steady-
state protein levels, and the ability to co-immunoprecipitate
TFIID subunits (Fig. 6, C and D). We found that Taf2(1–1250)
could not complement a taf2-null strain, had reduced steady-
state protein levels compared with HA-Taf2, and could not co-
immunoprecipitate TFIID subunits Taf4, Taf7, Taf8, Taf9, and
Taf14. Smaller truncations (Taf2 aa 1–1260 to 1300) still main-
tained their ability to complement the taf2-null strain, dis-
played elevated steady-state protein levels compared with HA-
Taf2, and could coimmunoprecipitate TFIID subunits Taf4,
Taf7, Taf8, and Taf9. In regard to the Taf14 co-IP, Taf2(1–
1280), Taf2(1–1290), and Taf2(1–1300) all maintained the abil-
ity to co-precipitate Taf14 at levels similar to WT. However,
Taf2(1–1270) showed a mild reduction in the ability to co-pre-
cipitate Taf14, and Taf2(1–1260) (hereafter referred to as Taf2-

�C) completely lost the ability to co-immunoprecipitate Taf14.
Based on these data, we conclude that Taf2(1261–1407) is nec-
essary for Taf2-Taf14 interaction in vivo.

Purified MBP-Taf2-�C was tested for its ability to directly
interact with Taf14 in vitro. MBP-Taf2-�C was subjected to
both Far Western blotting (Fig. 6A, lane 7) and GST pulldowns
(Fig. 6E) as described above. MBP-Taf2-�C displayed no
observable binding to His6-Taf14 in the Far Western blot or
His6-GST-Taf14 in the GST pulldown. Thus, Taf2(1261–1407)
is necessary for Taf14 binding in vitro.

To assess whether the Taf2 C terminus is sufficient for bind-
ing to Taf14 in vivo, untagged Taf2, HA-Taf2, HA-Taf2-�C,
and HA-Taf2 C-terminal fragments (aa 1261–1407, 1271–
1407, 1281–1407, 1291–1407, and 1301–1407) were subjected
to �-HA co-IP as described above (Fig. 6F). As expected, HA-
Taf2 could co-immunoprecipitate Taf7, Taf8, and Taf14,
whereas HA-Taf2-�C could co-immunoprecipitate Taf7 and
Taf8 but could not co-immunoprecipitate Taf14. Surprisingly,
all of the Taf2 C-terminal fragments displayed the ability to
co-immunoprecipitate Taf14. Despite Taf2(1261–1407) being
necessary for binding to Taf14 in vivo, aa 1261–1407 and
smaller C-terminal fragments are sufficient for binding to
Taf14 in vivo. Considering that TFIID contains multiple copies
of Taf14 per TFIID molecule (8), these data allowed us to
hypothesize that the Taf2 C terminus contains multiple Taf14
binding domains that are independently capable of promoting
Taf14-TFIID association.

Defining the Minimal Taf2 Interaction Domain in Taf14 —In
parallel to our analyses to map the Taf14 interaction domain in
Taf2, Taf14 was also subjected to systematic truncation
mutagenesis to identify the Taf14 domain operative in sup-
pressing the taf2-ts7 Ts phenotype. Previous Taf14 studies have
shown that the N terminus contains the YEATS domain,
whereas the Taf14 C terminus can both complement the
growth deficiencies associated with a taf14-null strain and asso-
ciate with transcription-related complexes such as TFIID and
TFIIF in vivo (76). In addition, C-terminally tagged Taf14 vari-
ants display defects in growth, likely because the tag negatively
impacts the ability of Taf14 to interact with transcription-re-
lated complexes (59).

In strains harboring taf2-ts7, Taf14 full length (aa 1–244), the
Taf14 N terminus (aa 1–123), and the Taf14 C terminus (aa
124 –244) were overexpressed to determine whether these frag-
ments could suppress the Ts phenotype (Fig. 7A). All variants
were expressed with a two-copy FLAG tag with an SV40
nuclear localization sequence (FLAGx2NLS) N-terminal tag.
Although Taf14(1–244) displayed the most robust suppression
of the taf2-ts7 Ts phenotype, Taf14(124 –244) also suppressed
the taf2-ts7 Ts phenotype. The N-terminal YEATS domain-
containing fragment (aa 1–123) could not suppress the taf2-ts7
Ts phenotype. We further dissected the Taf14 C terminus in
this overexpression suppression assay by performing system-
atic N- and C-terminal truncations of Taf14(124 –244) (Fig. 7A
and data not shown). These analyses identified that the domain
minimally required for suppression of the taf2-ts7 Ts pheno-
type lies within Taf14(164 –244).

Again, the simplest model for the ability of the Taf14 C ter-
minus to suppress the taf2-ts7 Ts phenotype is that the C ter-
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FIGURE 4. Overexpression of TAF14 suppresses the ribosomal protein
gene transcription defect associated with taf2-ts7. A–C, analysis of RNAs
from cells shifted to the non-permissive temperature. Shuffled strains harbor-
ing HAx3NLS-TAF2 or HAx3NLS-taf2-ts7 with either an empty HIS3-marked
overexpression (OE) plasmid or a HIS3-marked overexpression plasmid con-
taining an N-terminally FLAGx2NLS-tagged TAF14 cDNA were grown at 25 °C
to early to mid-log phase and then shifted to the non-permissive temperature
(37 °C) for 2 h. RNAs were extracted and analyzed by qRT-PCR scoring for RNA
Pol II- (A), RNA Pol I- (B), and RNA Pol III (C)-transcribed genes. Data were
generated from two biological replicates. Each data point in the graph repre-
sents one biological replicate and is generated from the average of three
technical replicates. Results were statistically analyzed using a two-way anal-
ysis of variance with Dunnett’s multiple comparisons test (GraphPad Prism).
Means � S.D. (error bars) are depicted. *, p 	 0.05. Dark gray, HAx3NLS-TAF2;
light gray, HAx3NLS-TAF2 � overexpressed TAF14; red, HAx3NLS-taf2-ts7; blue,
HAx3NLS-taf2-ts7 � overexpressed TAF14.
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minus of Taf14 directly interacts with Taf2. To test this hypoth-
esis, purified recombinant His6-GST, His6-GST-Taf14(1–244),
His6-GST-Taf14(1–123), and His6-GST-Taf14(124 –244) were
mixed with purified Taf2 and, in the presence of BSA, subjected
to GST pulldown as described above (Fig. 7B). His6-GST-
Taf14(1–244) and His6-GST-Taf14(124 –244) were able to pull
down purified Taf2 in a dose-dependent manner, whereas His6-
GST and His6-GST-Taf14(1–123) did not pull down any
detectable Taf2. These data confirm that the Taf14 C terminus,
the domain required for suppression of the taf2-ts7 Ts pheno-
type, is necessary and sufficient for direct interaction with Taf2
in vitro.

To identify point mutants that disrupt the TAF2-TAF14
genetic interaction, we performed three-Ala scanning muta-
genesis with 1-aa overlap of Taf14(164 –244). These variants
were overexpressed in the context of full-length Taf14 to deter-
mine whether they could suppress the taf2-ts7 Ts growth phe-
notype. Of the 39 Ala variants generated, we identified 11 that
displayed defects in the ability to suppress the taf2-ts7-associ-
ated Ts phenotype at 37 °C. The results of the suppression
analyses for these 11 taf14-ala variants are summarized in
Fig. 7C. A particularly sensitive hot spot was identified
between Taf14 aa 218 and 230 where every mutant variant
(m5–m10) displayed a defect in taf2-ts7 Ts growth suppres-
sion. These amino acids are likely critical for the function of
the Taf14 C terminus.

Fine Mapping of the Taf2 C Terminus Reveals Two Taf14
Interaction Domains—A previous study reported that the Taf2
C terminus is insoluble when expressed in Escherichia coli (59).
Our studies confirm this observation. E. coli expressed
Taf2(1301–1407)-His6 is largely insoluble and refractory to
native purification with Ni2�-NTA-agarose (Fig. 8C, lane 1).
We have previously shown that co-expression of insoluble Tafs
with their cognate binding partner results in solubilization (47).
Therefore, we hypothesized that co-expression of the Taf2 C
terminus with either full-length Taf14 or Taf14(164 –244)

would result in solubilization of the Taf2 C-terminal fragment.
To this end, we co-expressed Taf2(1301–1407)-His6 with
either Taf14(1–244) or Taf14(164 –244) and subjected these
complexes to Ni2�-NTA-agarose purification. Using this strat-
egy, we could generate soluble Taf2-Taf14 complexes in milli-
gram quantities/liter of E. coli culture (Fig. 8, A and B, respec-
tively). We also attempted to co-express full-length Taf2 with
Taf14(164 –244) in E. coli, but these attempts were unsuccess-
ful (data not shown).

We then used this co-purification assay to fine-map the
Taf14 binding domain within Taf2(1301–1407). N- and C-ter-
minal truncations of Taf2(1301–1407)-His6 were co-expressed
with Taf14(164 –244) in E. coli and subjected to Ni2�-NTA-
agarose purification (Fig. 8C; diagrammed in Fig. 8D). These
analyses revealed that Taf2(1381–1407) were sufficient for
Taf14 co-purification, whereas Taf2(1362–1407) were neces-
sary for Taf14 co-purification. Henceforth, we will refer to
Taf2(1363–1407) as Domain 1. Surprisingly, Domain 1 not only
binds to Taf14 but also contributes to the insolubility of the
Taf2(1301–1407) fragment because fragments deleted for
Domain 1 can be purified from E. coli without co-purifying
Taf14.

To assess the relevance of Taf2 Domain 1 to binding to Taf14
in vivo, we performed �-HA co-IPs with a series of Taf2 C-ter-
minal deletion variants as described above (Fig. 8E). Consider-
ing that Taf2-�C (aa 1–1260) fails to interact with Taf14 in vivo
and in vitro and that the Taf2(1301–1362)-His6 fragment fails
to co-purify Taf14, we reasoned that a second Taf14 binding
domain likely resides within Taf2(1261–1300) (hereafter
Domain 2). Deletion of either Domain 1 (�1) or Domain 2 (�2)
had no impact on the ability of Taf2 to co-precipitate TFIID
subunits Taf7, Taf8, and Taf14. However, a Taf2 double dele-
tion variant (�1��2) could co-precipitate Taf7 and Taf8 but
failed to co-precipitate Taf14. Furthermore, successively
smaller deletion within Domain 2 (�1261–1291, �1261–1281,
and �1261–1271), when combined with �1, displayed strong
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defects in the ability to co-precipitate Taf14. Taken together,
these data are consistent with the Taf2 C terminus containing
at least two distinct domains that can independently facilitate
incorporation of Taf14 into the TFIID complex. Thus, to com-
pletely abrogate association of Taf14 with the TFIID complex,
both of these domains must be disrupted.

The Taf14 Binding Domains in Taf2 Are Necessary for TAF14
Overexpression Suppression of the taf2-ts7 Growth Defect—Our
overarching hypothesis has been that TAF14 overexpression
suppression of the taf2-ts7 Ts phenotype occurs via a Taf2-
Taf14 direct interaction. By extension, if Taf2 and Taf14
could no longer physically interact, then TAF14 overexpres-
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sion would no longer be able to suppress the taf2-ts7 Ts
phenotype.

To test this hypothesis, we performed genetic complementation
assays with TAF2, taf2-�C, taf2-ts7, and taf2-ts7-�C with or with-
out TAF14 overexpression (Fig. 9A). As shown before, overexpres-
sion of TAF14 did not have a strong impact on growth of strains
harboring TAF2. However, overexpression of TAF14 in strains
harboring taf2-�C resulted in a synthetic slow growth phenotype.
Similarly, although TAF14 overexpression suppressed the taf2-ts7
Ts phenotype, it did not suppress the taf2-ts7-�C phenotype but
instead caused synthetic lethality. Consistent with our hypothesis,
the Taf14 binding domains in the Taf2 C terminus are required for
suppression of the taf2-ts7 Ts phenotype.

Furthermore, our hypothesis also predicts that TAF14 over-
expression drives Taf2-Taf14 complex formation, resulting in
stable incorporation into the TFIID complex. To test this
hypothesis, we performed �-HA co-IP analysis as described
above to determine the impact of TAF14 overexpression on the
ability of Taf2, Taf2-�C, Taf2-ts7, and Taf2-ts7-�C to co-pre-
cipitate TFIID subunits (Fig. 9B). The strains used for these

analyses were pseudodiploid for both TAF2, containing WT
and a test TAF2 allele (TAF2*), and TAF14, containing genomi-
cally encoded WT TAF14 and either an empty overexpression
plasmid or an expression plasmid containing FLAGx2NLS-
tagged TAF14. TAF14 overexpression had no impact on the
ability of Taf2 to co-immunoprecipitate Taf7 and Taf8; how-
ever, Taf2 co-precipitated elevated levels of Taf14 compared
with the no-TAF14 overexpression strain. Consistent with the
synthetic sick growth phenotype, Taf2-�C reproducibly dis-
played a modest reduction in the ability to co-immunopre-
cipitate Taf7 and Taf8 in strains that overexpressed TAF14.
Validating our hypothesis, TAF14 overexpression rescued the
ability of Taf2-ts7 to co-immunoprecipitate TFIID subunits Taf7,
Taf8, and Taf14. However, Taf2-ts7-�C was not responsive to
TAF14 overexpression and still failed to efficiently co-immuno-
precipitate TFIID subunits Taf7, Taf8, and Taf14.

Replacing the Taf14 Binding Domain in Taf2 with Taf14
via Gene Fusion Partially Suppresses the taf2-ts7-associated
Growth Defects—Our data suggest that the domain necessary
for Taf2-Taf14 interaction resides within Taf2(1261–1407),
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whereas the location of the mutations in taf2-ts7 and -ts8 reside
between Taf2 aa 1100 and 1150. Based on this discrepancy, we
conceived of two possible mechanisms through which TAF14
overexpression can suppress the growth phenotypes associated
with these Ts mutants. First, saturating the C terminus of Taf2-
ts7 and -ts8 with Taf14 induces a conformational change that
allows these variants to more stably associate with the TFIID
complex. Second, when at saturating levels, Taf14 can tether
Taf2-ts7 and -ts8 to the TFIID complex, likely through direct
interaction between Taf14 and another TFIID subunit(s). The
first model inherently requires a binding event where Taf14
binding to Taf2-ts7 or -ts8 induces a conformational change.
The second model involves Taf14 playing a role outside of sim-
ply Taf2 binding.

To distinguish between these two models, we constructed
Taf2-Taf14 chimeras where taf2-�C and taf2-ts7-�C were
fused to the TAF14 ORF. Ideally, these chimeric fusions would
bypass the need for TAF14 overexpression to achieve saturable
binding to the Taf2 C terminus because these chimeras contain
covalently attached Taf14. These chimeras were tested to see
whether they could complement a taf2-null strain (Fig. 10A). A
“WT” chimera (taf2-�C-Taf14) supported growth at a level
similar to TAF2, suggesting the chimera does not negatively
impact Taf2 function. This taf2-ts7-�C-TAF14 chimera sup-
pressed the slow growth phenotype at 30 °C associated with
taf2-ts7 and taf2-ts7-�C.

We then sought to determine whether this suppression was
Taf14-dependent and, if so, which domain(s) was involved. To
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this end, we made taf2-ts7-�C-taf14 chimeras with mutations
either in the Taf2 binding domain of Taf14 (taf14-m3;
L186A,T187A,K188A) or in the Taf14 YEATS domain that dis-
rupt its ability to bind to acetylated or crotonylated H3K9
(taf14-W81A and taf14-G80K) (23, 24). Mutations in the Taf14
C terminus completely abrogated the ability of the chimera to
suppress the growth defect associated with taf2-ts7-�C. In
addition, whereas both YEATS domain mutant fusions dis-
played some reduction in the ability to suppress the growth
defects associated with taf2-ts7-�C, the G80K mutation dis-
played a significant loss in the ability to suppress. The loss of
suppression cannot be attributed to a reduction in steady-state
protein levels because all constructs were expressed at least as
well as WT Taf2 (Fig. 10B).

TAF14-less TFIID Mutant Cells Display a Slow Growth Phe-
notype and Defects in RPG Transcript Abundance—Our results
suggest that the Taf2 C terminus is not only required for Taf2-
Taf14 interaction but is also required for association of Taf14
with the TFIID complex. To test this hypothesis, we engineered
two strains: one that genomically encodes an HAx1 tag at the N
terminus of Taf1 for anti-HA immunopurification and one
that encodes both an HAx1-Taf1 and genomic deletion of
Taf2(1261–1407). TFIID was purified from these two strains as
described previously (8) and then subjected to SDS-PAGE and

gel staining to score TFIID subunit composition and stoichiom-
etry (Fig. 11A). When comparing the TFIID variants, two dif-
ferences were apparent. First, in the Taf2-�C TFIID, the size of
Taf2 was reduced, reflecting the genomic Taf2 C-terminal
deletion. However, Taf2-�C is maintained at an apparent 1:1
Taf2-TFIID stoichiometric ratio relative to Taf1, similar to
HAx1-Taf1 TFIID, indicating that the deletion does not nega-
tively impact the stability of Taf2 in the TFIID complex. Sec-
ond, in the Taf2-�C TFIID, Taf14 is completely absent, consis-
tent with our Taf2 C terminus truncation analyses.
Quantitation of these TFIID preparations demonstrates that
the stoichiometry for the rest of the TFIID subunits is similar
between the two TFIID forms. Based on these data, we can
conclude that Taf2(1261–1407) is necessary for Taf14 stable
incorporation into the TFIID complex and that strains lacking
Taf2(1261–1407) have TFIID devoid of Taf14 (Taf14-less
TFIID).

When we streaked these TFIID purification strains onto rich
medium to isolate single colonies, we found that the Taf14-less
TFIID strain displayed a reduced growth rate as measured by
colony size (data not shown). To determine whether this phe-
notype was directly attributable to the Taf2-�C variant, growth
curves were performed in yeast strains that contain only HA-
TAF2 or HA-taf2-�C. These growth curves revealed that
strains harboring HA-TAF2-�C displayed a 14.5-min (15.6%)
slower growth rate during log phase at 30 °C (Fig. 11B).

We then assessed steady-state transcript abundance for
these two strains. RNA was extracted from mid-log phase cells
growing at 25 °C and analyzed using qRT-PCR. Despite no
reduction in transcript abundance for RNA polymerase I-tran-
scribed RDN58 (Fig. 11D) and RNA polymerase III-transcribed
SNR6 (Fig. 11E), we reproducibly observed a statistically signif-
icant �2-fold reduction in RPG transcript abundance (RPS5,
RPS9B, RPS8A, and RPS3) (Fig. 11C). In addition, we observed a
moderate (�25%), although not statistically significant for both
genes, reduction in steady-state transcript abundance for the
SAGA-dominated glycolytic PGK1 and PYK1 genes. Although
the glycolytic genes are not considered TFIID-dependent, our
data are consistent with previously observed modest reductions
in PGK1 steady-state transcripts in taf4ts variants (32).

Discussion

Multiple structural and biochemical studies have attributed
specific Tafs with promoter-DNA or modified chromatin bind-
ing capabilities (10 –12, 15, 16, 18, 19, 21, 23, 24, 37, 56). These
activities provide convenient mechanisms through which
TFIID can engage with genes to facilitate PIC formation.
Indeed, an activator-TFIID-TFIIA promoter-DNA quaternary
complex with distinct TFIID-DNA interactions displays a
locked DNA conformational state that likely serves as a plat-
form for general transcription factor and Pol II binding (57).
However, these many biochemical activities have rarely been
interrogated genetically to establish their importance in vivo
(37). This lack of knowledge was the impetus for the work
reported here.

Specifically, the functional role of Taf2 in vivo was largely
unknown despite longstanding evidence for its in vitro INR
binding activity (12, 18, 19). A lack of Taf2 molecular genetic
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studies is likely a result of technical challenges. In addition to
being essential for life, Taf2 is a large protein and particularly
labile in ScTFIID purifications (41, 61). As our study demon-
strates, systematic deletion analyses largely disrupt Taf2 pro-
tein stability and the ability of Taf2 to stably incorporate into
the TFIID complex, precluding conventional methods of genet-
ically interrogating large proteins (supplemental Table 1) (70,
71, 77). Our site-directed mutagenesis approach generated
variants that displayed similar TFIID incorporation defects,
limiting our ability to interpret their precise molecular func-
tions (Fig. 2). Of note, while this manuscript was in preparation,
specific amino acids were predicted to be important for the INR
binding function of Taf2 (68). One of the site-directed mutants
generated in this study, taf2-m32, targeted a subset of these
residues but displayed only a mild slow growth phenotype and
was not further pursued (supplemental Table 2). Genetic inter-
rogation of this putative INR binding domain will likely shed
insights into the role of INR binding in TFIID transcriptional
activation.

Our key finding in this report is the discovery of a genetic
interaction between TAF2 and TAF14. Individual overexpres-
sion of each TFIID subunit identified TAF14 overexpression as
a mechanism to achieve suppression of select taf2ts alleles (taf2-
ts7 and -ts8). The location of the residues mutated in these Ts
variants is suggestive of a functional domain. Furthermore, we

demonstrate that Taf2 and Taf14 directly interact. Molecular
genetic dissection of both Taf2 and Taf14 led to the identifica-
tion of the domains responsible for physical and functional
interaction in vivo and in vitro.

Our previous structural and biochemical characterization of
the TFIID complex identified the stoichiometry and location of
all of the TFIID subunits with the exception of Taf14 (8,
40 – 42). Purified TFIID displays a stoichiometry of at least two
copies of Taf14 per TFIID molecule. In addition, Taf14 self-
associates in vivo. However, gel staining of purified SWI/SNF
and TFIIF show one copy per complex so this multicopy per
complex phenotype is likely to be specific to TFIID (52, 58).
Although deletion of the Taf2 C terminus completely disrupts
association of Taf14 with the TFIID complex, fine mapping of
the Taf2 C terminus identified two domains that can indepen-
dently facilitate Taf14 incorporation into the TFIID complex.
These data are consistent with a genome-wide two-hybrid
screen, which identified part of the Taf2 C terminus as a Taf14-
interacting protein (59). However, Taf2 variants that fail to sta-
bly incorporate into the TFIID complex as well as Taf2 C-ter-
minal fragments display reductions in Taf14 co-precipitation
relative to WT Taf2. This observation suggests that when
Taf2 incorporates into the TFIID complex Taf14 binding is
enhanced, potentially through a multivalent binding site
between Taf2 and another TFIID subunit(s).
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Interestingly, the Taf2 domain identified to directly interact
with Taf14 does not contain the amino acids mutated in taf2-
ts7 or -ts8 despite this domain being required for TAF14 over-
expression suppression of these variants. To test the possibility
of a multivalent Taf14 binding site between Taf2 and another
TFIID subunit, we fused TAF14 to a taf2ts variant deleted for
the Taf14 binding domain. This chimeric fusion improved
growth in a TAF14-dependent manner consistent with the
existence of a multivalent binding site. The TFIID subunit
responsible is likely to be Taf8. Human Taf2 directly interacts
withTaf8(44).Taf1-TAPpurificationsofTFIIDresultinsubstoi-
chiometric levels of Taf2, Taf8, and Taf14 (41). Furthermore,

specific deletions in Taf1 result in dissociation of Taf2, Taf8,
and Taf14 from the TFIID complex, suggesting that these three
subunits form a subcomplex (70). As with human TFIID, the
association of Taf2 and Taf8, along with Taf14, with the TFIID
core may stimulate a structural transition in the TFIID assem-
bly pathway (43).

The function of Taf14 in transcription regulation has
remained enigmatic. Functional interpretation of TAF14
mutant variants is limited because of its presence in multiple
transcription-related complex assemblies (52, 58 – 60). Specifi-
cally, molecular defects in taf14-null strains or strains harbor-
ing taf14 mutant variants unable to bind modified H3K9 could

A.

C. D.

B.

Doubling Time 
93 ± 3.5 min

Doubling Time 
107.5 ± 2.5 min

0 2.5 5 7.5 10 12.5
0

3

6

9

12

15

18

21

Time (hours)

O
pt

ic
al

 D
en

si
ty

 @
 6

00
nm

HA-TAF2

HA-taf2-ΔC

0

25

50

75

100

125

%
 W

T 
R

N
A

RPS5 RPS9B RPS8A RPS3 PYK1 PGK1

RNA Pol II Transcribed

TFIID Dominated SAGA Dominated

*** *** *** ***

*NS

0

25

50

75

100

125

%
 W

T 
R

N
A

RDN58

RNA Pol I

SNR6
0

25

50

75

100

125

%
 W

T 
R

N
A

E.
RNA Pol III

= HA-TAF2
= HA-taf2-ΔC

0

50

100

150

200

250

In
te

n
si

ty

ΔC
WT

Molecular Weight (kDa)

Taf2

Taf5/7

Taf8/
12

Taf6

Taf4/3/11

Taf9
Taf13

Taf14

TBP/
Taf10

Taf2-ΔC

Taf1

220160 120 90 70 60

ΔC

WT

50 40 30 25 15

ΔC Stoichiometry
%WT

Taf1/
Taf2

1.17

Peak

+/- 0.35

Taf5/
Taf7

1.04 +/- 0.05

Taf8/
Taf12

0.83 +/- 0.01

Taf6 1  (Normalized)

Taf4/
Taf3/
Taf11

0.81 +/- 0.13

Taf14 No Protein Peak

TBP/
Taf10 0.92 +/- 0.23

Taf13 0.77 +/- 0.18

Taf9 0.86 +/- 0.04

FIGURE 11. Taf14-less TFIID mutant cells display a slow growth phenotype and defects in ribosomal protein gene transcription. A, purified TFIID forms.
Between 300 and 600 ng of HAx1-Taf1-purified TFIID and HAx1-Taf1 Taf2-�C-purified TFIID were separated via SDS-PAGE and stained with SYPRO Ruby gel stain.
Peak traces were generated using Quantity One (Bio-Rad). TFIID subunit peaks were quantified in ImageJ by calculating the area under the curve. The signal
intensity of Taf6 was used to normalize each TFIID preparation to determine relative subunit stoichiometry for each peak. Means � S.D. are depicted.
Quantitation was generated from two technical replicates. B, growth rate analysis. Log phase growing taf2-null cells shuffled to contain either plasmid-borne
HAx3NLS-TAF2 or plasmid-borne HAx3NLS-TAF2-�C were diluted to an OD600 of �0.2 (HAx3NLS-TAF2, average start OD600 of 0.229; HAx3NLS-TAF2-�C, average
start OD600 of 0.239) and grown at 30 °C, and OD600 was measured approximately every hour until the strains reached stationary phase growth. Doubling time
was calculated using a non-linear exponential growth fit (GraphPad Prism) for the early phase of the growth curve (first seven time points). A growth curve was
performed with four biological replicates. Experimental error in doubling time is derived from S.E. C, D, and E, qRT-PCR. Steady-state RNA was analyzed by
qRT-PCR scoring for RNA Pol II- (C), RNA Pol I- (D), and RNA Pol III (E)-transcribed genes. Data were generated from four biological replicates. Each data point in
the graph represents one biological replicate and is generated from the average of three technical replicates. Results were statistically analyzed using a
two-way analysis of variance with Sidak’s multiple comparison test (GraphPad Prism). Means � S.D. (error bars) are depicted. *, p 	 0.05; ***, p � 0.0001. Blue,
shuffled strain harboring plasmid-borne HAx3NLS-TAF2; red, shuffled strains harboring plasmid-borne HAx3NLS-TAF2-�C.
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be attributed to TFIID-promoter interactions, the role of TFIIF
in PIC or elongation function, ATP-dependent chromatin
remodeling, or the myriad transcription-related functions asso-
ciated with Mediator. Our study begins to decipher the role of
Taf14 in transcription regulation through the identification of
taf2-�C, a separation-of-function Taf2 variant that can stably
incorporate into the TFIID complex but precludes incorpora-
tion of Taf14. The existence of this variant is consistent with the
model presented by Kabani et al. (59) that Taf14 has a particular
entry point protein in each complex with which it is associated.
Thus, it may be possible to generate genetic reagents that spe-
cifically dissociate Taf14 from the TFIIF, Ino80 (inositol-re-
quiring complex), Swi/Snf, NuA3 (nucleosome acetyltrans-
ferase complex 3), Mediator, and RSC without perturbing
complex integrity or the other functions of the complex.
taf2-�C mutant cells display a modest slow growth phenotype
as well as a reduction in transcript abundance for the TFIID-
dominated RPGs. In addition, purification of TFIID from
strains harboring taf2-�C yields a Taf14-less TFIID complex.
Structural analyses of this complex in contrast with WT TFIID
may yield important insights into the location of Taf14 in TFIID
as well as the mechanism by which two copies of Taf14 can
associate with a single TFIID molecule.

Our data suggest that taf2-�C is a true separation-of-
function variant whose cellular and molecular phenotypes
reflect the contribution of Taf14 to TFIID function (Fig. 12).
However, the mechanism by which Taf14 contributes to TFIID
transcription activation mechanism remains speculative. The
Taf14 YEATS domain responsible for binding to modified
chromatin (23, 24) may enhance TFIID occupancy of active
genes by increasing the number of contact points between
TFIID and gene promoters. In addition, our Taf2-Taf14 chime-
ric fusion analyses suggest that the YEATS domain does con-
tribute to TFIID function, likely through its ability to interact
with modified chromatin. This hypothesis is consistent with
the observation that the Taf3 PHD finger H3K4me3 binding
activity stimulates transcription, especially in the context of a

mutant TATA box (37). Similar in vitro transcription experi-
ments with chromatin templates need to be performed with
WT and Taf14-less TFIID to assess the validity of this model for
ScTFIID considering that the Taf3 PHD finger is not present in
the yeast system.

In contrast, the Taf14 YEATS domain is non-essential and
displays minimal growth defects when deleted, whereas dele-
tion of the Taf14 C-terminal domain phenocopies the taf14-
null strain (76). Considering the Taf14 C-terminal domain is
responsible for the interaction with Taf14-associated com-
plexes, this domain could mediate interactions among these
complexes that have thus far not been explored. We do not
know whether a single Taf14 molecule can bind to multiple
transcription-related complexes at the same time or whether
binding of Taf14 to TFIID or TFIIF, for example, is mutually
exclusive. If these interactions are not mutually exclusive,
Taf14 could serve as a bridge between the transcription
machinery that could play a key role in the transcription
process.

In summary, through systematic mutagenesis of the TFIID
subunit Taf2, we have uncovered important physical and func-
tional interactions between Taf2 and Taf14. These discoveries
have shed light on the role Taf14 plays in TFIID function
including a putative role in TFIID-chromatin interaction. We
believe our study could provide a model for disambiguating the
role Taf14 plays in gene regulatory mechanisms.

Materials and Methods

Bacterial Strains and Cloning—E. coli DH5� was used for all
cloning and propagation of plasmids. Recombinant proteins
were expressed in E. coli Rosetta2 (DE3) strains (Novagen). All
cloning was performed using restriction enzyme-based meth-
ods. Appropriate restriction ends were added to all cloned
sequences using PCR with either Pyrococcus woesei DNA poly-
merase as described (78) or Q5 DNA polymerase according to
the manufacturer’s instructions (New England Biolabs).
Site-directed mutagenesis was performed using gene splicing
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FIGURE 12. Model of Taf2-Taf14 interaction in TFIID-dependent transcription. Left, depicts role of Taf2 C terminus in facilitating incorporation of two Taf14
molecules per TFIID complex. Taf14 may then bind to active chromatin through its YEATS domain. Brown circles, histone octamer; yellow stars, modified (mod)
H3K9; D1, Taf2 Taf14 binding Domain 1; D2, Taf2 Taf14 binding Domain 2. Right, Taf14 cannot incorporate into the TFIID complex, and as a result TFIID may lose
the ability to communicate with active chromatin through the Taf14 YEATS domain.
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by overlap extension PCR (79). All constructs were
sequence-verified.

Yeast Manipulations—Strains were grown in YPD (1% (w/v)
yeast extract, 2% (w/v) peptone, 2% (w/v) dextrose) or synthetic
complete medium (SC) (0.67% (w/v) yeast nitrogen base with-
out amino acids, 2% (w/v) dextrose (or 1% (w/v) raffinose where
indicated), 0.2% (w/v) amino acid dropout mixture) without
(�) leucine (Leu), histidine (His), or uracil (Ura) or a combina-
tion of the three where appropriate as indicated. All transfor-
mations were performed using the lithium acetate/PEG/
salmon sperm carrier DNA transformation protocol (80). For
plasmid shuffle assays, cells were grown on SC �Leu, �His, or
both including 0.1% 5-fluoroorotic acid (5-FOA) (81).

All strains generated in this study were derivatives of BY4741
(82). Yeast expression vectors were derivatives of shuttle vec-
tors described by Mumberg et al. (83, 84) A taf2-null strain
(JFTAF2del) was generated by co-transforming BY4741 with a
p416ADH TAF2 covering plasmid and a linearized TAF2 dele-
tion cassette. The TAF2 deletion cassette replaced �233 to
�4224 relative to the start codon of the TAF2 ORF with the
hygromycin B resistance cassette from pAG32 (85). Co-trans-
formants were sequentially plated on SC �Ura followed by rep-
lica plating to YPD � 300 �g/ml hygromycin B. Hygromycin
B� and Ura� clonal isolates were confirmed as taf2-null using
plasmid shuffle genetic complementation. An HAx1-TAF1
strain (JFHATAF1) was generated using ends-in integration of
an HAx1-TAF1 N-terminal tagging cassette into the TAF1 locus
using a similar strategy described previously for Mot1 (86). The
resulting strain harbors a G418R cassette and an N-terminal
MYPYDVPDYAGVE tag (HA epitope underlined) at the TAF1
chromosomal locus (additional details are available upon
request). JFHAT1T2delC was generated by applying PCR-
based homologous recombination methods to TAF2, deleting
sequences coding for amino acids 1261–1407 at its chromo-
somal locus. The Taf2-�C deletion was confirmed by PCR and
immunoblotting.

I-TASSER Structural Prediction and TAF2 Site-directed
Mutagenesis—Primary amino acid sequences for S. cerevisiae
(yeast) Taf2, Drosophila melanogaster (fly) Taf2, and Homo
sapiens (human) Taf2 were submitted to the I-TASSER server
for 3D structure prediction (72). Resulting 3D models of
yeast, fly, and human were imported in PyMOL, displayed in
cartoon format and colored based on secondary structure. The
first of five models generated for yeast Taf2 was used to define
predicted solvent-exposed residues.

To assess amino acid conservation, yeast, fly, and human
Taf2 primary sequences were aligned in MacVector using
ClustalW. Fifty-eight mutants were designed based on solvent
accessibility and proximity to amino acids that are either simi-
lar or identical among yeast, fly, and human Taf2. Twenty-nine
additional mutants were designed based on amino acids pre-
dicted to be solvent-inaccessible but highly conserved among
yeast, fly, and human Taf2. All mutations were arbitrarily lim-
ited to a maximum of 8 contiguous amino acids. A list of the
mutants is provided (supplemental Table 2).

Plasmid Shuffle and Overexpression Suppression—All TAF2
site-directed mutants, deletion mutants, and TAF2-TAF14 chi-
meras were expressed from p415ADH with an N-terminal

HAx3NLS (additional details are available upon request). For
plasmid shuffle analyses, JFTAF2del was transformed with an
empty p415ADH plasmid, a p415ADH-TAF2 plasmid, a
p415ADH-HAx3NLS-TAF2 plasmid, or a p415ADH-HAx3NLS-
TAF2 mutant plasmid, and transformants were grown on SC
�Leu plates. Leu� colonies were grown to saturation in
SC �Leu at 30 °C, serially diluted 1:4 in sterile H2O, spotted to
SC �Leu or SC �Leu � 5-FOA 15-cm plates using a pinning
tool, and grown at various temperatures (20, 25, 30, 34, and
37 °C) to assess temperature-sensitive growth. Duration of
growth ranged from 48 to 96 h as indicated.

For overexpression suppression screening of all TFIID sub-
units, the ORFs of TAF1–TAF14 and SPT15 (TBP) were cloned
into p413GPD using varied restriction ends (details are avail-
able upon request). Plasmid shuffle analyses were performed
essentially as above with the following exception. JFTAF2del
was co-transformed with LEU2-marked TAF2 plasmids and an
empty p413GPD or p413GPD containing the ORF for each of
the TFIID subunits and grown on SC �His,�Leu plates. For
each LEU2-marked TAF2 and p413GPD TFIID subunit combi-
nation, two His�Leu� colonies were spotted undiluted to SC
�His,�Leu or SC �His,�Leu � 5-FOA. TFIID subunits that
scored positive for overexpression suppression displayed uni-
formly improved growth for both colonies tested.

For directed overexpression suppression studies with
TAF14, both WT and mutant TAF14 variants were expressed
with an N-terminal FLAGx2NLS.

Immunoblotting and Co-immunoprecipitation—For steady-
state protein immunoblotting, protein was extracted from
approximately 1.2 � 107 cells of early to mid-log phase-grown
culture using sodium hydroxide-based lysis (87). For co-immu-
noprecipitations, JFTAF2del strains were grown as pseudodip-
loids containing both a wild-type URA3-marked TAF2 gene
and a WT or mutant LEU2-marked TAF2 gene. In these analy-
ses, 50 ml of yeast cells were grown at 30 °C to early to mid-log
phase (approximately 2.4 –3.6 � 107 cells/ml), harvested by
centrifugation, and lysed in co-IP buffer (20 mM HEPES-KOH,
pH 7.9, 200 mM potassium acetate, 10% glycerol, 0.1% Nonidet
P-40 substitute (Sigma-Aldrich), 1 mM DTT, 1� protease
inhibitors (0.1 mM PMSF, 1 mM benzamidine HCl, 2.5 �g/ml
aprotinin, 2.5 �g/ml leupeptin, 1 �g/ml pepstatin A)) using
glass bead beating. Soluble protein was separated from insolu-
ble material by centrifugation at 20,800 � g for 15 min. Protein
concentrations were determined using a BSA standard curve
with the Bio-Rad Protein Assay. 2 mg of soluble protein extract
were incubated with 2.5 �g of anti-HA 12CA5 mAb and 50
ng/�l ethidium bromide in a total volume of 412 �l at 4 °C for
2 h. Immune complexes were captured with 10 �l of protein
A-Sepharose beads (Life Technologies) for 30 min with mixing
at 4 °C. Captured protein complexes were washed two times
with 1 ml of ice-cold co-IP buffer and eluted with 2� lithium
dodecyl sulfate NuPAGE Sample Buffer (Life Technologies)
and heating at 75 °C for 10 min. Proteins for both steady-state
immunoblotting and co-immunoprecipitations were separated
via SDS-PAGE using 4 –12% NuPAGE Bis-Tris gradient gels
(Life Technologies) run with 1� MOPS running buffer and
electrotransferred to PVDF membranes using a wet transfer
system. Polyclonal anti-Taf and anti-TBP antibodies were used
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as described previously (60, 70). Anti-actin (mAb8224) and
anti-HA HRP conjugate (3F10) antibodies were procured from
Abcam and Roche Applied Science, respectively. Goat anti-rab-
bit (Fc) HRP conjugate and horse anti-mouse IgG HRP conju-
gate were procured from Thermo Fisher and Cell Signaling
Technology, respectively. Protein signal was detected using
Amersham Biosciences ECL Western blotting detection re-
agent (GE Healthcare) and exposed to Blue Basic double emul-
sion autoradiography film (GeneMate). For immunoblotting
loading controls, the blot was stained with Ponceau S (0.5%
(w/v) Ponceau-S in 1% (v/v) glacial acetic acid) following the
electrotransfer and destained with H2O prior to imaging.

Protein Overexpression and Purification—All His6-tagged
proteins were expressed from pET28a (Novagen). All His6-
GST-tagged proteins were plasmid-generated from pBG101 in
Rosetta2 (DE3) E. coli. His6-Taf14 and Taf2 fragments were
N-terminally tagged with MGSSHHHHHHSSGLVPAGSH-
MAS (bold indicates the hexahistidine tag). E. coli expression
strains were grown at 37 °C with shaking at 250 rpm to an opti-
cal density at 600 nm (OD600) of 0.6 – 0.9, shifted to 30 °C, and
induced for 4 h with 1 mM isopropyl �-D-1 thiogalactopyrano-
side. His6-Taf14, His6-GST, His6-GST-Taf14(1–244), His6-
GST-Taf14(1–123), and His6-GST-Taf14(124 –244) were puri-
fied in the following manner. 4 g of E. coli pellet were lysed in 40
ml of E. coli lysis buffer (20 mM Tris-HCl, pH 7.9, 200 mM NaCl,
20 mM imidazole, 0.1% Triton X-100, 10% glycerol, 1 mM DTT,
1� protease inhibitors) in the presence of approximately 100
�g/ml lysozyme. Lysates were sonicated, and insoluble material
was pelleted by spinning at 27,000 � g in a Sorvall RC 5C Plus
centrifuge with an SS-34 rotor for 15 min. Soluble lysate was
then bound in batch to 2 ml of Ni2�-NTA-agarose (Qiagen) for
2 h at 4 °C with mixing. Ni2�-NTA-agarose and bound proteins
were transferred to disposable 20-ml chromatography columns
(Bio-Rad) and washed in column format with �10 column vol-
umes of E. coli lysis buffer. Proteins were eluted with elution
buffer (lysis buffer without chicken egg white lysozyme but with
200 mM imidazole), and peak fractions were collected. His6-
Taf2 fragments were purified as described above with the fol-
lowing modifications for denaturing purification. Approxi-
mately 200 mg of E. coli pellet were lysed in 6 ml of denaturing
lysis buffer (20 mM Tris-HCl, pH 7.9, 1� PBS, 6 M guanidinium
HCl, 10 mM imidazole). Denatured cell extract was mixed with
200 �l of Ni2�-NTA-agarose for 2 h at 20 °C. Ni2�-NTA-aga-
rose and bound proteins were washed with �10 column vol-
umes of freshly made denaturing wash buffer (20 mM Tris-HCl,
pH 7.9, 1� PBS, 7 M urea, 10 mM imidazole). His6-Taf2 frag-
ments were eluted with freshly made denaturing elution buffer
(denaturing wash buffer except 200 mM imidazole). For all puri-
fied proteins, protein concentration was determined via in-gel
quantitation using a BSA standard curve.

Purification of MBP-Taf2 from S. cerevisiae—MBP-3C cleav-
age site (MBP-3C) was derived from pLM302, a derivative of
pET27 (Novagen) engineered to contain MBP (derived from
pMAL (New England Biolabs)) followed by the PreScission pro-
tease cleavage site LEVLFQ2GP and a multiple cloning site.
MBP-3C and Taf2 or Taf2-�C fragments were sequentially
cloned in p425GAL1 (84). An MBP-3C-only plasmid was also
generated. MBP-3C, MBP-Taf2, and MBP-Taf2-�C expression

plasmids were transformed in BY4741. Leu� colonies were
grown at 30 °C with shaking at 250 rpm in SC �Leu with 1%
(w/v) raffinose as the sole carbon source until the cultures
reached a cell density of approximately 1.8 � 107 cells/ml. Solid
galactose was added to the culture to reach a concentration of
2% (w/v), and the cells were allowed to grow for 3 h at 30 °C.
Cells were harvested by centrifugation and stored at �80 °C
until purification. For purification, all manipulations were per-
formed at 4 °C or on ice unless specified. Typically, 30 g of yeast
cell pellet were lysed in 30 ml of Taf2 purification buffer (20 mM

HEPES-KOH, 500 mM potassium acetate, 0.5% Nonidet P-40
substitute, 10% glycerol, 2 mM DTT, and 2� protease inhibi-
tors) using glass bead lysis. Lysate was then centrifuged at
27,000 � g in a Sorvall RC 5C Plus centrifuge with an SS-34
rotor for 15 min, and soluble cell extract was mixed with 5 ml of
DE-52 resin equilibrated in Taf2 purification buffer for 10 min
with mixing at 20 °C. DE-52 flow-through was then diluted with
20 mM HEPES-KOH, pH 7.9, 10% glycerol, 1 mM DTT, 1�
protease inhibitors to reduce the potassium acetate and the
Nonidet P-40 substitute concentration to 200 mM and 0.2%,
respectively, and bound to 5 ml of amylose resin (New England
Biolabs) in batch with mixing for 2 h. The amylose resin-bound
proteins were transferred to a disposable chromatography col-
umn and washed with �10 column volumes amylose wash
buffer (20 mM HEPES-KOH, pH 7.9, 200 mM potassium acetate,
0.1% Nonidet P-40 substitute, 10% glycerol, 1 mM DTT, 1�
protease inhibitors). MBP-3C, MBP-Taf2, and MBP-Taf2-�C
were eluted with wash buffer � 10 mM maltose, and peak frac-
tions were collected. Alternatively, Taf2 was eluted with labo-
ratory-generated 3C protease at 100 ng/ml concentration at
4 °C for 16 h. MBP-3C was subsequently dialyzed extensively
against dialysis buffer (20 mM HEPES-KOH, 100 mM potassium
acetate, 10% glycerol, 1 mM DTT, 1� protease inhibitors).
MBP-Taf2, MBP-Taf2-�C, or free Taf2 was further purified
using a Mono Q column (GE Healthcare). Peak eluate fractions
from the amylose resin purification were loaded onto Mono Q
with BA200 (BA 
 20 mM HEPES-KOH, pH 7.9, 10% glycerol, 1
mM DTT, 1� protease inhibitors with variable concentrations
of potassium acetate; e.g. BA200 contains 200 mM potassium
acetate). Proteins were eluted with a linear gradient of BA200 to
BA1500. Peak MBP-Taf2, MBP-Taf2-�C, and Taf2 fractions
eluted at approximately BA1200. Peak fractions were pooled
and dialyzed extensively against dialysis buffer.

Taf2/Taf14 Co-expression Solubilization Analyses—For Taf2
and Taf14 co-expression, a bicistronic expression plasmid was
generated by cloning in order either full-length Taf14 or
Taf14(164 –244), an internal ribosome binding site sequence
(88), and Taf2 C-terminal fragments (aa 1301–1407) into
pET28a. Taf2 fragments contained a C-terminal KLAAALEH-
HHHHH(stop) tag. Taf2/Taf14 co-expression solubilization
assays were performed by growing 6 ml of E. coli expression
strains at 37 °C with shaking at 250 rpm to an OD600 of 0.6 – 0.9,
shifted to 30 °C, and induced for 2 h with 1 mM isopropyl �-D-1
thiogalactopyranoside. One-sixth of the cell pellet was lysed in
E. coli denaturing wash buffer for total cellular protein. The
remaining cell pellet was lysed in 1 ml of E. coli lysis buffer with
lysozyme as described above. Soluble protein was mixed with
7.5 �l of Q Sepharose to remove nucleic acids for 30 min at 4 °C.
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The flow-through was mixed with 20 �l of Ni2�-NTA-agarose
for 2 h at 4 °C. Bound proteins were washed two times with 500
�l of E. coli lysis buffer and eluted with 200 �l of E. coli elution
buffer. Total cellular protein and purified Taf2-Taf14 com-
plexes were separated via SDS-PAGE as described above except
running with 1� MES buffer (Life Technologies) to separate
smaller protein species. The proteins were visualized using
Coomassie Brilliant Blue.

TFIID Purification—HAx1-Taf1 TFIID and HAx1-Taf1 Taf2-
�C TFIID were purified essentially as described (8, 46) with the
following modifications. Extracts prepared according to
Woontner et al. (89) were dialyzed against 20 mM HEPES-
KOH, pH 7.9, 50 mM potassium acetate, 20% glycerol, 5 mM

DTT, 1� protease inhibitor mixture until the dialysate reached
a conductivity equivalent to BA300. Dialyzed extract derived
from a maximum of 300 g of yeast cell pellet was chromato-
graphed over a 200-ml Bio-Rex70 100 –200-mesh column. For
immunopurification, 10% Surfact-Amps Nonidet P-40 was
added to the Bio-Rex70 1 M fraction to a final concentration of
0.2%. The Bio-Rex70 1 M fraction was subsequently diluted 1:2
in BA0, ethidium bromide was added to a final concentration of
50 �g/ml, and the fraction was subjected to anti-HA affinity
chromatography with 10 mg of anti-HA 12CA5 mAb covalently
coupled to 2.5 ml of protein A-Sepharose beads (Life Technol-
ogies) at 4 °C for 16 h with mixing. Bound proteins were trans-
ferred to a 10-ml disposable chromatography column, washed
with �5 column volumes of BA300 with 0.1% Surfact-Amps
Nonidet P-40, �5 column volumes of BA300 with 0.01% Sur-
fact-Amps Nonidet P-40, and �5 column volumes of BA300
with 0.001% Surfact-Amps Nonidet P-40. TFIID was eluted
from the column two times with 2.5 ml of elution buffer (BA300
with 0.001% Surfact-Amps Nonidet P-40 plus 2 mg/ml HAx1
peptide) for 30 min at 20 °C with mixing. The HAx1 peptide
eluate was immediately subjected to ion exchange chromatog-
raphy on a 1.2-ml UnoS column (Bio-Rad). Following binding
of the HAx1 peptide eluate, the UnoS column was washed with
�5 column volumes of BA300 and then subjected to a linear
gradient of BA300 to BA1000. TFIID elutes at approximately
BA650.

Taf1-TAP TFIID was purified according to a modified tan-
dem affinity purification protocol. 1 kg of YLSTAF1 (41) pellet
was lysed in 500 ml of 3� TAP buffer (0.45 M Tris acetate, pH
7.8, 0.15 M potassium acetate, 60% glycerol, 3 mM DTT, 3 mM

EDTA, 3� protease inhibitors) using glass bead lysis. Then the
salt concentration of the lysate was adjusted with 5 M potassium
acetate to the conductivity equivalent of 300 mM potassium
acetate and centrifuged at 205,000 � g in a Beckman Optima
LE-80K ultracentrifuge with a Ti-45 rotor for 90 min. The
supernatant was collected, avoiding the turbid material at the
bottom of the centrifugation tube, and then bound to 100 ml of
IgG-Sepharose (GE Healthcare)/liter of protein extract in batch
at 4 °C for 2 h with mixing. Following binding, the IgG-Sephar-
ose and bound protein were washed extensively in IgG-Sephar-
ose binding buffer (20 mM Tris acetate, pH 7.8, 300 mM potas-
sium acetate, 10% glycerol, 0.5 mM EDTA, 1 mM DTT, 1�
protease inhibitors). TFIID was eluted from the IgG-Sepharose
in 100 ml of IgG-Sepharose binding buffer plus tobacco etch
virus protease at 250 ng/ml for 2 h at 4 °C. Following tobacco

etch virus protease elution from IgG-Sepharose, the eluate was
immediately subjected to ion exchange chromatography on a
1.2-ml UnoS column as described above. TFIID elutes at
approximately BA650.

Far-Western Blotting—0.5 pmol of Taf1-TAP TFIID, 5 pmol
of purified MBP-3C, 1 pmol of MBP-Taf2, and between 1 and
5pmol of Taf2 truncation variants were subjected to Far-West-
ern blotting analysis with a His6-Taf14 overlay essentially as
described (28) with the following modifications. For all analy-
ses, proteins samples were subjected to SDS-PAGE in triplicate:
one gel for SYPRO Ruby gel staining, one mock overlay control,
and one His6-Taf14 binding assay. During the blotting process,
all binding steps and washes were performed in renaturation
buffer (20 mM HEPES-KOH, pH 7.6, 75 mM potassium chloride,
2.5 mM magnesium chloride, 0.25 mM EDTA, 0.05% Triton
X-100 with 1 mM DTT freshly added). The overlay was per-
formed with 7 nM His6-Taf14 with 1% BSA as a nonspecific
competitor or with just the BSA competitor for the mock con-
trol. Bound His6-Taf14 was detected using a standard immuno-
blotting protocol (primary antibody, antigen affinity-purified
anti-Taf14 polyclonal rabbit IgG at a concentration of 0.1
ng/ml; secondary antibody, goat anti-rabbit Fc-HRP used
according to the manufacturer’s instructions). Prior to treat-
ment with ECL reagent and exposure to film, the blots were
washed once with Tris-buffered saline (25 mM Tris-HCl, pH
7.5, 150 mM NaCl).

GST Pulldown Assays—Typically, binding reactions were
performed in a total volume of 200 �l in the following reaction
buffer: 20 mM HEPES-KOH, pH 7.9, 300 mM potassium acetate,
10% glycerol, 1 mM DTT, 0.1% Nonidet P-40 substitute, 0.1
mg/ml BSA. MBP-Taf2 and MBP-Taf2-�C GST pulldowns
were performed twice, either with 2 pmol of His6-GST-Taf14 or
5 pmol of His6-GST-Taf14 and twice that amount with His6-
GST-only pulldowns. Between 1 and 32 pmol of MBP-Taf2 or
MBP-Taf2-�C were used in the binding assays. For Taf2 bind-
ing assays, 16 pmol of His6-GST, 8 pmol of His6-GST-Taf14, 12
pmol of His6-GST-Taf14(1–123), and 12 pmol of His6-GST-
Taf14(124 –244) were used. These proteins were mixed either
with no Taf2 or with between 0.78 and 6.25 pmol of Taf2. Bind-
ing reactions were allowed to proceed at 20 °C for 1 h followed
by 30-min capture at 20 °C with 10 �l of a 1:1 slurry of glutathi-
one-agarose Fast Flow (GE Healthcare) equilibrated in reaction
buffer. Glutathione-agarose-bound complexes were pelleted
by centrifugation, and the supernatant was discarded. The
pellet was washed with 500 �l of binding buffer without BSA
and pelleted again, and the wash buffer was discarded.
Bound proteins were eluted with 2� lithium dodecyl sulfate
sample buffer with 100 mM DTT, heating at 75 °C for 10 min.
Proteins were separated with 4 –12% NuPAGE Bis-Tris
gradient gels run with 1� MOPS running buffer and stained
with SYPRO Ruby according to the manufacturer’s instruc-
tions. Proteins were imaged with a PharosFX scanner
(Bio-Rad).

qRT-PCR—For all RNA analyses, JFTAF2del was used as
the parent strain. For temperature shift experiments, this
strain was co-transformed with p415ADH-HAx3NLS-TAF2 or
p415ADH-HAx3NLS-taf2-ts7 and either p413GPD or
p413GPD-FLAGx2NLS-TAF14. Leu�His� colonies were sub-
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jected to plasmid shuffle on SC �His,�Leu � 5-FOA. For each
co-transformed shuffled strain, two independent colonies were
grown in SC �His,�Leu at 25 °C until they reached a cell den-
sity of �1.2 � 107 cells/ml, then abruptly shifted to 37 °C by
adding an equal volume of 50 °C heated SC �His,�Leu, and
then grown at 37 °C for 2 h. Cells were harvested by centrifuga-
tion, and pellets were stored at �80 °C. For steady-state RNA
experiments, JFTAF2del was transformed with either
p415ADH-HAx3NLS-TAF2 or p415ADH-HAx3NLS-taf2-�C.
Leu� colonies were subjected to plasmid shuffle by growth on
SC �Leu � 5-FOA. For each shuffled strain, four independent
colonies were grown in YPD until the cells reached �2.4 � 107

cells/ml and harvested by filtration.
For all samples, RNA was extracted using hot acidic phenol

as described (90). Reverse transcription was performed with 1
�g of total RNA using Superscript III according to the manu-
facturer’s instructions. cDNA was generated using oligo(dT)16
and 1 pmol each of gene-specific reverse primers for U3,
RDN58, and SNR6. The primer sequences used in these
analyses are as follows: U3-F, CAAAAGAGCCACTGAAT-
CCAACTTGG; U3-R, GTACCCACCCATAGAGCCCTA-
TCCCTTC; RDN58-F, AACGGATCTCTTGGTTCTCG;
RDN58-R, GTGCGTTCAAAGATTCGATG; SNR6-F, CGA-
AGTAACCCTTCGTGGAC; SNR6-R, TCATCCTTATGCA-
GGGGAAC (54); RPS3-F, TACGGTGTCGTCAGATACG;
RPS3-R, GACCAGAGTGAATCAAGAAACC; RPS5-F, GGA-
TGCTTCTTTGGTTGACTAC; RPS5-R, GGACATTGAG-
CCTTTCTGAATCTC; RPS8A-F, AAAGATCCGCTAC-
CGGTGCCAAG; RPS8A-R, TCTTGGAGATACCTTCA-
GAAGCCC; RPS9B-F, CGGTTTGAAGAACAAGAGA;
RPS9B-R, GCATTACCTTCGAACAATC; PGK1-F, TGC-
TGCTTTGCCAACCATC; PGK1-R, GTGACATCCTTAC-
CCAACAATG; PYK1-F, CCAACCTCCACCACCGAAAC;
PYK1-R, GGGCTTCAACATCATCAGTCCA (28).

Quantitative PCR was performed using SYBR Green Super-
mix (Bio-Rad) according to the manufacturer’s instructions.
Samples were quantified using the relative standard curve
method, normalized to U3, and expressed as a percentage of the
average of the HA-TAF2 strain. The standard curve was gener-
ated by mixing equal amounts of RNA from each of the samples
tested prior to reverse transcription. This RNA mixture was
used both as the standard curve and as the no-RT control.
Three values were used for each standard curve based on the
dilution of the cDNA. For example, if a dilution of 1:50 was used
to measure the experimental cDNA samples, then a standard
curve of 1:5, 1:50, and 1:500 was used. The no-RT reactions
displayed either no observable signal or required an additional
10 Ct values above the �RT samples to achieve measureable
signal. Thus, we concluded that contaminating genomic DNA
was negligible in the samples. The dilutions used for each gene
are as follows: 1:50 for RPS3, RPS5, RPS8A, RPS9B, and SNR6;
1:1000 for PGK1, PYK1, and U3; and 1:20,000 for RDN58. All
qPCRs were performed in triplicate. Individual technical repli-
cates were only discarded as outliers if Ct values were different
from the other technical replicates by greater than a full Ct value
and the amplification trace displayed apparent aberrations in
amplification efficiency.
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