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Abstract

Cadmium, a heavy metal dispersed in the environment as a result of industrial and agricultural 

applications, has been implicated in several human diseases including renal disease, cancers, and 

compromised bone health. In the general population, the predominant sources of cadmium 

exposure are tobacco and diet. Urinary cadmium (uCd) reflects long-term exposure and has been 

frequently used to assess cadmium exposure in epidemiological studies; estimated dietary intake 

Corresponding author: Postal Address: Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., M4-B402, Seattle, WA, 
98109-1024, Tel: 206-667-3476, Fax: 206-667-5977, pnewcomb@fredhutch.org. 

Supplementary information is available at The Journal of Exposure Science and Environmental Epidemiology’s website.

CONFLICT OF INTEREST
The authors declare no conflict of interest.

HHS Public Access
Author manuscript
J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2016 November 01.

Published in final edited form as:
J Expo Sci Environ Epidemiol. 2016 ; 26(3): 303–308. doi:10.1038/jes.2015.40.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of cadmium (dCd) has also been used in several studies. The validity of dCd in comparison to uCd 

is unclear. This study aimed to compare dCd, estimated from food frequency questionnaires 

(FFQs), to uCd measured in spot urine samples from 1,002 participants of the Women’s Health 

Initiative. Using linear regression, we found that dCd was not statistically significantly associated 

with uCd (β=0.006, p-value=0.14). When stratified by smoking status, dCd was not significantly 

associated with uCd both in never smokers (β=0.006, p-value=0.09) and in ever smokers 

(β=0.003, p-value=0.0.67). Our results suggest that because of the lack of association between 

estimated dietary cadmium and measured urinary cadmium exposure, dietary estimation of 

cadmium exposure should be used with caution in epidemiologic studies.
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INTRODUCTION

Cadmium is a heavy metal that has been associated with renal disease, impaired bone health, 

and cancers in occupational settings and in the general population (1–5). Cadmium occurs 

naturally in the environment at relatively low levels. However, cadmium contaminates 

agricultural land as a result of fertilizer, industrial and consumer wastes, and mining activity 

(1, 2, 4). Smoking is an important source of exposure in the general population due to the 

high accumulation of cadmium in tobacco leaves(6), but the primary source of non-

occupational exposure to cadmium in non-smokers is believed to be through diet (7). Plants 

take up cadmium through contaminated soil, with high concentrations of cadmium in leafy 

vegetables, grains, and nuts (2, 8, 9). Approximately 3–5% of cadmium in food is absorbed 

into the body when ingested (10–12). Cadmium exposure also occurs through air and water, 

though these are minor sources of human exposure in the US and Europe (2, 13, 14).

Cadmium exposure in humans can be measured from biological samples including urine and 

blood, or estimated from diet (2, 15, 16)(2, 3). Because cadmium accumulates in the kidney, 

urinary cadmium is thought to reflect long-term exposure, with the half-life of cadmium 

being decades in humans (12, 16, 17).

Dietary estimation of cadmium exposure based on food frequency questionnaires (FFQs) or 

diet diaries linked to measurement of cadmium in food items has been used in several 

epidemiological studies (18–27). Estimation of cadmium levels from dietary data facilitates 

larger studies, and is an efficient use of commonly collected data in order to evaluate the 

association of cadmium exposure with multiple adverse health outcomes. However, the 

accuracy of dietary estimation of cadmium exposure compared to urinary cadmium remains 

unclear.

In the current study, we evaluated the relationship between urinary cadmium (uCd) and 

dietary cadmium intake (dCd) estimated from FFQs from a subsample of participants in the 

large and well-annotated Women’s Health Initiative Cohort Initiative Clinical Trials and 

Observational Study (WHI) (28).
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MATERIALS and METHODS

Study population

Participants were selected from the Women’s Health Initiative (WHI), a large longitudinal in 

the United States study of postmenopausal women (age 50–79 years at enrollment) recruited 

from clinical centers nationwide. The WHI comprises clinical trials (CTs) and observational 

study (OS) arms designed to evaluate several interventions and risk factors in relation to 

cancer and cardiovascular disease risk. Extensive details of WHI study design and 

recruitment have been previously described (28–30). Briefly, recruitment occurred between 

1993 and 1998 at 40 clinical centers across the US. In total, WHI enrolled 161,808 women. 

All participants provided written informed consent. Human subjects review committees at 

all participating sites approved WHI study protocols. The analyses presented here were 

reviewed and approved by Fred Hutchinson Cancer Research Center Institutional Review 

Board as an ancillary study to WHI and comply with all applicable US regulations.

For the current study, an age-stratified random sample of 1,050 participants was selected 

from 12,476 WHI women participating in the Bone Mineral Density study at three clinical 

centers (Pittsburgh, PA; Birmingham, AL; and Tucson, AZ), the only WHI sites which 

routinely collected urine samples (31). Since our study includes women who serve as 

controls in a study of breast cancer incidence, we excluded women who reported prior breast 

cancer; in addition, we excluded women with no urine sample in the WHI repository, or 

unknown baseline smoking status. For the present study, women with incomplete 

information on race/ethnicity, body mass index (BMI), education, parity, or an incomplete 

FFQ were excluded, resulting in a final study sample of 1,002 women.

Data collection

All women completed extensive self-administered questionnaires at baseline enrollment. 

Questionnaires included detailed information on demographic characteristics, dietary habits, 

medical history and lifestyle factors including tobacco use and alcohol intake. 

Anthropometric measures were taken at baseline clinic visits using a standardized protocol 

(28).

Usual diet was assessed through a FFQ specifically developed for postmenopausal women 

(32), completed by all participants at baseline and at intervals, according to WHI study arm, 

during follow-up. The FFQ collected information on dietary intake over the previous 3 

months from 122 individual line items each comprised of closely related foods or beverages, 

and included adjustment questions on food preparation and types of added fats (32). 

Previous evaluation of the WHI FFQ found that mean intake levels estimated by the FFQ 

were within 10% of those from food records and dietary recalls for a majority of nutrients; 

test-retest reliability of the FFQ was also high (Intraclass Correlations Coefficients from 

0.67–0.84) (32). Total energy intake (kcal/day) was computed using the FFQ data (32). WHI 

discards FFQ data for women reporting <400 kcal or >5,000 kcal total energy intake per day. 

For this study, we used data from FFQ collected at baseline.

Dietary cadmium (dCd) was estimated using baseline FFQ data following dietary 

micronutrient methodology previously applied to dietary cadmium in the US (21, 25, 33). In 
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brief, a database of the cadmium content of component foods underlying each FFQ line item 

composite was constructed using measurements of the cadmium content of foods determined 

analytically by the US Food and Drug Administration (FDA) as a part of the Total Diet 

Study (TDS) (8, 34). TDS collected three representative market baskets per year from each 

of four regions throughout the US. Specific locations for collection within each region 

changed yearly. Foods were prepared according to predetermined recipes and analyzed by 

graphite furnace atomic absorption spectrometry for a number of nutrients and contaminants 

including cadmium (8, 34). TDS data are a publicly available resource accessible online 

(http://www.fda.gov/Food/FoodScienceResearch/TotalDietStudy/default.htm). The 

arithmetic mean of cadmium content (mg/100 g prepared weight) reported by the FDA for 

all available samples of each food was assigned as the cadmium concentration for that FFQ 

component food item. Cadmium content from the TDS was averaged over year and region. 

Individual measurements of food items below the levels of detection (LOD) were assigned 

values of zero(25).

WHI women were asked to collect a first morning void, record the time of void on the 

sample collection vial, and refrigerate the sample until attending the baseline clinical visit. 

Upon receipt at the clinic the sample was logged, centrifuged, aliquoted to cryovials, and 

frozen for shipment and storage at −70°C in the WHI repository.

For the present study, urinary cadmium (uCd) was measured using mass spectrometry 

(sector field inductively coupled plasma mass spectrometry (SF-ICPMS) on a Thermo-

Finnigan Element 2 (Thermo Scientific, Waltham, MA) at the Wisconsin State Laboratory of 

Hygiene (Madison, WI), following quality control procedures similar to those previously 

described (3, 35). SF-ICPMS batches included participant samples, standard reference 

material aliquots, and multiple quality control samples (duplicates, spikes, check standards 

and blanks) (26). Duplicate samples resulted in a mean coefficient of variation (CV) of 

2.7%. Values that were below or equal to the lowest level of quantification (LOQ) of 3.5 

ng/L were assigned a value of 3.5/√2 ng/L. Of the final 1,002 women included in this 

analysis, 9 had cadmium levels below or equal to the LOQ.

Statistical Analyses

For statistical analyses, uCd was divided by urinary creatinine for each participant and 

expressed as μg cadmium/g creatinine. Thus, uCd throughout statistical analyses was defined 

as creatinine-adjusted urinary cadmium. All regression models were conducted using the 

robust method to estimate standard errors.

The distributions of uCd and dCd were examined via histograms (Supplementary Figure 1). 

Both plots showed a right-skewed distribution. In sensitivity analyses, log-transformed 

values for both uCd and dCd were used in analyses. We selected untransformed results for 

ease of interpretation and presentation.

Multivariable linear regression was used to identify participant personal characteristics 

independently associated with dCd or uCd. Potential predictors of dCd or uCd included 

WHI study arm (CT or OS), WHI region, age at baseline, smoking status, total energy 

intake, race/ethnicity, body mass index (BMI), physical activity, multivitamin use, dietary 
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alcohol consumption, education level, postmenopausal hormone therapy use, age at 

menopause, and parity (Table 1). Smoking status is defined as never smoker, ever smoker, or 

current smoker. This categorized definition of smoking status was highly correlated with 

calculated pack years (R2=0.83) within the data. Categorical variables were evaluated using 

a post estimation Wald statistic. Missing categories were created for variables with missing 

data; physical activity (N=36) and age at menopause (N=84). Age, smoking status and total 

energy intake were retained in all subsequent models of dCd and uCd as a priori covariates.

Multivariable linear regression was used to quantify the relationship of mean dCd with mean 

uCd, adjusting for personal characteristics identified a priori and independently associated 

with dCd or uCd as determined above. This relationship was quantified within the entire 

study sample and stratified by smoking status, WHI region, race/ethnicity, and current iron 

supplement use allowing the coefficient of dCd to vary between strata to test interactions 

with dCd in relation to uCd. The relationship was analyzed stratifying by use of any iron 

supplementation.

A stepwise regression model was applied to evaluate which food groups were most related to 

uCd. All a priori (age, smoking status, total energy intake) and covariates selected from the 

initial dCd and uCd models described above were retained throughout stepwise selection. 

The stepwise procedure inclusion criteria was set at P=0.15 and the exclusion criteria at 

0.10. Food groups input for selection were fruits, vegetables, fish, red meat, poultry, soy, 

nuts, grains, whole grains, milks, and dairy all measured as medium servings/day and 

computed by the WHI study by aggregating data from the FFQ. Food groups rather than 

individual food items were input for selection in order to minimize over-fitting that could 

result from the inclusion of many individual food items in regression models. Stepwise 

selection was conducted in the overall study population, and separately in never smokers.

All statistical analyses were conducted using SAS version 9.2 (SAS Institute Inc., Cary, NC, 

USA) and Stata version 13.0 (StataCorp, College Station, TX).

RESULTS

The mean age of participants was 63.4 years old and the majority (55.7%) were never 

smokers (Table 1). The mean (SD) uCd was 0.62 (0.50) μg/g creatinine (range: 0.0014 – 

6.79 μg/g; interquartile range (IQR): 0.45 μg/g; geometric mean 0.48 μg/g). The mean (SD) 

dCd intake was 10.4 (4.7) μg/d(range: 1.74 – 31.6 μg/d; IQR: 6.2 μg/d; geometric mean 9.4 

μg/d). dCd estimates did not vary substantially across most of the covariates evaluated, but 

were strongly correlated with estimated total energy intake. uCd was higher in older 

participants, smokers, and in participants reporting higher alcohol consumption. Thirty 

percent of participants were currently taking iron supplements, either as a single supplement 

or as part of a multivitamin.

Independent predictors of both dCd and uCd identified through separate multivariable linear 

regression models were age, race/ethnicity, physical activity, and parity. WHI study arm, 

WHI region, dietary alcohol consumption, and education were associated with dCd but not 
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uCd. Smoking status and BMI were associated with uCd but not dCd. For subsequent 

analyses, all of these variables were retained as adjustment covariates.

Each 1μg/d higher mean dCd was associated with 0.006 μg/g (95% CI: −0.002, 0.014 μg/g) 

higher mean uCd (Table 2). The association between dCd and uCd did not differ among 

never-smokers and ever smokers (P-interaction=0.77). The association was marginally 

stronger in never smokers compared to ever smokers (β=0.006, β=0.003, respectively), 

though neither of these stratified associations are statistically significant. By WHI region, 

the association was strongest within the Eastern region (β=0.014, 95%CI: 0.001–0.026), 

though there were no statistically significant differences in association by race/ethnicity, 

WHI region, or by current use of iron supplements. Furthermore, the association between 

uCd and dCd was qualitatively unchanged when log-transformed uCd and dCd were used in 

regression models (0.12% higher uCd for each 1% higher dCd (95% CI: −0.16% – 0.25%)), 

adjusted for the same covariates as described.

A stepwise selection model assessed fruits, vegetables, fish, red meat, poultry, nuts 

(including peanuts and peanut butter), grains, and dairy in addition to fixed adjustment 

covariates (age, total energy intake, smoking status, WHI study arm, WHI region, race/

ethnicity, BMI, physical activity, dietary alcohol consumption, multivitamin use, education, 

and parity) in relation to uCd. The food groups retained as associated with uCd were fruits, 

vegetables, dairy, red meat, nuts, and milks (Table 3). This approach was repeated in never 

smokers resulting in the retention of nuts (β=0.21 (0.11–0.31) μg/g per daily medium 

serving, and grains (β=0.015 (0.001–0.029)).

DISCUSSION

We observed at most a weak association between dCd intake, estimated from FFQs, and 

uCd. Although our study sample included smokers, when restricted to never-smokers, the 

association between dCd and uCd remained weak and not statistically significant. We 

observed no statistically significant differences in association by race/ethnicity or by WHI 

region.

The associations of uCd with age and smoking history were consistent with several previous 

reports from disparate populations (14, 16, 35–41). In women in our study, cadmium levels, 

as measured both in diet and urine, increased with higher alcohol consumption. This differs 

from what has been found in previous studies in women which have found inverse (14) or no 

association (35) of cadmium with alcohol consumption.

The results of the stepwise regression model used to evaluate the contribution of specific 

components of diet to urinary cadmium levels identified only intake of nuts in association 

with higher urinary cadmium. A larger number of vegetables was also suggested to be 

associated with higher mean urinary cadmium. Each of these food categories are known to 

contain more cadmium than, for example, meat or poultry. On the other hand, intake of 

grains, which may also have a relatively high cadmium content, were not retained (8).

From the stepwise selection model, an inverse association was suggested between uCd and 

consumption of red meat. Increased absorption of cadmium through the gastrointestinal tract 
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has been related to low iron stores, though this may not be as much of a concern in 

postmenopausal women (10, 42, 43). Vahter et al. conducted a study analyzing the 

bioavailability of cadmium comparing diets high in shellfish intake with “mixed diets”, and 

found that bioavailability differs by diet type, potentially as a result of differences in iron 

intake (11). In out study, the current use of iron supplements did not alter the relationship 

between uCd and estimated dCd, though only a minority of participants were taking 

supplements. Other dietary components that have been implicated with cadmium absorption 

include fiber, calcium, zinc and copper (10, 11, 44, 45), each of which is difficult to assess 

with recall-based dietary assessments such as FFQs. Hence, when attempting to approximate 

dietary exposure to cadmium, intake of dietary co-factors potentially involved with 

absorption presents an additional challenge.

Previous studies have found correlations between urine and diet cadmium. In Sweden, Julin 

et al. examined the relationship between dietary and urinary cadmium and found a 

correlation of r=0.43 (46). This study collected duplicate food portions and directly 

measured intake of cadmium using mass spectrometry in food consumed. Julin et al also 

found that the inclusion of iron status increased the prediction of the model (46).

Ikeda et al. conducted at study throughout several Japanese prefectures measuring cadmium 

levels in the environment, in food portions collected from those areas, and in urine samples 

and were able to find correlations between these measures (r=0.59–0.89) (47). The approach 

used in Sweden and Japan shows that diet is correlated to urinary cadmium when cadmium 

is measured in samples of the actual food items consumed, or food acquired locally, in 

contrast to our approach.

A Norwegian study measuring fish and game intake used specifically designed FFQs in 

areas known to have high cadmium contamination found no association with cadmium levels 

in either blood or urine in the overall population; in non-smokers they identified seafood, 

particularly crab, as a predictor of urinary cadmium (48). In the California Teachers Study, a 

similar method as the current study was used to determine cadmium levels using FFQs and 

extrapolating the FDA’s Total Diet Study cadmium measures found that diet cadmium was 

not a significant predictor of urinary cadmium (14). Thus, our results are generally 

consistent with previous studies that also compared FFQ and biological measures of 

cadmium exposure.

The weak association between urine and diet cadmium measures in our study population 

may be a result of measurement error introduced by our reliance on FFQ data. In part, this 

may stem from the imprecision of cadmium levels estimated from the Total Diet Study to 

approximate the actual cadmium levels in the food, as well as the limitation of FFQs to 

capture the totality of regular dietary intake, which has specifically been demonstrated using 

the WHI FFQ (49). In contrast to uCd, the dietary cadmium estimate does not account for 

other routes of exposure, though the associations here adjusted for smoking status, the main 

driver of cadmium levels outside of diet. Questionnaire data on occupation collected by WHI 

shows that occupational exposure in this cohort is unlikely (50).
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A source of measurement error is the different time periods over which the FFQ used in our 

study and urinary cadmium assessed exposure. Urinary cadmium is widely believed to 

measure exposure over several decades(15, 16, 51). In contrast, the WHI FFQ was designed 

to evaluate diet in the prior 3 months(32). Therefore, changes in diet with age may be an 

important consideration in future diet-based assessments of cadmium exposure.

Cadmium levels likely differ by region and by food supplies. Here, we used national level 

estimates of cadmium contamination in food to make our diet estimates. Since the sources of 

food supply in the US population are relatively diverse, and since uptake of cadmium into 

foods such as vegetables depend upon growing conditions (52, 53), it may be that using 

cadmium quantifications measured from food items across the country did not provide 

enough specificity to accurately estimate individual intake of cadmium through diet. Using 

diet measures that are specific to both sub-populations and cadmium quantifications based 

on specific regions of food origin may improve the association of dietary and urinary 

cadmium measures.

The use of a stepwise regression model to evaluate which food groups contributed most to 

diet cadmium levels may be prone to over-fitting due to the number of variables provided for 

evaluation. We minimized this by using food groups in stepwise elimination, rather than 

many individual food items. Thus although over-fitting may be a concern, the results of this 

analysis may still provide some insight as to which food groups contribute most to urinary 

cadmium levels.

Finally, variation in uCd introduced by our use of a single urine sample may have attenuated 

any association between dietary and urinary cadmium. Most (84%) women recorded a time 

of collection before 8 a.m., suggesting a first morning void, which should have reduced 

diurnal variation in urinary cadmium (54). In addition, to account for dilution, we adjusted 

urinary cadmium for urinary creatinine; urinary creatinine has been observed to vary 

according to gender, age, body size, or meat intake (55). Because our study included only 

postmenopausal women, ages 50–79 years, and we adjusted for BMI, the influence of 

creatinine adjustment on our results was likely reduced.

Our study also has important strengths. We evaluated the association of estimated dietary 

cadmium intake and urinary cadmium intake in a sample of 1,002 postmenopausal women 

participating in the WHI, a well-annotated cohort study with extensive data on personal 

characteristics and behaviors. Our study included the largest sample sizes of comparable 

previous studies evaluating the relationship between diet and urinary cadmium in Western 

populations with similar exposure to cadmium(14, 35, 41, 46, 48); Asian studies have 

included more participants with higher exposure levels(47, 56)

In summary, in this study of postmenopausal women, we did not find a strong association 

between estimated dietary intake of cadmium and urinary cadmium. Diet remains the most 

likely source of cadmium exposure among non-smokers without occupational exposure (2). 

However, our results suggest that assessment of dietary cadmium with instruments such as 

food frequency questionnaires, combined with representative data on cadmium in foods, 
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may suffer from a large amount of measurement error that limits the usefulness of this 

approach in epidemiological studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 3

Association of intake of selected food groups with urine cadmium resulting from stepwise selection applied to 

a linear regression model1.

Selected foods (medium servings/day) β2 P-value 95% Confidence Interval

Fruits −0.024 0.08 (−0.051, 0.003)

Vegetables 0.022 0.10 (−0.004, 0.048)

Red meat −0.052 0.11 (−0.115, 0.012)

Nuts 0.121 0.04 (0.006, 0.237)

1
Model adjusted for age, total energy intake smoking status, WHI study arm, WHI region, ethnicity, BMI, physical activity, dietary alcohol intake, 

multivitamin use, education, and parity. Variables input for stepwise selection were fruits, vegetables, fish, red meat, poultry, nuts, grains, dairy.

2
μg/g urinary cadmium per daily medium serving of each food item.
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